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AGENT-BASED MODELING OF UNCREWED AIRCRAFT SYSTEM 

The number of uncrewed aircraft systems (UAS) and corresponding UAS 
operations is expected to increase dramatically soon. Regulatory agencies are 
currently designing and piloting UAS traffic management concepts that rely on 
federated protocols and a cooperative, community-based approach. As demand 
increases, the need to ensure fair usage of airspace among operators will be an 
important challenge. Currently, there are no widely agreed upon definitions or 
guidelines for UAS airspace fairness. The objective of this work was to evaluate 
the fairness implications of using a first-filed-first-served protocol for flight 
planning. We developed UAS Cooperative Airspace Traffic Simulation (UCATS™), 
an agent-based modeling simulation tool, to evaluate different UAS package 
delivery scenarios using a first-filed-first-served approach to UAS flight planning. 
We defined key metrics to measure fairness, including average delay, maximum 
delay, and percentages of flights as planned, replanned, and canceled. Our 
results showed that a first-filed-first-served approach may cause flights having 
a departure time later in the day and flights that are filed with less advanced 
time have a higher probability of experiencing more negative flight outcomes. 
We also evaluated the sensitivity of fairness metrics to different traffic levels, 
different flight densities, and the addition of food delivery operations.
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Introduction As demand for uncrewed aircraft systems (UAS) operations increases, 
regulatory agencies must develop concepts for managing widespread 
UAS operations. In the US, future UAS traffic management (UTM) will 
be community based and cooperative [1]. This approach differs from 
traditional crewed air traffic management, which relies on the Federal 
Aviation Administration (FAA) to provide centralized traffic management. In 
UTM, the FAA will establish “rules of the road,” but the operators and third-
party UAS service providers will be responsible for coordination, execution, 
and management of operations [1].

With the decentralization of UTM, competing operators should work 
together to ensure that all have fair access to the airspace. The FAA will 
need to ensure that UTM is implemented fairly, despite the competing 
interests and unequal market shares among operators. Currently, however, 
the FAA has yet to formally define what fair access to airspace entails.

In this work, CNA developed UAS Cooperative Airspace Traffic Simulation 
(UCATS™) as a tool to investigate UAS airspace fairness with the intent 
of providing insight into future decision-making for UTM. UCATS™ is an 
agent-based modeling (ABM) tool that simulates UAS  flight planning 
scenarios to provide insights into usage of airspace, including metrics to 
measure fairness. Industry and government stakeholders can use this tool 
to assess future high-density UAS operations and resulting fairness toward 
UAS operators.

PRIOR WORK
There are limited studies of airspace fairness for UAS operations. Evans et al. 
(2020) simulated UAS scenarios where two operators served in overlapping 
regions [2]. The study used a first-come-first-served allocation of resources 
with de-confliction by departure time and determined an optimized 
solution set based on the cost of delay to the operator. The study found 
that significant imbalances in delays occurred due to shorter file-ahead 
times and higher traffic levels. 

Sacharny et al. (2020) compared the efficiency of two UTM strategic 
deconfliction scenarios: a gridded approach, where the airspace is defined 
into grids that each must be deconflicted independently, versus a lane-
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based approach where deconfliction only occurs 
on predefined lanes of traffic [3]. The study used a 
series of computational experiments to determine 
relative metrics of average and maximum delay, 
flight time, and computational deconfliction 
time to determine that the lane-based approach 
outperformed the gridded approach. 

Finally, Chin et al. conducted a series of studies on 
efficiency and fairness for future UAS operations. 
The first study simulated the problem of four 
package delivery operators making overlapping 
deliveries with different fairness metrics [4]. The 
study found that total delay was a more effective 
metric than departure reversals. The second study 
expanded this problem to consider operator 
preferences, airborne-to-ground delay cost ratios, 
and market shares and found similar results as 
the previous study [5]. A third study computed 
optimized solution sets based on queuing and 
lane-based fairness protocols for air taxis and 
ranked each by the resultant system delays [6]. 

Each of these studies has advanced the field of 
UAS airspace fairness; however, our study fills 
technical gaps in the body of work by considering 
a non-homogenous set of operators that differ 
in file-ahead time and peak time of delivery, 
including the reality of flight cancelations, and 
conducting sensitivity analyses of different traffic 
levels and allowable flight densities. We were able 
to incorporate these new considerations into an 
UAS simulation because of our use of ABM and the 
flexibility that such a modeling approach provides.

ABM APPROACH
ABM is a bottom-up computational approach used 
to analyze the effects of autonomous interacting 
agents on the overall system [7]. Agents are given 
predetermined properties and interact with each 
other and their environments using predefined 
rules. ABM can simulate heterogeneous systems 
where the behavior of each agent contributes to 
the overall outcome. In our approach, the UAS 
operators are the agents, who are autonomous 
and interact with each other. The operators also 
follow defined behaviors regarding the flight 
planning process, eligible trajectories, and conflict 
detection and resolution procedures.

ABM has been used to simulate a variety of 
environments, including those related to UAS. 
Recent studies have addressed specific problems 
without an explicit focus on fairness, such as last-
mile delivery [8]. In a 2019 literature review of 
ABM applications for unmanned aircraft vehicles, 
the authors reviewed 42 papers that addressed a 
variety of UAS topics, none of which directly address 
strategic flight planning or airspace fairness [9]. 
We addressed this gap by using an ABM approach 
that considers the sensitivity of UAS parameters 
that contribute to strategic flight planning.

OBJECTIVES
Our goal was to develop an ABM tool that 
simulates flight planning for small UAS delivery 
operations and use its derived statistical metrics 
to evaluate airspace usage fairness. This work 
focuses on two research questions. 

First, how can airspace fairness be measured 
for small UAS package delivery operations? 
Metrics such as the average delay and number 
of flight cancelations per day are helpful in 
determining how often operations are being 
completed as planned. Moreover, a relatively 
fair airspace would have low percentages of 
cancelations and delays because operators 
would complete their flights with minimal 
conflicts. 

Second, how will prioritizing flights using a 
first-filed-first-served (FFFS) method affect 
airspace fairness? Within this scope, we aimed 
to quantify how different levels of traffic 
and types of UAS operations will affect a fair 
approach to traffic management planning. 
Eventually, operations will reach a traffic 
threshold at which an increase in cancelations 
and delays occurs. Introducing different types 
of UAS operations, such as food delivery (which 
naturally operates on a different demand 
schedule), influences both traffic level and 
package delivery filing. These variables would 
impact our metrics for airspace fairness under 
the FFFS method.
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ASSUMPTIONS
The following assumptions were made for our 
scenarios and analyses.

Location
Our first assumption was based on the location 
that would be used for the small UAS delivery 
operations. We chose Howard County, Maryland, 
as our region of interest because of its dense 
suburban population. We choose two hypothetical 
package warehouse locations in the eastern 
part of the county based on existing warehouse 
locations and major surface transportation routes. 
For simplicity, we did not consider the effect of 
flight‑restricted areas such as those near hospitals 
or airports.

UAS Operations
We assumed clear and optimal weather and 
flying conditions for all UAS operations. The UAS 
will comply with Washington, DC, Metropolitan 
Area Flight Rules: total UAS weight less than 55 
pounds, package weight less than 10 pounds (i.e., 
small packages only), and flights remaining below 
400 feet in altitude. These restrictions limit UAS 
delivery speed to 50 miles per hour and flight 
ranges to 20 miles based on existing battery 
life and specifications of current commercial 
uncrewed aircraft. The UAS delivered one package 
at a time and used the same trajectory for delivery 
and return. Once the UAS reached the destination 
address, it paused to deliver its package and then 
immediately used the reverse path to return, 

which limited the delivery radius of a distribution 
location to 10 miles. We assumed each UAS will 
require 300 feet of separation in any direction 
from other UAS. For simplicity, UAS are assumed to 
fly at the same altitude to avoid violating vertical 
separation requirements. Finally, our scenarios 
did not consider the effect of interference from 
emergency or crewed operations.

Year
We assumed the year 2035 to calculate the 
expected population in Howard County and 
the corresponding number of deliveries for the 
simulations. The percentage of the population to 
receive UAS package deliveries in any given day 
was determined based on methods from two 2017 
studies [10][11]. Using the studies, we estimated 
that Howard County would have a total of 102,029 
combined residential and commercial addresses 
that would be eligible for package delivery. With 
two operators and one distribution location for 
each operator, the volume of UAS launches at 
each location was high, and we assumed that each 
operator had access to unlimited UAS.

Model
To capture uncertainty around delivery patterns, 
we used a stochastic approach to randomly assign 
deliveries to each operator. Each scenario was 
run for 1,000 iterations, which we assumed was 
sufficient to process a range of possible outcomes. 
UCATS™ simulates the flight planning process of 
future UAS flights, not the physical flights of the 
operations themselves. Thus, we assumed that the 
actual operations would occur as planned.

We choose Howard 
County, Maryland, as 
our region of interest 
because of its dense 
suburban population.
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Methodology After completing a thorough literature review, narrowing the scope of 
our problem statement, and defining our assumptions, we completed our 
work with the following phases: data collection, data processing, model 
algorithm, and scenario generation.

DATA COLLECTION
We used existing residential and commercial addresses to represent all 
possible delivery locations in Howard County, Maryland. We imported the 
address data from the Department of Transportation’s National Address 
Database [12]. We also obtained county boundary data from the State of 
Maryland’s Geographical Information Systems [13]. Then, we used ArcGIS 
to filter, visualize, and export the addresses within our defined radius of 
each origin (e.g., warehouse).

DATA PROCESSING
Two parts of our solution development required data processing: sector 
approach and shortest path.

Sector Approach
We divided the geographical region of interest into 300-by-300-foot 
sectors to represent the physical separation required for UAS based on 
our assumptions. We standardized spatial and temporal units by defining 
s to represent the sectors and t to represent a 5-second time unit (i.e., 
the approximate time it takes for the UAS to traverse a sector at 50 miles 
per hour). For sectors that contained addresses, the approximate housing 
density per occupied sector was 5 to 10 single family homes, 10 to 15 
townhomes, or 20-plus apartments. This step of processing used spatial 
data from the Maryland GIS Data Catalog that was visualized in ArcGIS.

Shortest Path
To reduce the computational effort of the model, we pre-generated one 
trajectory for each possible delivery address–origin distribution pair. The 
trajectories were calculated using a shortest path approach from Python’s 
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NetworkX package [14] before running the model 
simulations. We defined a graph in which nodes 
are the sector centers and edges are the distance 
between centers. Our shortest path algorithm 
allowed for both diagonal and orthogonal 
movement between sectors but assumed the cost 
(i.e., distance) between them is the same.

MODEL ALGORITHM
The UAS operators were the autonomous 
interacting agents of the ABM and their behaviors 
were dictated by their flight plans, trajectories, and 
conflict detection and resolution procedures.

Flight Plans
The delivery destinations of the flight plans were 
randomly assigned for each operator. The departure 
and file-ahead times were also randomly assigned 
to each flight plan. The departure times were 
selected between 8 am and 8 pm in time intervals 
t. The allowable file-ahead times were 24 hours, 
12 hours, 6 hours, and 1 hour before departure 
time. To align with the FFFS approach mentioned 
earlier, flights are ordered by their actual filed time, 
which is derived from the departure time minus 
the file‑ahead time. A single flight plan can be 
traced back to its trajectory, filed time, and original 
departure time.

Conflicts
We defined a conflict as when an operator 
submitted a plan that included one or more 
instances in which the UAS would be in the same 
sector s at the same time t at any point during the 
operation (i.e., delivering and returning trajectories) 
as another UAS whose plan had already been 
submitted and approved. This definition assumed 
that all UAS operated at a single altitude. To allow 
for multiple launches and maneuvering from the 
distribution location, no conflicts were considered 
within a four-sector buffer around the distribution 
location sector. 

Deconfliction
Our deconfliction protocol followed an FFFS 
approach, where flights were considered in the 
order that they were filed. Operators submit 
their desired flight plan and must deconflict with 
any filed flight plans before their flight plan is 
successfully filed. Thus, deconfliction was managed 
at the preflight or planning stage. In addition, all 
deconfliction occurred at the ground (not air) level 
before takeoff from the distribution location. The 
only acceptable method of deconfliction was to 
ground (delay) the flight plan for as many time 
steps t as needed until no conflicts remained with 
any other filed flight plans. Flights were canceled if 
they were delayed past the last available departure 
time or an operator’s defined tolerance (i.e., for 
time-sensitive operations). Directional changes to 
flight trajectories and airborne holdings were not 
considered as deconfliction strategies.

SCENARIO GENERATION
To evaluate airspace fairness for future UAS 
operations, we ran a total of four scenarios 
using UCATS™, each addressing some part of 
our problem statement. The four scenarios were: 
Scenario I: Baseline, Scenario II: Differing Traffic 
Levels, Scenario III: Differing Traffic Levels, and 
Scenario IV: Adding Fast Food Operations. A report 
with calculated descriptive statistics was generated 
at the end of each scenario to be analyzed. The 
four scenarios are summarized in Figure 1 and 
described in the subsequent subsections.
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Scenario I
Baseline

Scenario II  
Differing  

Traffic Levels

Scenario III 
Differing  

Traffic Levels

 
 
 
 
 

Scenario IV  
Adding  

Fast Food Operations

Agent / Operator 2 package  
warehouses

2 package  
warehouses

2 package  
warehouses

2 package 
warehouses

3 fast food locations

Total Daily 
Deliveries 12,000 6,000 to 24,000 12,000 15,150

UAS Allowed per 
Sector 1 1 2 to 3 1

Delivery 
Distribution

Uniformly 
throughout the day 

(8am–8pm)

Uniformly 
throughout the day 

(8am–8pm)

Uniformly 
throughout the day 

(8am–8pm)

Uniformly 
throughout the day; 
11am–2pm for food

Figure 1. Summary of the Four Scenarios

Scenario I: Baseline
Our first scenario provided the basis of evaluation for future scenarios. We ran a series of simulations 
with two package delivery operators (agents) at two different distribution locations (i.e., warehouses). 
Each operator delivers 6,000 packages randomly over the course of 12 hours, for a total of 12,000 
daily deliveries.

Scenario II: Differing Traffic Levels
Our baseline assumption of 12,000 flights per day was based on UAS and population forecasts; 
however, future traffic levels may differ from the baseline assumption. We ran a series of simulations 
with total traffic levels of 6,000, 9,000, 12,000 (baseline), 15,000, 18,000, 21,000, and 24,000 to capture 
a range of possible levels. All other baseline assumptions remained the same.

Scenario III: Differing Sector Density
Our baseline scenario allows only one flight per sector based on assumptions that every UAS needed 
300 feet of separation. However, future UAS may have improved tactical deconfliction capabilities, 
decreasing the separation requirements for UAS and thus, in our model, increasing the number 
of flights allowed per sector. In addition, future UAS operations may allow vertical deconfliction 
and multiple UAS within the same horizontal sector at different altitudes. We ran two additional 
simulations allowing up to two flights per sector and then three flights per sector. All other baseline 
assumptions remained the same.
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Scenario IV: Food Delivery
In the final scenario, we evaluated the effect of adding new types of UAS delivery operations. The 
baseline scenario considers only package deliveries that can be filed up to 24 hours ahead of time 
and delivered in a 10-mile radius. In this scenario, we added three new distribution locations for fast 
food delivery over lunchtime hours. These locations can deliver in a 3-mile radius and receive their 
orders 30 minutes ahead of time. In addition, because of the time sensitivity of the orders, flights are 
canceled if they are delayed more than an hour. We purposely chose the locations to overlap with 
each other and with the two existing package delivery services. The locations also correspond with 
actual food establishment hubs that serve surrounding residents in Howard County, Maryland.

Based on existing literature, we assume that 47 percent of the eligible addresses order food at least 
once per week [15]. We divide this percentage by 7 to obtain the assumption that 6.7 percent of 
addresses order once per day. We assume that the food orders all occur during lunchtime hours from 
11 am to 2 pm. Thus, along with the 12,000 daily deliveries expected from the warehouse agents, 
there are an additional 3,150 food deliveries for a total of 15,150 daily deliveries for this scenario. The 
fast food agent breakdown per day is as follows: 1,500 deliveries for Fast Food 1,950 deliveries for 
Fast Food 2, and 700 deliveries for Fast Food 3.
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Results We ran each scenario for 1,000 iterations to capture a range of outcomes based 
on the randomization of each delivery’s details (i.e., delivery address, departure 
time, file-ahead time, and origin distribution location). The stochastic nature of 
UCATS™ considers the uncertainty in the behavior of the deliveries based on 
customer needs. In this study, we measured fairness by the comparability of 
planned flight outcomes for UAS operations. The key metrics we defined are:

•	 Average delay in minutes: the mean of the delays experienced by 
any replanned flights,

•	 Maximum delay in minutes: the greatest delay experienced in any 
replanned flight throughout the day,

•	 Percentage of as-planned flights: the percentage of flights that 
depart at their original desired departure times when filed,

•	 Percentage of replanned flights: the percentage of flights that 
depart after their original desired departure times,

•	 Percentage of canceled flights: the percentage of flights that would 
be delayed beyond the 8 pm limit (or beyond the delay tolerance of 
the operator) and are considered terminated.

SCENARIO I: BASELINE 
The key metrics for the 1,000 iterations of the baseline scenario are found in 
Table 1, where 69.1 percent of the 12,000 flights (i.e., 7,878 flights) experience 
some length of delay.

Table 1. Key metrics for Scenario I: Baseline

Key Metric Average (± Standard Deviation)
Average Delay 60 minutes (± 6)
Maximum Delay 563 minutes (± 80)
Percentage As-Planned Flights 22.1 percent (± 0.5)
Percentage Replanned Flights 69.1 percent (± 0.7)

Percentage Canceled Flights 8.8 percent (± 1.0)
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Because of the stochastic nature of UCATS™, it is also useful to look at 
the range of possible outcomes of the iterations, including best case 
and worst‑case outcomes. The worst-case outcomes represent instances 
when conflicts are more likely to occur (e.g., when a surge of deliveries 
are requested within a short amount of time or by addresses along the 
same delivery route). In Figure 2, we see that the range of replanned 
flights is smaller and more consistent than the range of canceled flights. 
In 75 percent of the iterations run, at least 68.7 percent (8,249) of flights 
are replanned and at least 8.1  percent (976) of flights are canceled. 
In extreme cases, the number of replanned flights can be as high as 
8,505 (70.9 percent) and the number of canceled flights can be as high  
as 1,681 (14.0 percent).

The results can be broken down further to look at the proportion of flight 
outcomes by original desired departure time of the flight as seen in Figure  3. 
Later departing flights are canceled more often because of a domino effect 
in which earlier flights are delayed, causing conflicts with later flights. Flights 
are canceled if they are delayed past 8 pm (the time representing the final 
allowable departure time and the maximum operator delay tolerance), so 
late departure flights have less time available for replanning. On average, 
flights departing in the morning hours can be delayed but typically are not 
subject to cancelation. In an FFFS prioritization approach, earlier departing 
flights have a higher probability of obtaining a more positive flight outcome 
if they encounter conflicts during flight planning. The discrepancy in 
outcomes from using the FFFS approach may be less fair to time-restricted 
flights that must depart later, which are more likely to have a less positive 
flight outcome if they are not able to file ahead and then encounter conflicts. 
However, we also observe that the percentage of as-planned flights is similar 

(a) (b)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

71%70%69%68%67%66%

Pe
rc

en
t o

f T
im

es
 T

ha
t A

t L
ea

st
 T

hi
s 

M
an

y 
Re

pl
an

ne
d 

Fl
ig

ht
s

Percent of Flights Replanned

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

14%13%12%11%10%9%8%7%6%Pe
rc

en
t o

f I
te

ra
tio

ns
 T

ha
t A

t L
ea

st
 T

hi
s 

M
an

y 
Ca

nc
el

ed
 F

lig
ht

s

Percent of Flights Canceled

Figure 2. Distribution of flights that were (a) replanned and (b) canceled over all iterations

FFFS 

FIRST-FILED-
FIRST-SERVED 

DELIVERY 
METHOD



11Agent-Based Modeling of Uncrewed Aircraft System Flight Planning for Airspace Fairness

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

8A 9A 10A 11A 12P 1P 2P 3P 4P 5P 6P 7P

Pe
rc

en
t o

f F
lig

ht
 S

ub
m

itt
ed

Original Departure Time of Flight

Canceled

Replanned

As Planned

Figure 4. Breakdown of flight plan outcomes by file-ahead time

for all departure times, at around 20 percent. This finding occurs because 
flights planned far in advance (e.g., 12 or 24 hours) are evenly distributed 
throughout the day.

We can also view the flight outcomes by file-ahead time as shown in Figure 4. 
Flights planned farther in advance have a clear advantage over flights planned 
closer to departure. No flights planned 12 or 24 hours ahead were canceled 
in any of the 1,000 iterations. As such, operations that can be filed hours or 
days before departure have a higher probability of obtaining a more positive 
flight outcome in an FFFS prioritization approach. The discrepancy in flight 
outcomes from using a FFFS approach may be less fair to more urgent flights 
that must be scheduled with shorter advance notice. However, we also observe 
that next-day deliveries still have a 60 percent chance of being delayed, albeit 
not by much time (i.e., on average, 48 seconds).
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Figure 3. Breakdown of flight plan outcomes by original departure time
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Finally, we can break down the results based on 
which sectors are experiencing the most conflicts. 
UCATS™ processes the trajectory for each flight 
plan in the order that it was filed. If an attempt 
to file a plan fails because an earlier filed flight 
already occupies the same sector at the same time, 
a conflict is recorded for that sector. The map in 
Figure 5 shows the average number of conflicts 
per sector for all iterations.

We observe that 20 percent of all sectors recorded 
at least one conflict. There are approximately 
150,000 total sectors in the grid and more than 
100,000 addresses that are randomly selected 
for delivery, so some addresses or sectors may 
have been randomly selected only a few times 
in the 1,000 iterations. Thus, most sectors are in 
the lowest (0.001 to 1, white) range of the legend. 
However, we also note that 95 percent of conflicts 
occurred in the same five sectors located near 
the warehouses because of congestion of flights 

leaving and returning (red range of the legend, 
1,000 to 5 million). The five sectors with the highest 
number of conflicts claimed 60 percent, 29 percent, 
2.5 percent, 2.5 percent, and 1 percent of all 
conflicts, respectively, whereas all others claimed 
the remaining 4.9 percent. This result is supported 
by the finding that conflicts occur largely between 
flights from the same operator (97 percent) versus 
flights from different operators (3 percent). Possible 
mitigations for conflicts near the warehouses could 
include alternate or more regulated departure 
and landing approaches. Finally, we also see that 
patterns in conflicts occur in popular “corridors” 
leaving the warehouses, especially those at 
perpendicular angles to the warehouse locations. 
We attribute this finding to our use of the gridded 
approach and shortest path algorithm, which limit 
the flights to diagonal and orthogonal movements 
based on 300-by-300-foot sectors. The patterns 
are consistent with existing initial concepts of 
designating corridors for air taxis.

Figure 5 Average number of conflicts per sector for 12,000 deliveries
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SCENARIO II: DIFFERING TRAFFIC
In the second scenario, we evaluated the effect of traffic levels from 9,000 to 
24,000 flights. The results in Figure 6 show inflection points and patterns. At 
fewer than 9,000 flights, flight delays are minimal and flights are not canceled. 
At 9,000 flights, the number of replanned flights increases slightly as the system 
reaches its capacity to manage delays before flight cancelations begin. At more 
than 24,000 flights, more flights will be canceled than will be completed. In 
general, the percentage of canceled flights increases with higher traffic levels 
while the percentage of replanned flights decreases with higher traffic levels 
because flights that would be replanned instead become canceled.
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SCENARIO III: DIFFERENT DENSITY
In the third scenario, we evaluated the effect of increasing the number of 
flights allowed from one per sector to two per sector and three per sector. 
The results are shown in Figure 7. As expected, the flight outcomes improve 
immediately with increased density because the number of conflicts is directly 
reduced. The percentage of replanned flights decreases linearly with increased 
allowable density; however, the average delay of the flights decreases sharply. 
With the 12,000 daily baseline flights, canceled flights and average delay have 
the potential to be almost eliminated with a density of two flights per sector.
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SCENARIO IV: FOOD DELIVERY
The key metrics for the 1,000 iterations of the food delivery scenario are found 
in Table 2. Averaged over all operators and flights, we observe that the average 
delay, number of canceled flights, and number of replanned flights are similar 
to the baseline scenario with only package delivery operations. However, from 
the individual operator perspective, the individual food delivery metrics are 
overshadowed by the more numerous package delivery metrics.

Key Metric Average (± Standard Deviation)

Average Delay 52 minutes (± 6)

Maximum Delay 569 minutes (± 82)

Percentage As-Planned Flights 24.8 percent (± 0.4)

Percentage Replanned Flights 67.4 percent (± 0.7)

Percentage Canceled Flights 7.8 percent (± 0.9)

Food deliveries can file only 0.5 hours ahead, so package deliveries always 
take priority. This prioritization is shown when we view the results by operator 
and not as a whole. We then simulated the effect of considering only food 
deliveries (no package deliveries) to compare the difference in flight outcomes. 
As shown in Figure 8, we found that in simulations without package deliveries, 
the food operators experience fewer delayed flights, almost no canceled flights, 
and less delay. Thus, a segregated airspace may help improve equity among 
operators that have short file-ahead times, such as fast food delivery services.
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MODEL LIMITATIONS
The results from the four scenarios provided in this paper provide a proof of concept for using ABM 
to simulate future UAS operations and measure airspace fairness. However, UCATS™ has several major 
limitations that should be addressed in future work to further improve and mature the model itself, 
as well as the data and assumptions used in the scenarios. These limitations include the following:

1.	 UCATS™ is driven by assumptions used in the model algorithm and on scenario parameters 
and should be validated with stakeholder and additional subject matter expertise.

2.	 The flight paths are all predetermined and do not allow for dynamic deconfliction. Further 
expansion of UCATS™ can optimize flight trajectories, allow for alternative trajectories, or 
allow for air-based deconfliction (e.g., holding).

3.	 The agents (i.e., UAS operators) have limited interaction with each other. Further work can 
define more behavior protocols, such as negotiation between agents.

4.	 Only trajectory-based package and food delivery operations are considered, and all 
operations are considered with equal priority. Further expansions may add more types of 
operations, such as area-based operations and prioritized public safety operations.

5.	 Only up to five distribution locations are considered in the scenarios, which led to many 
internal conflicts near launch. Further work may add more locations or change locations for 
each operator.
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Conclusion In this study, we evaluated how airspace fairness may be measured for future 
UAS operations and how a FFFS flight planning method might affect airspace 
fairness. We measured airspace fairness by developing an ABM tool, UCATS™, 
to simulate four different flight planning scenarios and analyze key metrics. We 
found that when prioritizing flights using a FFFS method, flights that are unable 
to participate in advanced file-ahead times and flights that depart late in the 
day are disadvantaged. This inequity may be further evaluated in UCATS™ by 
studying the feasibility of non-FFFS prioritization schemes (e.g., such as those 
based on specific operator preferences or package priorities). We also identified 
high congestion areas around the distribution locations and along popular 
corridors. To further investigate these phenomena, UCATS™ can be used to 
assess different design factors, such as number and placement of distribution 
locations and the effect of designated air corridors. Other opportunities for 
further expansion and application of UCATS™ include assessing additional 
deconfliction schemes, estimating airspace operational capacities, and 
examining the effect of prioritized operations on UAS flight planning.

Overall, this effort showed that UCATS™ has potential to provide informative 
insights to industry and government stakeholders. Because of its agent-based 
design, UCATS™ is highly customizable and can be used to model different 
UAS operations and environments. The scenarios developed in this proof of 
concept demonstrate initial insights that a more mature UCATS™ could expand 
on. UCATS™ can be used in numerous applications to provide decision-makers 
with data-driven information. 

Key Take Aways
UCATS™ HAS POTENTIAL TO PROVIDE INFORMATIVE, 

DATA-DRIVEN INSIGHTS TO HELP INDUSTRY AND 
GOVERNMENT STAKEHOLDERS PLAN FOR THE FAIR 

USAGE OF UAS AIRSPACE.
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