
4825 Mark Center Drive • Alexandria, Virginia 22311-1850

CIM D0014629.A1/Final
August 2006

Forecasting the Marine Corps'
Aviator Inventory

Michael J. Moskowitz
with
Theresa H. Kimble • Robert W. Shuford

This document represents the best opinion of CNA at the time of issue.
It does not necessarily represent the opinion of the Department of the Navy.

Approved for Pulic Release; Distribution Unlimited. Specific authority: N00014-05-D-0500.
For copies of this document call: CNA Document Control and Distribution Section at 703-824-2123.

Copyright © 2006 The CNA Corporation

Approved for distribution: August 2006

Henry S. Griffis, Director
Workforce, Education and Training Team
Resource Analysis Division

Contents

Introduction . 1
Making an aviator . 2
Forecasting model . 4

Data . 5

Running the model . 7

Concluding comments. . 15

Appendix A: A detailed description of the model 17
Current aviator inventory 17
Future aviator inventory 19
Model overview . 21

Appendix B: Computer codes for model. 23

List of figures . 59
i

Introduction

Knowing the future aviator inventory is of vital importance because
the lead time for “creating” a new aviator is quite long. Commissioned
officers typically finish their initial training at The Basic School (TBS)
about 1 year after commissioning. Aviation officers then proceed to
undergraduate flight training (UFT). Recent analyses have shown
that the full training time, from TBS through attainment of Primary
Military Occupational Specialty (PMOS), for a fully qualified aviator
averages more than 3 years for certain aircraft. For example, the 38
new F/A-18 pilots in the May 2005 to April 2006 period averaged
training times of 1,370 days, or 3.8 years.1 Table 1 includes average
training times for new aviation officers who received their PMOSs
between May 2005 and April 2006.

1. The training times in the analysis measure time from arrival at TBS to
PMOS attainment. For aviators, this includes time spent in the Fleet
Replacement Squadron (FRS) after UFT since they do not receive their
final qualified PMOS until after FRS.

Table 1. Training times for aviation PMOSs from TBS entry to PMOS
attainment, May 2005 - April 2006

PMOS
Aircraft/

Occupation
Training time

(in years)
Number of

Marines trained
7509 AV-8B pilot 4.3 5
7523 F/A-18 pilot 3.9 46
7543 EA-6B pilot 3.7 7
7556 C-130 co-pilot 2.6 25
7562 CH-46 pilot 3.1 56
7563 UH-1 pilot 3.0 30
7565 AH-1 pilot 3.0 46
7566 CH-53E pilot 2.7 43
7588 EA-6B Electronic

 Warfare Officer
3.6 15
1

Making an aviator

At present, no model is being used to predict the inventory of avia-
tors. Since it is crucial to identify future shortages in the aviation com-
munity well ahead of time, we have built a model to project future
aviator inventory.

Figure 1 details an aviator’s career progression.2 As mentioned, an
officer’s military career begins by undergoing training, starting at
TBS. Aviation officers enter UFT after completing TBS. At any point
during training, a potential aviator may attrite or may switch to a non-
aviation specialty and never enter the inventory of qualified aviators.
Those who do complete UFT receive their wings and begin serving
their Initial Service Obligation (ISO), which is currently a 6-year obli-
gation for all Naval Flight Officers (NFOs) as well as helicopter and
fixed-wing pilots, and an 8-year obligation for jet pilots.

2. This diagram and the related discussion by Major William B. Lambert
are from CNA’s Manpower Critical Indicators Study (CNA Research
Memorandum D0006494.A2).

Figure 1. Process flow of aviator inventory

Obligated Not Obligated

Committed
Under Initial

Service
Obligation

Training
Prior to
Flight

Training

Attrite
or Drop

Flight
Training

Resign
or Retire

Separated

Eligible
to

Resign Under
Another

Obligation

Taking
ACP

Inputs Qualified Aviator Inventory Outputs

Obligated Not Obligated Obligated Not Obligated

Committed
Under Initial

Service
Obligation

Committed
Under Initial

Service
Obligation

Training
Prior to
Flight

Training

Attrite
or Drop

Training
Prior to
Flight

Training

Attrite
or Drop

Flight
Training

Flight
Training

(UFT)

Resign
or Retire
Resign

or Retire

SeparatedSeparated

Eligible
to

Resign

Eligible
to

Resign

Eligible
to

Resign Under
Another

Obligation

Taking
ACP

Under
Another

Obligation

Taking
ACP

Under
Another

Obligation

Taking
ACP

Inputs Qualified Aviator Inventory OutputsInputs Qualified Aviator Inventory OutputsInputs Qualified Aviator Inventory Outputs
2

After the completion of the ISO, an aviator may take one of two
tracks. In one track, aviators re-obligate by contracting for Aviation
Continuation Pay (ACP) or some other program that incurs an obli-
gation (SEP, Tuition Assistance, etc.).3 If an aviator does not re-obli-
gate, he or she remains in the Marine Corps unobligated. Aviators
leave the service either voluntarily when they have no service obliga-
tions remaining or involuntarily when they are twice passed over to
promotion to a certain grade, regardless of their obligation status. To
voluntarily leave the service, an officer must provide notice of his or
her intentions a minimum of 4 months and a maximum of 14 months
before the desired resignation date. Officers may provide notice of
resignation while still obligated as long as the resignation date comes
after the officer’s obligation has ended.

Figure 1 can also be understood as a process flow of aviator inventory,
with aviators in training as inputs to the inventory. The “Qualified Avi-
ator Inventory” category (shown by the bracketed header at the top
of the figure) is the main inventory of interest. This category consists
of all winged aviators, including both those still fulfilling obligations
and those not under obligations and eligible to resign.

The important distinction between these groups of qualified
aviators is that the Marine Corps can count on the continued
service of obligated, qualified aviators until the obligation has
ended, but there is uncertainty as to how long non-obligated
aviators will remain in the inventory. The model’s focus is the
obligated, qualified inventory.

Our model’s assumption is that any non-obligated aviator will remain
in the inventory for 6 months, to approximate the time necessary to
process the resignation. Furthermore, though the qualified aviator
inventory is the category of interest, the model focuses on
those aviators who have not yet reached the rank of lieutenant
colonel (LtCol) because there is little concern at present of
shortages at or above this rank in the aviation community.

3. Some obligations can be undertaken before the ISO, and the obliga-
tions may be fulfilled concurrently.
3

Forecasting model

The Aviator Inventory Forecasting Model consists of Visual Basic pro-
grams in two Microsoft Excel workbooks. The first program acts on
the data gathered from Operational Data Store Enterprise (ODSE)
and progresses an aviator through a proposed career path. The
second program interprets these data to produce an 8-year inventory
estimate that is presented graphically. As such, this program is a pre-
dictive tool to calculate the number of projected qualified aviators
over time and to help identify future aviator inventory shortfalls.
4

Data

The input data for the model are taken from the ODSE as a snapshot
of the current aviator inventory. ODSE is a daily snapshot of Marine
Corps personnel. The data drawn are limited to active duty aviators
by selecting only certain component and strength codes and restrict-
ing the PMOSs to the 75XX occupational field (the full SQL code is
included in appendix B). The user must make sure that these data
fields are present and are compiled in an Excel spreadsheet in the fol-
lowing order:

• Social Security Number (SSN) or Proxy

• Present Grade

• Date of Rank Present Grade (DOR)

• Primary MOS (PMOS)

• PMOS Date of Attainment (PMOSDOA)

• Monitored Command Code (MCC)

• Incurred Obligated Service Code (IOS Code)

• Incurred Obligated Service Date (IOS Date)

• Pilot Designation Date (PDD)

• Aviation Service Entry Date (ASED)

• Commissioning Date (COMD)

• Aviation Continuation Pay Termination Date

• Aviation Continuation Pay Contract Month Quantity

• Aviation Continuation Pay Contract Agreement Effective Date.

Of all of the fields, the IOS Code and IOS Date are the most impor-
tant to the model because they explicitly define the aviator’s current
5

obligation. Since these data fields are relatively new and not entirely
filled in for current aviators, we draw other data, such as the Pilot Des-
ignation Date, the Aviation Service Entry Date, and the Aviation Con-
tinuation Pay (ACP) fields to estimate current aviator obligations.
Over time, as the IOS data fields become filled in completely, estima-
tion of the length of the current obligation will no longer be
required.

The ACP data are drawn from a remark field in ODSE, which can
store multiple entries for each person. To ensure that the most recent
ACP contract is captured, the remark sequence number should be
used (the highest remark sequence number represents the most cur-
rent data). This remark sequence number is not included in the
spreadsheet of data for the model, but is used to identify the most cur-
rent ACP contract in the ODSE draw (See Appendix B for the SQL
program used to draw the data).

The data draw described above will provide information on all avia-
tors currently in the database, including those with training PMOSs.
The model does not use information on aviators in training, as it
focuses on the qualified aviator inventory. To account for aviators that
will be input into the inventory in the future, the model uses data on
yearly planned wingings, broken down by aircraft.

In our draw on June 27, 2006, we pulled 4,822 aviators from ODSE.
Of these, 1,205 were students, leaving us with a total of 3,617 aviators
in our qualified inventory, all below the rank of lieutenant colonel.

6

Running the model

Once the data are drawn from ODSE, the next step is running the
model. The Aviator Obligation Forecaster Spreadsheet has a button
to start the “model (see the “Bang!” button in figure 2). This spread-
sheet also contains the parameters used in the model calculations,
which can be modified by the user to test the effects of varying the
environment (see appendix A for a deeper discussion of the workings
of the model).

After the “Bang!” button is pressed, the model requests the location
of the Excel spreadsheet containing the ODSE data (see figure 3).
The user is then prompted to enter the number of runs (up to a

Figure 2. Aviator Obligation Forecaster Spreadsheet
7

maximum of 8), which tells the model how many times it should run
on the selected dataset (see figure 4).4

The model then performs the specified number of runs and creates
spreadsheets for each run, titled Run1.xls to Run8.xls. These spread-
sheets contain some of the original ODSE data on the aviators, as well
as the calculated obligations and projected end dates. Data on

Figure 3. Prompt for location of ODSE data file

Figure 4. Prompt for number of runs for Aviator Obligation Forecaster

4. The model automatically calculates the maximum number of runs
based on the number of wingings, the number of rows in the ODSE
data, and the capacity of Microsoft Excel. The maximum will go up
(down) if the wingings or ODSE data decrease (increase).
8

“future” aviators are also created based on the winging parameters
included in the model.

Due to the reliance on some assumptions and random number
assignments, results can vary from one run to the next, even with the
same data. Running the model multiple times at once allows the chart
creator, described next, to average over the runs and smooth out any
anomalies that arise. Therefore, we suggest running the forecaster
the maximum number of times. Though this will cause the model to
take more time to run and will use more disk space, both of these
should be marginal increases. In our latest model run, it took just
under 2 minutes for the forecaster to run, and the 8 spreadsheets cre-
ated took up 22 megabytes of space.

In the second half of the model, the Aviator Inventory Chart Creator
is run by pressing the “Make Chart” button (see figure 5). The user is
prompted to enter the number of runs used in the forecaster, so the
program knows how many files in which to find data. The chart cre-
ator pulls the data from each Run.xls file and compiles it. The pro-
gram averages the numbers of aviators from each run and uses the
date each aviator departs the model to create graphic depictions of
the inventory of aviators for the next 8 years. Two charts are created:
the current inventory of aviators (figure 6) and the total inventory,
both current and future aviators (figure 7). In each of the charts, the
aviator inventories are grouped by their obligation type. Table 2 lists
the different obligation groups.

Table 2. Chart creator inventory categories

Obligation
Category Description

CurISO Current aviators fulfilling their initial service obligation
ProjISO “Future" aviators fulfilling their initial service obligation
CurACP Current aviators fulfilling an obligation from accepting an ACP contract
ProjACP “Future" aviators fulfilling projected ACP obligations.
CurNO Current aviators with no remaining obligation
ProjNO Future" aviators projected to have fulfilled their ISO but not projected to

 reobligate with ACP, thereby becoming nonobligated
9

Figure 5. Aviator Inventory Chart Creator Spreadsheet

Figure 6. Inventory Chart—Current Aviators Onlya

a. The timeline for the inventory is measured in years from today, so that 0 represents today, 1 represents a year from
today, and so on.

All Future Inventory Levels - Current Aviators Only

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5 6 7

Years Obligated From Today

Nu
m

be
r o

f A
vi

at
or

s

CurISO CurACP CurNO
10

Figure 6 shows current aviators only, grouped by their current obliga-
tion. This chart provides information on how long today’s active duty
aviators are obligated to remain on active duty under their current
obligation. This is only one piece of the forecast, however, since avia-
tors currently fulfilling their Initial Service Obligation (the CurISO
group) can reobligate under ACP. These aviators exit this chart when
their current obligation ends but show up in a new section, ProjACP,
in figure 7.

Figure 7 shows the current aviator inventory but adds the estimated
input from initial flight training based on the winging parameters, as
well as those aviators that progress from their ISO to an ACP contract.

Figure 7. Inventory chart—all aviatorsa

a. The timeline for the inventory is measured in years from today, so that 0 represents today, 1 represents a year from
today, and so on.

All Future Inventory Levels

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7

Years Obligated From Today

A
vi

at
io

rs

CurISO ProjISO CurACP ProjACP CurNO ProjNO GAR

All

GAR

CurNO ProjNO

ProjACP
CurACP

CurISO

ProjISO

All Future Inventory Levels

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7

Years Obligated From Today

A
vi

at
io

rs

CurISO ProjISO CurACP ProjACP CurNO ProjNO GAR

All

GAR

CurNO ProjNO

ProjACP
CurACP

CurISO

ProjISO

GAR

CurNO ProjNO

ProjACP
CurACP

CurISO

ProjISO
11

This chart is the full depiction of the qualified aviator inventory, pro-
viding a forecast of inventory levels out to 8 years in the future. In
addition, the graph includes the current Grade Adjusted Recapitula-
tion (GAR) requirement (from the FY06 Officer Victor GAR) as a
basis of comparison for inventory levels.5 The “All” group is a sum of
the non-training aviation GARs for grades below O5.

In terms of understanding where a specific aviator is on the inventory
chart, we can use a couple of examples: (1) a qualified aviator who
currently has 2 years remaining on the initial service obligation and
(2) a “future” aviator who will join the inventory as a helicopter pilot
1 year from today. The first aviator is currently in the inventory and is
found in the CurISO group at 0. In 2 years, when the aviator com-
pletes his ISO, the model will either assign the aviator ACP, in which
case he would move to the ProjACP category for the length of his con-
tract, or he will remain without an obligation, in which case he would
be in ProjNO for 6 months until exiting the model. The “future” avi-
ator is not in today’s inventory and will not appear on the chart until
his ISO begins in 1 year. This aviator begins in the ProjISO category
at 1. The ISO will last 6 years for a helicopter pilot, so this aviator will
remain in the ProjISO group until 7 years from today, at which point
he will either be assigned ACP and move to the ProjACP category or
he will not re-obligate and will move to ProjNO when he leaves the
model.

As previously stated, we are attempting to model the obligated aviator
inventory. This forces us to make assumptions about how long avia-
tors will remain in the service after their obligations have completed.
The current assumption is that an aviator will remain for only 6
months, enough time to complete the resignation process. The idea
behind this is that the Marine Corps cannot count on an unobligated
officer to stay, even though many officers do stay well beyond their
obligation. The inventory levels predicted by the model can therefore
be viewed as conservative estimates of the overall aviator inventory.

5. The Marine Corps has traditionally measured shortages by comparing
the onboard levels with the GAR. The GAR includes A-billet require-
ments as well as B-billets and P2T2 (patients, prisoners, trainees, and
transients).
12

One issue that arises from having a set period of time an aviator stays
after the obligation is complete (6 months in our example) is that all
of the aviators currently in the qualified inventory that are non-obli-
gated all leave the model at the same time. In our latest draw from
which the graph is taken, there were 445 current aviators with no ser-
vice obligation. These aviators, therefore, all depart the model in
6 months.

The default charts show expected inventories for all aviators. By using
the dropdown box located on the total inventory chart (figure 7), spe-
cific PMOSs or groups can be displayed. When a group is selected,
both of the charts are updated to show only the specified group, and
the title of the charts reflects the selection. Figure 8 shows the inven-
tory charts for a selected group—in this case, the inventory of AH-1
pilots. The full list of possible selections currently available follows:

The charts in figure 8 also show how this model can be used to ana-
lyze shortages. By comparing the AH-1 inventory to the GAR in the
total inventory chart (bottom half of figure), decision-makers can see
that the current onboard inventory of AH-1 pilots is not fully meeting

Aircraft Grouping MOS
• Helo • 7509
• Maritime • 7523
• TACAIR • 7525
• Tiltrotor • 7532

• 7543
Aircraft • 7556

• AH-1 • 7557
• AV-8B • 7562
• CH-46 • 7563
• CH-53D • 7564
• CH-53E • 7565
• EA-6B • 7566
• EA-6B NFO • 7588
• F/A-18
• F/A-18 NFO
• KC-130
• UH-1N
• V-22
13

the requirement, but the inventory will be sufficient to meet the GAR
in 6 years if conditions hold and future aviators are trained as laid out
in the winging plans. Again, note that these inventory levels are esti-
mates; however, given that the model uses some conservative assump-
tions, it appears likely that the AH-1 inventory will not drop below 85
percent of the GAR, which is the traditional measure of a critical
shortage.

Figure 8. Figure 8. Chart for specified grouping—AH-1 pilots

AH-1 Future Inventory Levels - Current Aviators Only

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7

Years O bligated From Today

Nu
m

be
r o

f A
vi

at
or

s

CurISO CurACP CurNO

A H - 1 F u tu r e In v e n to r y L e v e ls

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

0 1 2 3 4 5 6 7

Y e a rs O b lig a te d F ro m T o d a y

A
vi

at
io

rs

C urIS O P ro jIS O C urA C P P ro jA C P C u rN O P ro jN O G A R

A H -1

GAR

AH-1 Future Inventory Levels - Current Aviators Only

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7

Years O bligated From Today

Nu
m

be
r o

f A
vi

at
or

s

CurISO CurACP CurNO

A H - 1 F u tu r e In v e n to r y L e v e ls

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

0 1 2 3 4 5 6 7

Y e a rs O b lig a te d F ro m T o d a y

A
vi

at
io

rs

C urIS O P ro jIS O C urA C P P ro jA C P C u rN O P ro jN O G A R

A H -1

GAR

A H - 1 F u tu r e In v e n to r y L e v e ls

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

0 1 2 3 4 5 6 7

Y e a rs O b lig a te d F ro m T o d a y

A
vi

at
io

rs

C urIS O P ro jIS O C urA C P P ro jA C P C u rN O P ro jN O G A R

A H -1

GAR
14

Concluding comments

We believe that this model could benefit both the Aviation Planner in
Officer Plans, Deputy Commandant, Manpower & Reserve Affairs
(DC M&RA) and Aviation Support Manpower, Deputy Commandant,
Aviation (DC AVN). The model provides a reasonable depiction of
the future inventory of aviators if the current environment were to
continue. The forecasting of future inventories allows the user to see
apparent shortcomings well in advance, and gives planners an early
warning so that they can relieve any shortages before they occur. The
model’s parameters, including the winging parameters, can be exper-
imented with and changed to analyze the effects of changing the avi-
ation environment.
15

Appendix A
Appendix A: A detailed description of the
model

Current aviator inventory

The aviator model takes the current inventory of aviators and estimates the obligation, if
any, of each. The IOS code provides this information; however, this data field is not com-
pletely filled in (the IOS data field was created in 2003 and was not backfilled), so we use
alternate measures to determine the obligation. The model first checks to see when a per-
son’s ISO would have ended based on some assumptions and parameters included in the
workbook. The algorithm for determining the ISO is shown below:

Flow for ISO creation:
Check IOS Date and IOS Code

If IOS Code = A, B, C, or D, aviator is under ISO
IOS Date will represent end of ISO

If no IOS Date, check winging date
For jet pilots, obligation is 8 years, so ISO ends 8 years after winging date
For other pilots, obligation is 6 years, so ISO ends 6 years after winging date

If no winging date, check aviation service entry date
To calculate ISO end date, add average time-to-train parameters for
 appropriate MOSs, and then add the 6- or 8-year obligation

Table from aviator model: (avg time to train in days)

If there is only a commissioning date
Add 270 days to commissioning date to approximate aviation service
 entry date
Add average time to train
Add 6- or 8-year obligation.

ECMOTimeToTrain 420

WSOTimeToTrain 476

HeloTimeToTrain 399

MaritimeTimeToTrain 371

TACAIRTTimeToTrain 616

TiltTimeToTrain 434
17

Appendix A
Next, the model determines whether the current aviator is taking ACP. The remarks section
for Aviation Officer Continuation Pay (AOCP) in ODSE provides enough information to
determine whether a person is currently receiving this bonus pay. If the resulting date from
adding the number of contract months to the effective date falls in the future, the aviator
is currently on ACP. However, if the termination date exists and occurs in the past, the con-
tract has already been terminated and the person is no longer receiving any bonus pay
under that contract.

The model also needs to chart future paths for these current aviators, including whether an
aviator contracts for ACP and whether an aviator promotes to lieutenant colonel. This is
done through two random number draws taken from the uniform distribution between 0
and 1. The results of these draws are compared with user-defined parameters. If the random
number is less than the related parameter, a TRUE is assigned; otherwise a FALSE is
assigned.

The current ACP parameter was set by using the current aviator inventory to compare per-
sonnel obligated under ACP with the eligible population. To estimate a take-rate for ACP,
we used a ratio of the number of aviators currently obligated under an ACP contract to the
total number of aviators who were not currently fulfilling their initial obligation, which
served as a proxy for aviators eligible for ACP.6 This resulted in an approximate take-rate of
50 percent, so the parameter was set to 0.5. This implies that 50 percent of aviators who
reach eligibility for ACP will take it, and the model will assign an aviator as taking ACP if
his/her random number draw was less than 0.5.

The determination of the current LtCol promotion parameter was slightly more complex,
and may not be as easy to reproduce. The LtCol promotion parameter does not represent
the likelihood of promoting from major to lieutenant colonel. Rather, it represents the like-
lihood of becoming a lieutenant colonel given that the aviator has completed UFT and
received his or her wings. To calculate a reasonable estimate of this parameter, we looked
at two cohorts of aviation officers – those commissioned in 1987 and those commissioned
in 1989 – and looked at how many had reached the rank of lieutenant colonel in the avia-
tion community. In both cohorts, the likelihood of attaining that rank, given that the officer
was a winged aviator, was approximately 35 percent (or 0.35). However, the LtCol promo-
tion parameter cannot simply be set to 0.35 because there is a direct tie to the ACP

6. This is not precisely the eligible population since only majors or major selects may contract for
ACP under the current guidelines. Further, because we are using a snapshot of the aviator pop-
ulation, we have not captured those who were eligible for ACP but resigned before our snapshot,
instead of re-obligating.
18

Appendix A
parameter. Given the model’s assumptions about obligated and non-obligated career paths,
an aviator can promote to lieutenant colonel only if he/she has re-obligated after the ISO
by taking ACP.

Our data showed that about 50 percent of aviators who become eligible for ACP will take it,
and that about 35 percent of all aviators who complete UFT eventually become lieutenant
colonels. Therefore, to achieve the 35-percent promotion result, we set the promotion
parameter to 0.7 (70 percent of the 50 percent who re-obligate with ACP would promote,
resulting in 35 percent promoting to lieutenant colonel overall).

Using the random number draws and comparing them to the parameters, the model then
assigns career paths based on the results of the draws. If an aviator is not assigned to take
ACP, he or she will become non-obligated after the ISO is complete and will leave the model
after 6 months. If the aviator does take ACP, the random number drawn for promotion to
lieutenant colonel will come into play, and determine whether the aviator promotes. If the
aviator does promote, he or she will depart the model as a lieutenant colonel (since we are
currently not concerned with inventory levels at or above this rank), which will occur at the
sixteenth year of service in our model. And if the aviator is not assigned a promotion in the
model, he or she will depart the model at the mandatory retirement date for major, which
is 20 years of service.

Future aviator inventory

To predict future inventory, the model needs to make assumptions on the number of avia-
tors that will be winged in each future year. Data on planned wingings were provided for
each of the next 5 years, broken down by PMOS.7 The yearly winging data are assigned to
quarters and used as model input to forecast future aviator populations by progressing
them through a projected career just as current aviators were: the ISO lasts either 6 or 8
years depending on platform, and the ACP and promotion flow points work as described
above. As new winging plans are formulated, the winging parameters in the model can be
updated. Table 3 displays the current winging parameters as they are set up for use in the
model.

7. We are grateful to the Aviation Planner (MPP-33) for providing this information.
19

Appendix A
The model assigns a "1st winging date" as the first day of the upcoming quarter (for exam-
ple, in August it is set to September 1 of the same year). This date will be used for the first
set of wingings, so in our example the first wingings would use the data from the 3rd quarter
in 2006. However, the model is set up to use winging data for exactly 20 quarters, meaning
there will be two quarters with no data. These quarters have been filled in using the data
from the corresponding quarters of 2010, as a proxy for the unknown 2011 parameters (the
first quarter of 2011 uses data from the first quarter of 2010). When updating the winging
parameters, simply write over the data in the table with the new winging data. However, be
sure that the first column of data is for the quarter that begins on the "1st winging date",
and that any unknown data uses the corresponding quarter’s data from the last year avail-
able to fill out the entire winging table.

Future aviators are created up to 8 years from the "1st winging date". Since we only have
winging parameters for the next five years, aviators are winged according to the latest data
available for all years beyond that point (the 2010 winging parameters are used for aviators
winged 5, 6, 7, and 8 years in the future).

Table 3. Winging parameters for Aviator Inventory Model

Wingings
2803a 2006 2007 2008 2009 2010

MOS q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4
7509 9 8 8 8 9 8 8 8 9 8 8 8 7 7 7 7 6 6 6 6
7523 14 14 14 14 14 14 14 14 15 15 15 15 14 14 14 14 13 13 13 13
7525 5
7532 4 3 4 3 4 3 4 3 4 3 4 3 7 7 7 7 7 6 6 6
7543 2
7557 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
7562 14 14 14 14 14 14 14 14 13 12 13 12 9 9 9 8 9 9 9 9
7563 7
7564 3 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3
7565 14 13 13 13 14 13 13 13 14 13 14 13 13 13 13 13 13 13 13 13
7566 10 10 10 10 10 10 10 10 10 9 10 9 10 9 9 9 10 9 9 9
7588 4

a. This number represents the total number of aviators that will be created by the model run. The number of future
aviators is used in calculating the maximum number of runs for the model.
20

Appendix A
Model overview

Figure 9 provides an overview of the possible career paths of an aviator, current or future.
Current aviators can begin the model on any of the three initial paths (shown in red in the
figure) corresponding to the possible obligation statuses: fulfilling their ISO, contracted
under ACP, or not obligated. Aviators under their ISO will have the model assign them an
ACP draw, in which they will be projected to either take ACP or not. If they do not take ACP,
they will no longer be obligated and will depart the model8 after 6 months (or whatever the
non-obligated parameter is set to). If they are assigned to take ACP, the model will assign
them a promotion draw, where they can either promote to lieutenant colonel or not. If they
promote, they will leave the model upon promotion; otherwise they will depart the model
at the mandatory retirement point for majors. For current aviators who are contracted
under ACP, the model provides them a promotion draw, and they will either promote and
exit the model as lieutenant colonels or not promote and retire as majors. Lastly, current
aviators who currently are not obligated depart the model almost immediately since the

8. Departing the model does not indicate leaving the Marine Corps. Aviators will leave the model 6
months after their obligations end, though many aviators will, in reality, remain in the service
without any obligation. Exiting the model simply means that aviators are no longer in the bounds
of the inventory of interest—that is, qualified obligated aviators who have not yet attained the
rank of lieutenant colonel.
21

22

Appendix A

model applies the 6-month parameter for non-obligors and they exit the model. Future avi-
ators all begin the model on the ISO path, and progress just as current aviators do.

Figure 9. Model overview

Take ACP?

Current
Obligation?

Promote
To LtCol?

No ObligISO

Promote to
LtCol

Mandatory
Retirement at

Major

Not
Obligated

Yes
No

No Yes

Not
Obligated

ACP
Take ACP?

Current
Obligation?

Promote
To LtCol?

No ObligISO

Promote to
LtCol

Mandatory
Retirement at

Major

Not
Obligated

Yes
No

No Yes

Not
Obligated

ACP

Appendix B
Appendix B: Computer codes for model

This appendix provides the computer codes necessary for the model. The first code is used
to draw the current aviator data from the Operational Data Store Enterprise (ODSE). The
second code is the Visual Basic for Applications (VBA) code used in the model’s two Excel
workbooks.

SQL code for ODSE draw:

BEGIN SQL
select T1."SSN" 1,

 T1."PRESENT_GRADE_CODE",
 T1."PRESENT_GRADE_EFFECTIVE_DATE",
 T1."PRIMARY_MOS_CODE",
 T1."PRIMARY_MOS_ASSIGNMENT_DT",
 T1."PRESENT_MONITORED_COMMAND_CODE",
 T2."INCURRED_OBLIGATED_SERVICE_CD",
 T2."INCURRED_OBLIGATED_SERVICE_DT",
 T3."PILOT_DESIGNATION_EFFECT_DATE",
 T3."AVIATION_SERVICE_ENTRY_DATE" ,
 T1."DATE_OF_RANK_FIRST_COMMISSION",
 T1."ACTIVE_DUTY_FLAG",
 T4."AOCP_TERMINATION_DATE",
 T4."AOCP_CONTRACT_AGREE_MTH_QY",
 T4."CONTRACT_AGREEMENT_EFFECT_DATE",

 from "ODSE"."INDIVIDUAL_MARINE" T1,
"ODSE"."OFFICER" T2,
"ODSE"."AVIATION_SERVICE" T3,
"ODSE"."AVIATION_OFF_CONT_PAY_R942" T4

where (T1."SSN" = T2."SSN") and (T1."SSN" = T3."SSN") and (T4."SSN" = T1."SSN") and
and ((((T1."SSN" LIKE '0%') and ((T1."RECORD_STATUS_CODE" not in ('E', 'F')) and not
(T1."RECORD_STATUS_CODE" is null) and
(T1."COMPONENT_CODE" = '11') and
(T1."STRENGTH_CATEGORY_CODE" not in ('G', 'I', 'J', 'O')))) and
(T1."PRIMARY_MOS_CODE" LIKE '75%')) and
(T1."PRESENT_GRADE_CODE" IN ('O1','O1E','O2','O2E','O3','O3E','O4')))

HAVING MAX(T4."REMARK_SEQUENCE_NUMBER_RMK_942")
order by "SSN" asc

END SQL
23

Appendix B
Visual Basic Code for Obligation Forecaster and Chart Creator9

AF_1 Controller

Option Explicit
Option Private Module
Option Base 1

' Parameters are read into the arrays from
' the ModelParams sheet and then are assigned to the
' Public variables for use in the algorithms.

' Arrays and vars for the length of training/obligations
Public LengthParameterNames(13) As String
Public LengthParameterValues(13) As Integer
Public ECMOTimeToTrain%
Public WSOTimeToTrain%
Public HeloTimeToTrain%
Public MaritimeTimeToTrain%
Public TACAIRTimeToTrain%
Public TiltTimeToTrain%
Public TimeToASED%
Public BISOOblig As Integer
Public AISOOblig As Integer
Public EstACPOblig%
Public NoObligDuration%
Public LtColPinOnDays%
Public MajMandRetireDays%

' Rates
Public ACPTakeRate As Single
Public LtColPromRate As Single

Public CurrentSheetName$
Public TodaysDate As Date 'Set this to identify expired obligations
Public ISORowCounter As Integer
Public BlankObligRowNumber As Integer
Public LastRow As Integer
Public LastColumn As Integer

'Change this for number of columns in future wingings table
Public Const EXPLICIT_WINGING_QTRS As Byte = 20
Public Const NOOB As Byte = 1
Public Const ISO As Byte = 2
Public Const O4 As Byte = 3
Public Const O5 As Byte = 4
Public aryReason(4) As String
Sub CreateAviFcstProducts() 'Optional blnNew As Boolean = True)
' Controller (main) for the model
 Dim StartTime As Double, ElapsedTime As Double
 Dim bytRuns As Byte, i As Byte, intRunsAllowed
 Dim wb As Workbook

9. This code was originally created by Major William B. Lambert, and then updated by
Mr. Robert Shuford.
24

Appendix B
 StartTime = Timer
 Application.ScreenUpdating = False
 Set wb = ActiveWorkbook

 ResetToData
 'If blnNew Then NewData
 NewData
 intRunsAllowed = Int(65535 / (LastCell(ActiveSheet).Row + Range("FutWings").Value - 1))
 Call ReadInParameters

 On Error GoTo err_exit
 bytRuns = InputBox("Enter Number of Runs, Maximum = " & intRunsAllowed, "Make Random Runs",
intRunsAllowed)
 Do While bytRuns > intRunsAllowed
 bytRuns = InputBox("A Maximum of " & intRunsAllowed & " Runs Allowed", "A Little Ambitious There,
Bub")
 Loop
 On Error GoTo 0

 MakeDates
 IOSCodeG

 For i = 1 To bytRuns
 Call AddSheets
 Call InsertCleanObligHeaders
 Call PasteRawData
 Call GenerateFutureObligations
 Call FillObligData
 Call FormatSheet
 Application.DisplayAlerts = False
 Sheets("CleanOblig").Move
 ActiveWorkbook.SaveAs Filename:=ActiveWorkbook.Path & "Run" & i & ".xls"
 ActiveWorkbook.Close
 wb.Activate
 Next

 ElapsedTime = Timer - StartTime
 'If blnNew Then
 MsgBox "This routine took " & Format(ElapsedTime, "0.00") & " seconds to run."
err_exit:
 Set wb = Nothing
 Application.ScreenUpdating = True
End Sub
Private Sub ReadInParameters()
 Dim i%

' Fill in array names and values from ModelParams sheet
 Worksheets("ModelParams").Activate
 Range("params").Activate
 For i = 1 To 13
 LengthParameterNames(i) = ActiveCell.Offset(i, 0).Value
 LengthParameterValues(i) = ActiveCell.Offset(i, 2).Value
 Next

 ACPTakeRate = Sheets("ModelParams").Cells(16, 3).Value
 LtColPromRate = Sheets("ModelParams").Cells(17, 3).Value
 TodaysDate = Sheets("ModelParams").Cells(21, 2).Value

 Range("reasons").Activate
25

Appendix B
 For i = 1 To 4
 aryReason(i) = ActiveCell.Offset(i, 0)
 Next

' Assigned back to Public variables for ease of reading the
' algorithms
 ECMOTimeToTrain = LengthParameterValues(1)
 WSOTimeToTrain = LengthParameterValues(2)
 HeloTimeToTrain = LengthParameterValues(3)
 MaritimeTimeToTrain = LengthParameterValues(4)
 TACAIRTimeToTrain = LengthParameterValues(5)
 TiltTimeToTrain = LengthParameterValues(6)
 TimeToASED = LengthParameterValues(7)
 BISOOblig = LengthParameterValues(8)
 AISOOblig = LengthParameterValues(9)
 EstACPOblig = LengthParameterValues(10)
 NoObligDuration = LengthParameterValues(11)
 LtColPinOnDays = LengthParameterValues(12)
 MajMandRetireDays = LengthParameterValues(13)
End Sub
Private Sub FormatSheet()
 Sheets("CleanOblig").Cells(1, 1).Activate
 ActiveCell.CurrentRegion.Select
 With Selection
 .HorizontalAlignment = xlLeft
 .EntireColumn.AutoFit
 End With
End Sub
Private Sub ResetToData()
 Application.DisplayAlerts = False
 On Error Resume Next
 Sheets("CleanOblig").Delete
 On Error GoTo 0
 Application.DisplayAlerts = True
End Sub
Private Sub GenerateFutureObligations()
' Necessary arrays
 Dim WingingDate As Date
 Dim TempWingingDate As Date
 Dim intNum_PMOS As Integer, intWingings As Integer
 Dim WingingPMOS() As String
 Dim AviatorsPerWinging() As Integer
 Dim bytMaxYr As Byte

 Dim FutRowCounter%
 Dim AviCounter%
 Dim TempPMOS$

 Dim i%
 Dim j%
 Dim k%
 Dim n%
 Dim m%

' Read in array data from ModelParams.
 Worksheets("ModelParams").Activate
 Range("mos_start").Activate
 intNum_PMOS = ActiveCell.CurrentRegion.Rows.Count - 3

26

Appendix B
 ReDim WingingPMOS(intNum_PMOS) As String
 ReDim AviatorsPerWinging(intNum_PMOS, EXPLICIT_WINGING_QTRS) As Integer
 For i = 1 To intNum_PMOS
 WingingPMOS(i) = "'" & ActiveCell.Offset(i, 0)
 For j = 1 To EXPLICIT_WINGING_QTRS
 AviatorsPerWinging(i, j) = ActiveCell.Offset(i, j)
 Next
 Next
 WingingDate = Range("wing_dt").Value

 Worksheets("CleanOblig").Activate
 AviCounter = 1
 Call SetLastRow
 FutRowCounter = LastRow + 1

 For i = 1 To intNum_PMOS 'This is for each row, corresponding to each PMOS
 TempWingingDate = WingingDate
 TempPMOS = WingingPMOS(i)
 For j = 0 To 7 '8 years per PMOS
 bytMaxYr = Application.WorksheetFunction.Min(4, j)
 For m = 1 To 4 'Winging dates
 intWingings = AviatorsPerWinging(i, bytMaxYr * 4 + m)
 If intWingings > 0 Then
 For k = 1 To intWingings
 With Worksheets("CleanOblig")
 .Cells(FutRowCounter, 1).Value = "F" & Format(AviCounter, "000000000")
 .Cells(FutRowCounter, 2).Value = "O2"
 .Cells(FutRowCounter, 4).Value = TempPMOS
 .Cells(FutRowCounter, 5).Value = TempWingingDate
 .Cells(FutRowCounter, 7).Value = "ZZZ"
 .Cells(FutRowCounter, 8).Value = TempWingingDate + GetISOLength(Right(TempPMOS,
4))
 .Cells(FutRowCounter, 9).Value = TempWingingDate
 .Cells(FutRowCounter, 10).Value = TempWingingDate - TimeToASED
 .Cells(FutRowCounter, 11).Value = TempWingingDate - (GetTTT(Right(TempPMOS,
4)) + TimeToASED)
 End With
 AviCounter = AviCounter + 1
 FutRowCounter = FutRowCounter + 1
 Next k
 TempWingingDate = DateAdd("m", 3, TempWingingDate)
 End If
 Next m
 Next j
 Next i
End Sub
Private Function GetISOLength(tPMOS As String) As Integer
 GetISOLength = BISOOblig
 Select Case tPMOS
 Case 7507 To 7523, 7541 To 7543
 GetISOLength = AISOOblig
 Case Is >= 7597
 GetISOLength = ""
 End Select
End Function
Private Function GetTTT(tPMOS As String) As Integer
 Select Case tPMOS
 Case 7507 To 7523, 7541, 7543
 GetTTT = TACAIRTimeToTrain
 Case 7524, 7525
27

Appendix B
 GetTTT = WSOTimeToTrain
 Case 7531, 7532
 GetTTT = TiltTimeToTrain
 Case 7556, 7557
 GetTTT = MaritimeTimeToTrain
 Case 7558 To 7568
 GetTTT = HeloTimeToTrain
 Case 7582, 7588
 GetTTT = ECMOTimeToTrain
 Case 7580, Is >= 7597
 GetTTT = 0
 End Select
End Function
Private Sub MakeDates()
 Dim dtDate As Date, c As Range, lngLastrow As Long, i As Byte
 Dim aryCols As Variant

 Worksheets(3).Activate
' Range("M:N,R:U").Select
' Selection.Delete Shift:=xlToLeft

 lngLastrow = LastCell(ActiveSheet).Row
 aryCols = Array(3, 5, 8, 9, 10, 11, 13, 15)

 For i = LBound(aryCols, 1) To UBound(aryCols, 1)
 Range(Cells(2, aryCols(i)), Cells(lngLastrow, aryCols(i))).Select
 For Each c In Selection
 If c <> "" Then
 dtDate = c.Value
 c = dtDate
 End If
 Next
 Selection.NumberFormat = "mm/dd/yy"
 Next
End Sub
Private Sub IOSCodeG()
 Dim lngLastrow As Long, i As Long, dtEndACP As Date
 lngLastrow = LastCell(ActiveSheet).Row
 TodaysDate = Date
 For i = 2 To lngLastrow
 If Cells(i, 7) = "" And Cells(i, 13) = "" And Cells(i, 15) <> "" Then
 dtEndACP = DateAdd("m", Cells(i, 14), Cells(i, 15))
 If DateAdd("m", Cells(i, 14), Cells(i, 15)) > TodaysDate Then
 Cells(i, 7) = "G_fake"
 Cells(i, 8) = DateAdd("m", Cells(i, 14), Cells(i, 15))
 End If
 End If
 Next
End Sub
28

Appendix B
AF_2 AddSheets

Option Explicit
Option Private Module
Sub NewData()
 Dim i As Integer, strPathFile As String ', strFile As String
 Dim wb As Workbook
 Set wb = ActiveWorkbook

 Application.DisplayAlerts = False
 For i = wb.Sheets.Count To 3 Step -1
 Sheets(i).Delete
 Next
 Application.DisplayAlerts = True

 strPathFile = FindFile(ActiveWorkbook.Path, "Please Select the File Containing the New Data", _
 "Excel Files", "*.xls")
 If strPathFile = "" Then End
 Workbooks.Open Filename:=strPathFile 'strFile

 Application.DisplayAlerts = False
 For i = Sheets.Count To 2 Step -1
 Sheets(i).Delete
 Next

 Sheets(1).Move after:=wb.Sheets(2)
End Sub
Sub AddSheets()
' This procedure renames the original data sheet
' as "RawData" and adds a sheet to the end of the
' workbook, naming it CleanOblig
 Worksheets(3).Name = "RawData"
 ActiveWorkbook.Sheets.Add after:=Worksheets(ActiveWorkbook.Sheets.Count)
 ActiveSheet.Name = "CleanOblig"
End Sub
Sub InsertCleanObligHeaders()
 Sheets("CleanOblig").Cells(1, 1).Select
 With ActiveCell
' Column headers for pasted raw data
 .Offset(0, 0) = "SSN"
 .Offset(0, 1) = "Grade"
 .Offset(0, 2) = "DOR"
 .Offset(0, 3) = "PMOS"
 .Offset(0, 4) = "PMOSDOA"
 .Offset(0, 5) = "MCC"
 .Offset(0, 6) = "IOSCode"
 .Offset(0, 7) = "IOSDate"
 .Offset(0, 8) = "PDD"
 .Offset(0, 9) = "ASED"
 .Offset(0, 10) = "COMD"

' Headers for data derived in AF_5FillObligFields / FillAviData
 .Offset(0, 11) = "Aircraft"
 .Offset(0, 12) = "AircraftType"
 .Offset(0, 13) = "Level"
 .Offset(0, 14) = "NA_NFO"

' Headers for data derived in AF_5FillObligFields / FillPromotionData
 .Offset(0, 15) = "RollForPromotionToLtCol"
29

Appendix B
 .Offset(0, 16) = "PromoteToLtCol"
 .Offset(0, 17) = "EstLtColPinOnDate"
 .Offset(0, 18) = "MandatoryRetireMajor"

 ' Headers for data derived in AF_5FillObligFields
 .Offset(0, 19) = "CurrentIOS"
 .Offset(0, 20) = "IOSType"
 .Offset(0, 21) = "EligISOCode"
 .Offset(0, 22) = "BasisISOExpiration"
 .Offset(0, 23) = "TheISOExpires"
 .Offset(0, 24) = "RollForACPAfterISO"
 .Offset(0, 25) = "TakeACPAfterISO"
 .Offset(0, 26) = "DateCommenceEstACP"
 .Offset(0, 27) = "TheACPExpires"
 .Offset(0, 28) = "TheNoObligExpires"
 .Offset(0, 29) = "DateDepartsModel"
 .Offset(0, 30) = "Reason"
 End With
End Sub
30

Appendix B
AF_3 FillSheets

Option Explicit
Option Private Module
Sub PasteRawData()
 SetBlankRowNumber ("CleanOblig")
' Find the row number of last record in RawData and set that to
' LastRow public variable
 SetLastRowNumber ("RawData")

' Select data from RawData and copy it into CleanOblig
 Worksheets("RawData").Select
 Range(Cells(2, 1), Cells(LastRow, 12)).Select
 Selection.Copy Worksheets("CleanOblig").Cells(BlankObligRowNumber, 1)
End Sub
Function SetBlankRowNumber(SheetName As String)
 Worksheets(SheetName).Select
 Call ActivateNextBlankDown
 BlankObligRowNumber = ActiveCell.Row
End Function
Function SetLastRowNumber(SheetName As String)
 Worksheets(SheetName).Select
 Call SetLastRow
End Function
31

Appendix B
AF_4 FillObligFields

Option Explicit
Option Private Module
Private ObligRowCounter%
Private Grade$
Private DOR As Date
Private PMOS$
Private PMOSDOA As Date
Private MCC$
Private IOSCode$
Private IOSDate As Date
Private PDD As Date
Private ASED As Date
Private COMD As Date

' Will be assigned based on PMOS
Private AC$
Private ACType$
Private Level$
Private NANFO$
Private EligISO$

Private Promote As Boolean
Private PinOnDate As Date
Private MajManRet As Date

Private IOSType$ 'The type of IOS
Private ACPExp As Date 'The ACP expiration date
Private BasisISOExp$ 'Basis for ISO exp date
Private ISOExp As Date 'The ISO expiration date
Private CurrentIOS$ 'The current IOS, regardless of how estimated
Private NoObligExp As Date

Private TakeACP As Boolean
Private EstACPStartDate As Date
Private DateDepartModel As Date
Sub FillObligData()
' This sub procedure calls below procedures to
' fill in the data one row/record at a time
 Worksheets("CleanOblig").Activate
 Call SetLastRow

 Call FillAviData(LastRow)
 For ObligRowCounter = 2 To LastRow
 AC = Cells(ObligRowCounter, 12).Value
 ACType = Cells(ObligRowCounter, 13).Value
 Level = Cells(ObligRowCounter, 14).Value
 NANFO = Cells(ObligRowCounter, 15).Value
 On Error Resume Next
 EligISO = Application.WorksheetFunction.VLookup(Cells(ObligRowCounter, 4).Value, _
 Range("PMOS_Table"), 6, False)
 On Error GoTo 0
 Call AssignModuleVars
 If ACType <> "Stud" Then
 If COMD = 0 Then EstimateTheCOMD
 Call FillPromotionData
 Call FillACPData
32

Appendix B
 Call FillTheISO
 Call EstimateStartACP
 Call FillNoOblig
 Call FillDateDepartModel
 Call ClearModuleVars
 End If
 Next
End Sub
Sub AssignModuleVars()
 Grade = Cells(ObligRowCounter, 2).Value
 DOR = Cells(ObligRowCounter, 3).Value
 PMOS = Cells(ObligRowCounter, 4).Value
 PMOSDOA = Cells(ObligRowCounter, 5).Value
 MCC = Cells(ObligRowCounter, 6).Value
 IOSCode = Cells(ObligRowCounter, 7).Value
 IOSDate = Cells(ObligRowCounter, 8).Value
 PDD = Cells(ObligRowCounter, 9).Value
 ASED = Cells(ObligRowCounter, 10).Value
 COMD = Cells(ObligRowCounter, 11).Value
End Sub
Sub ClearModuleVars()
 Grade = ""
 DOR = 0#
 PMOS = ""
 PMOSDOA = 0#
 MCC = ""
 IOSCode = ""
 IOSDate = 0#
 PDD = 0#
 ASED = 0#
 COMD = 0#

 AC = ""
 ACType = ""
 Level = ""
 NANFO = ""
 EligISO = ""

 Promote = False
 PinOnDate = 0#
 MajManRet = 0#

 IOSType = ""
 ACPExp = 0#
 BasisISOExp = ""
 ISOExp = 0#
 CurrentIOS = ""
 TakeACP = False
 EstACPStartDate = 0#
End Sub
Sub FillTheISO()
' Algorithm here to fill in the ISO dates where missing and needed
' Change the IOSDate in the "If Then" as necessary

' Don't look at students. For future obligations use winging
' plans becasue they are specific by PMOS. If we tried to assign
' ISOs for students we woiuld have to also assign PMOSs
 IOSType = ""
 BasisISOExp = ""
 ISOExp = 0#
33

Appendix B
 CurrentIOS = ""

 If Grade < "O5" Then
 Select Case IOSCode
 Case "F" To "H" 'Current ACP Obligation
 CurrentIOS = "ACP"
 IOSType = "ACP"
 BasisISOExp = ""
 ISOExp = 0#
 ACPExp = IOSDate
 Case "A" To "D" 'Current ISO Obligation
 CurrentIOS = "ISO"
 IOSType = "ISO"
 BasisISOExp = "ISO"
 ISOExp = IOSDate
 ACPExp = COMD + EstACPOblig
 Case "P" 'Current Tuition assistance obligation
 Call EstimateTheISO
 If ISOExp >= TodaysDate Then
 CurrentIOS = "ISO"
 IOSType = "EstISO_TA"
 Else
 CurrentIOS = "NoOblig"
 IOSType = "EstISO_Old_TA"
 End If
 ' BasisISOExp set in EstimateTheISO
 ' ISOExp set in EstimateTheISO
 ACPExp = COMD + EstACPOblig
 Case "ZZZ" 'BOGUS CODE TO IDENTIFY FUTURE AVIATORS
 CurrentIOS = "FutISO"
 IOSType = "FutISO"
 BasisISOExp = "Fut"
 ISOExp = IOSDate
 ACPExp = COMD + EstACPOblig
 Case "" 'No current obligation
 Call EstimateTheISO
 If ISOExp >= TodaysDate Then
 CurrentIOS = "ISO"
 IOSType = "EstISO"
 Else
 CurrentIOS = "NoOblig"
 IOSType = "EstISO_Old"
 End If
 ' BasisISOExp set in EstimateTheISO
 ' ISOExp set in EstimateTheISO
 ACPExp = COMD + EstACPOblig
 End Select

 Cells(ObligRowCounter, 20).Value = CurrentIOS
 Cells(ObligRowCounter, 21).Value = IOSType
 Cells(ObligRowCounter, 22).Value = EligISO
 Cells(ObligRowCounter, 23).Value = BasisISOExp
 If ISOExp <> 0# Then Cells(ObligRowCounter, 24).Value = ISOExp
 Cells(ObligRowCounter, 28).Value = ACPExp
 End If
End Sub
Sub EstimateTheISO()
' This sub is only called if No ISO or ACP Obligation
' date exists.
' Estimate the ISO date, in decreasing order of confidence, from,
34

Appendix B
' PDD, PMOS Date of Attainment (if they have an FRS PMOS),
' ASED, and finally, commissioning date

' Helper var
 Dim TempPreASEDTime As Date

' ********* Estimate the ISO from PDD Block ***************************
 If PDD >= #1/1/1980# Then
 BasisISOExp = "PDD"
 ' Add 8 or 6 year obligations to PDD
 If EligISO = "A" Then
 ISOExp = PDD + AISOOblig
 ElseIf EligISO = "B" Then
 ISOExp = PDD + BISOOblig
 End If
' ********** End ISO from PDD Block ************************

' ********** Estimate the ISO from PMOS DOA Block ************************
 ' Estimate the ISO from PMOS Date of Attainment
 ' "FRS" is a proxy for the basic PMOSs, which should have been
 ' assigned at or close to winging - Fleet PMOS DOAs would
 ' be assigned on graduation from the FRS.
 ' All current FRS NAs should have been assigned these MOSs
 ' after the PMOSDOA field was instituted
 ElseIf Level = "FRS" And PMOSDOA >= #1/1/2003# Then
 BasisISOExp = "PMOSDOA"
 ' Add 8 or 6 year obligations to PMOSDOA
 If EligISO = "A" Then
 ISOExp = PMOSDOA + AISOOblig
' Cells(ObligRowCounter, 31).Value = 1
 ElseIf EligISO = "B" Then
 ISOExp = PMOSDOA + BISOOblig
' Cells(ObligRowCounter, 31).Value = 1
 End If
' ********** End ISO from PMOS DOA Block ************************

' ********** Estimate the ISO from ASED Block ************************
 ' Estimated ISO = ASED + time to train + ISO oblig
 ' The two factors here are the eligible obligation (A or B)
 ' and the estimated time-to-train, which depends on the type aircraft
 ' (Helo, TACAIR, Maritime, Tiltrotor, EA-6B, F/A-18)
 ElseIf ASED >= #1/1/1986# Then
 BasisISOExp = "ASED"
 If NANFO = "NA" Then
 Select Case ACType
 Case "Helo"
 ISOExp = ASED + HeloTimeToTrain + BISOOblig
 Case "TACAIR"
 ISOExp = ASED + TACAIRTimeToTrain + AISOOblig
 Case "Maritime"
 ISOExp = ASED + MaritimeTimeToTrain + BISOOblig
 Case "Tiltrotor"
 ISOExp = ASED + TiltTimeToTrain + BISOOblig
 End Select
 ElseIf NANFO = "NFO" Then
 Select Case PMOS
 Case "7524", "7525"
 ISOExp = ASED + WSOTimeToTrain + BISOOblig
 Case "7582", "7588"
35

Appendix B
 ISOExp = ASED + ECMOTimeToTrain + BISOOblig
 End Select
 End If ' End ASED Block
' ********** End ISO from ASED Block ************************

' ********** Estimate the ISO from COMD Block ************************
 ' Estimated ISO = COMD + time to ASED + time to train + ISO oblig
 ' This is calculated the same as e two factors here are the eligible obligation (A or B)
 ' and the estimated time-to-train, which depends on the type aircraft
 ' (Helo, TACAIR, Maritime, Tiltrotor, EA-6B, F/A-18)
 ElseIf COMD >= #1/1/1980# Then
 BasisISOExp = "COMD"
 TempPreASEDTime = COMD + TimeToASED
 If NANFO = "NA" Then
 Select Case ACType
 Case "Helo"
 ISOExp = TempPreASEDTime + HeloTimeToTrain + BISOOblig
 Case "TACAIR"
 ISOExp = TempPreASEDTime + TACAIRTimeToTrain + AISOOblig
 Case "Maritime"
 ISOExp = TempPreASEDTime + MaritimeTimeToTrain + BISOOblig
 Case "Tiltrotor"
 ISOExp = TempPreASEDTime + TiltTimeToTrain + BISOOblig
 End Select

 ElseIf NANFO = "NFO" Then
 Select Case PMOS
 Case "7524", "7525"
 ISOExp = TempPreASEDTime + WSOTimeToTrain + BISOOblig
 Case "7582", "7588"
 ISOExp = TempPreASEDTime + ECMOTimeToTrain + BISOOblig
 End Select
 End If
' ********** End ISO from COMD Block ************************
 Else
 BasisISOExp = "UNABLE"
 End If
End Sub
Sub EstimateStartACP()
' Generate the starting date for the ACP obligation as one day
' after the ISO ending date.
 If Grade < "O5" And TakeACP = "True" _
 And IOSType <> "ACP" And Len(ISOExp) > 1 Then
 EstACPStartDate = ISOExp + 1
 If EstACPStartDate > 1 Then Cells(ObligRowCounter, 27).Value = EstACPStartDate
 End If
End Sub
Sub FillNoOblig()
 If CurrentIOS = "NoOblig" Then
 NoObligExp = TodaysDate + NoObligDuration
 ElseIf CurrentIOS = "ACP" Then
 If Promote Then
 NoObligExp = ACPExp + NoObligDuration
 Else
 NoObligExp = MajManRet
 End If
 ElseIf CurrentIOS = "ISO" Then
 If TakeACP Then
 NoObligExp = ACPExp + NoObligDuration
 Else
36

Appendix B
 NoObligExp = ISOExp + NoObligDuration
 End If
 ElseIf CurrentIOS = "FutISO" Then
 If TakeACP Then
 NoObligExp = ACPExp + NoObligDuration
 Else
 NoObligExp = ISOExp + NoObligDuration
 End If
 Else
 NoObligExp = 0#
 End If

 If NoObligExp <> 0# Then
 Cells(ObligRowCounter, 29).Value = NoObligExp
 End If
End Sub
Sub FillAviData(intLastRow As Integer)
 Range("L2").Formula = "=VLOOKUP($D2,PMOS_Table,COLUMN()-10,FALSE)"
 Range("L2").Select
 Selection.Copy
 Range("L2:O" & intLastRow).Select
 ActiveSheet.Paste
 Selection.Copy
 Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:= _
 False, Transpose:=False
 Application.CutCopyMode = False
 Selection.Replace What:="0", Replacement:="", LookAt:=xlWhole, _
 SearchOrder:=xlByRows, MatchCase:=False
 MissingMOS intLastRow
End Sub
Sub KillStudents() '(intLastRow As Integer)
 Range("M1").Activate
 Selection.CurrentRegion.Select
 Selection.Sort Key1:=Cells(1, 13), Order1:=xlAscending, Header:=xlYes, _
 OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom
 Columns("M:M").EntireColumn.Select
 Cells.Find(What:="Helo", after:=ActiveCell, LookIn:=xlValues, _
 LookAt:=xlWhole, SearchOrder:=xlByRows, SearchDirection:=xlNext, _
 MatchCase:=False).Select

End Sub
Sub FillPromotionData()
 Dim RollProm As Single

 If Grade < "O5" Then
 Randomize
 RollProm = Rnd

 If (RollProm <= LtColPromRate) Then
 Promote = True
 PinOnDate = LtColPinOnDays + COMD
 Else
 Promote = False
 MajManRet = MajMandRetireDays + COMD
 End If

 Cells(ObligRowCounter, 16).Value = Format(RollProm, "0.00")
 Cells(ObligRowCounter, 17).Value = Promote

 If PinOnDate <> 0# Then
37

Appendix B
 Cells(ObligRowCounter, 18).Value = PinOnDate
 End If

 If MajManRet <> 0# Then
 Cells(ObligRowCounter, 19).Value = MajManRet
 End If

 End If
End Sub
Sub FillACPData()
 Dim RollACP As Double

 If Grade < "O5" Then
 Randomize
 RollACP = Rnd
 TakeACP = (RollACP <= ACPTakeRate)

 Cells(ObligRowCounter, 25).Value = Format(RollACP, "0.00")
 Cells(ObligRowCounter, 26).Value = TakeACP
 End If
End Sub
Sub FillDateDepartModel()
 Dim strReason As String

 If Grade < "O5" Then
 If CurrentIOS = "NoOblig" Then
 DateDepartModel = NoObligExp
 strReason = aryReason(NOOB)
 ElseIf CurrentIOS = "ACP" Then
 If Promote Then
 DateDepartModel = PinOnDate
 strReason = aryReason(O5)
 Else
 DateDepartModel = MajManRet
 strReason = aryReason(O4)
 End If
 ElseIf CurrentIOS = "ISO" Then
 If TakeACP Then
 If Promote Then
 DateDepartModel = PinOnDate
 strReason = aryReason(O5)
 Else
 DateDepartModel = MajManRet
 strReason = aryReason(O4)
 End If
 Else
 DateDepartModel = NoObligExp
 strReason = aryReason(ISO)
 End If
 ElseIf CurrentIOS = "FutISO" Then
 If TakeACP Then
 If Promote Then
 DateDepartModel = PinOnDate
 strReason = aryReason(O5)
 Else
 DateDepartModel = MajManRet
 strReason = aryReason(O4)
 End If
 Else
 DateDepartModel = NoObligExp
38

Appendix B
 strReason = aryReason(ISO)
 End If
 End If
 Cells(ObligRowCounter, 30).Value = DateDepartModel
 Cells(ObligRowCounter, 31).Value = strReason
 End If
End Sub
Sub EstimateTheCOMD()
 Const TimeToO2 = 365 * 2
 Const TimeToO3 = 365 * 4
 Const TimeToO4 = 365 * 10
 Dim dtDOR As Date, strRank As String

 If ASED >= #1/1/1980# Then
 COMD = ASED - TimeToASED
' No ASED
 ElseIf PDD >= #1/1/1980# Then
 If NANFO = "NA" Then
 Select Case ACType
 Case "Helo"
 COMD = PDD - HeloTimeToTrain - TimeToASED
 Case "TACAIR"
 COMD = PDD - TACAIRTimeToTrain - TimeToASED
 Case "Maritime"
 COMD = PDD - MaritimeTimeToTrain - TimeToASED
 Case "Tiltrotor"
 COMD = PDD - TiltTimeToTrain - TimeToASED
 Case Else
 End Select
 ElseIf NANFO = "NFO" Then
 Select Case PMOS
 Case "7524", "7525"
 COMD = PDD - WSOTimeToTrain - TimeToASED
 Case "7582", "7588"
 COMD = PDD - ECMOTimeToTrain - TimeToASED
 Case Else
 End Select
 End If
' No PDD
 ElseIf IOSDate >= #1/1/1980# Then
 If NANFO = "NA" Then
 Select Case ACType
 Case "Helo"
 If EligISO = "A" Then COMD = IOSDate - AISOOblig - HeloTimeToTrain - TimeToASED
 If EligISO = "B" Then COMD = IOSDate - BISOOblig - HeloTimeToTrain - TimeToASED
 Case "TACAIR"
 If EligISO = "A" Then COMD = IOSDate - AISOOblig - TACAIRTimeToTrain - TimeToASED
 If EligISO = "B" Then COMD = IOSDate - BISOOblig - TACAIRTimeToTrain - TimeToASED
 Case "Maritime"
 If EligISO = "A" Then COMD = IOSDate - AISOOblig - MaritimeTimeToTrain - TimeToASED
 If EligISO = "B" Then COMD = IOSDate - BISOOblig - MaritimeTimeToTrain - TimeToASED
 Case "Tiltrotor"
 If EligISO = "A" Then COMD = IOSDate - AISOOblig - TiltTimeToTrain - TimeToASED
 If EligISO = "B" Then COMD = IOSDate - BISOOblig - TiltTimeToTrain - TimeToASED
 Case Else
 End Select
 ElseIf NANFO = "NFO" Then
 Select Case PMOS
 Case "7524", "7525"
39

Appendix B
 If EligISO = "A" Then COMD = IOSDate - AISOOblig - WSOTimeToTrain - TimeToASED
 If EligISO = "B" Then COMD = IOSDate - BISOOblig - WSOTimeToTrain - TimeToASED
 Case "7582", "7588"
 If EligISO = "A" Then COMD = IOSDate - AISOOblig - ECMOTimeToTrain - TimeToASED
 If EligISO = "B" Then COMD = IOSDate - BISOOblig - ECMOTimeToTrain - TimeToASED
 Case Else
 End Select
 End If
' Use Date of Rank
 Else
 dtDOR = Cells(ObligRowCounter, 3)
 If dtDOR >= #1/1/1980# Then
 Select Case Cells(ObligRowCounter, 2)
 Case "O1"
 COMD = dtDOR
 Case "O2"
 COMD = dtDOR - TimeToO2
 Case "O3"
 COMD = dtDOR - TimeToO3
 Case "O4"
 COMD = dtDOR - TimeToO4
 Case Else
 End Select
 End If
 End If
 Cells(ObligRowCounter, 11) = COMD
End Sub
Sub MissingMOS(intLastRow As Integer)
' Replaces #N/A errors in columns M through O.
' Compiles and presents a list of MOSs not in the lookup table.
 Dim c As Range, strMissing As String, strMOS As String
 Static blnNotFirstTime As Boolean

 Range("M2:O" & intLastRow).Select
 Selection.Replace What:="#N/A", Replacement:="", LookAt:=xlWhole, _
 SearchOrder:=xlByRows, MatchCase:=False
 For Each c In Range("L2:L" & intLastRow)
 With c
 If IsError(.Value) Then
 .ClearContents
 strMOS = .Offset(0, -8).Value
 If InStr(strMissing, strMOS) = 0 Then strMissing = strMissing & " " & strMOS
 End If
 End With
 Next
 If Not blnNotFirstTime And strMissing <> "" Then _
 MsgBox "The following PMOSs are not in the PMOS KEY lookup table:" & vbCrLf & strMissing
 blnNotFirstTime = True
End Sub
40

Appendix B
AF_RangeUtilities

Option Explicit
Option Private Module
Sub SetLastRow()
 Dim r As Integer
 Dim Flag As Boolean

 r = ActiveSheet.UsedRange.Rows.Count
 Flag = True
 Do
 If Not (IsEmpty(Cells(r, 1))) Then Flag = False
 r = r - 1
 Loop While Flag
 LastRow = r + 1
' MsgBox "LastRow is " & LastRow
End Sub
Sub SetLastColumn()
 Dim c As Integer
 Dim Flag As Boolean

 c = ActiveSheet.UsedRange.Columns.Count
 Flag = True
 Do
 If Not (IsEmpty(Cells(c, 1))) Then Flag = False
 c = c - 1
 Loop While Flag
 LastColumn = c + 1
' MsgBox "LastColumn is " & LastColumn
End Sub
Sub SelectActiveArea()
 Range(Range("A1"), ActiveCell.SpecialCells(xlLastCell)).Select
End Sub
Sub NumberLastRowAndColumn()
' Doesn't work when you can't eliminate the extra rows/cells
 Call SelectActiveArea
 LastColumn = Selection.Columns.Count
 LastRow = Selection.Rows.Count
 MsgBox "LastRow is " & LastRow
End Sub
Function RenameActiveSheet(SheetName As String)
 ActiveSheet.Name = SheetName
End Function
Sub ActivateNextBlankDown()
 ActiveSheet.Cells(1, 1).Select
 Do While Not IsEmpty(ActiveCell)
 ActiveCell.Offset(1, 0).Select
 Loop
End Sub
Sub SelectActiveColumn()
 Dim TopCell As Range
 Dim BottomCell As Range

 If IsEmpty(ActiveCell) Then Exit Sub
' ignore error if activecell is in Row 1
 On Error Resume Next
 If IsEmpty(ActiveCell.Offset(-1, 0)) Then Set TopCell = ActiveCell Else Set TopCell =
ActiveCell.End(xlUp)
 If IsEmpty(ActiveCell.Offset(1, 0)) Then Set BottomCell = ActiveCell Else Set BottomCell =
41

Appendix B
ActiveCell.End(xlDown)
 On Error GoTo 0
 Range(TopCell, BottomCell).Select
End Sub
Function SetBlankRowNumber(SheetName As String)
 Worksheets(SheetName).Select
 Call ActivateNextBlankDown
 BlankObligRowNumber = ActiveCell.Row
End Function
Function SetLastRowNumber(SheetName As String)
 Worksheets(SheetName).Select
 Call SetLastRow
End Function
Function LastCell(TheSheet As Worksheet) As Range
' Returns a single-cell range object that represents
' the intersection of the last non-empty row and the
' last non-empty column
 Dim ExcelLastCell As Range
 Dim Row As Long, Col As Integer
 Dim LastRowWithData As Long, LastColWithData As Integer

' ExcelLastCell is what Excel thinks is the last cell
 Set ExcelLastCell = TheSheet.Cells.SpecialCells(xlLastCell)

' Determine the last row with data in it
 LastRowWithData = ExcelLastCell.Row
 Row = ExcelLastCell.Row
 Do While Application.CountA(TheSheet.Rows(Row)) = 0 And Row <> 1
 Row = Row - 1
 Loop
 LastRowWithData = Row

' Determine the last column with data in it
 LastColWithData = ExcelLastCell.Column
 Col = ExcelLastCell.Column
 Do While Application.CountA(TheSheet.Columns(Col)) = 0 And Col <> 1
 Col = Col - 1
 Loop
 LastColWithData = Col

' Create the range object
 Set LastCell = TheSheet.Cells(Row, Col)
End Function
42

Appendix B
AF_TextUtilities

Option Explicit
Option Private Module
Function ISLIKE(text As String, pattern As String) As Boolean
' Returns TRUE if the first argument is like the second
 If text Like pattern Then ISLIKE = True Else ISLIKE = False
End Function
Function ShowDataType()
 MsgBox "This Cell's data type is " & TypeName(ActiveCell.Value)
End Function
Function GetType()
 TypeName (ActiveCell.Value)
End Function
Sub ClearBadCells()
 Dim c As Range
 On Error GoTo Errors
 For Each c In Selection
 If c.Value = "" Then c.ClearContents
 Next
Errors:
 Set c = Nothing
 On Error GoTo 0
End Sub
Function ExtractElement(Txt, n, Separator) As String
' Returns the nth element of a text string, where the
' elements are separated by a specified separator character
 Dim Txt1 As String, TempElement As String
 Dim ElementCount As Integer, i As Integer

 Txt1 = Txt
' If space separator, remove excess spaces
 If Separator = Chr(32) Then Txt1 = Application.Trim(Txt1)

' Add a separator to the end of the string
 If Right(Txt1, Len(Txt1)) <> Separator Then _
 Txt1 = Txt1 & Separator

' Initialize
 ElementCount = 0
 TempElement = ""

' Extract each element
 For i = 1 To Len(Txt1)
 If Mid(Txt1, i, 1) = Separator Then
 ElementCount = ElementCount + 1
 If ElementCount = n Then
' Found it, so exit
 ExtractElement = TempElement
 Exit Function
 Else
 TempElement = ""
 End If
 Else
 TempElement = TempElement & Mid(Txt1, i, 1)
 End If
 Next i
 ExtractElement = ""
End Function
43

Appendix B
Function IntToString(n As Integer) As String
 IntToString = "'" & n
End Function
Sub NumberToString()
' Convert Numeric values to Strings

' Call ShowDataType
' MsgBox "IsNumeric = " & IsNumeric(ActiveCell.Value)
 If IsNumeric(ActiveCell.Value) Then
 ActiveCell.Value = "'" & ActiveCell.Value
' Call ShowDataType
 End If
End Sub
Sub StringToTime()
' MsgBox "The current cell is of type " & TypeName(ActiveCell.Value)
 If Not IsNumeric(ActiveCell.Value) Then
 ActiveCell.Value = TimeValue(ActiveCell.Value)
 End If
' MsgBox "After StringToTime cell is of type " & TypeName(ActiveCell.Value)
End Sub
Sub StringToDate()
' MsgBox "The current cell is of type " & TypeName(ActiveCell.Value)
 If Not IsNumeric(ActiveCell.Value) Then
 ActiveCell.Value = DateValue(ActiveCell.Value)
 End If
' MsgBox "After StringToTime cell is of type " & TypeName(ActiveCell.Value)
End Sub
Sub ReplaceLineFeed()
 ActiveCell.Replace What:=Chr(10), Replacement:=" ", LookAt:=xlPart, _
 SearchOrder:=xlByRows, MatchCase:=False
End Sub
Sub ReplaceParenStart()
 ActiveCell.Replace What:="(", Replacement:=" (", LookAt:=xlPart, _
 SearchOrder:=xlByRows, MatchCase:=False
End Sub
44

Appendix B
File_Utilities

Option Explicit
Option Private Module

' API Function
Private Declare Function GetOpenFileName Lib "comdlg32.dll" Alias _
 "GetOpenFileNameA" (pOpenfilename As OPENFILENAME) As Boolean

' Constants
Private Const ALLFILES = "All Files"

' Data types
Private Type MSA_OPENFILENAME
' Filter string used for the Open dialog filters.
' Use MSA_CreateFilterString() to create this.
' Default = All Files, *.*
 strFilter As String
' Initial Filter to display.
' Default = 1.
 lngFilterIndex As Long
' Initial directory for the dialog to open in.
' Default = Current working directory.
 strInitialDir As String
' Initial file name to populate the dialog with.
' Default = "".
 strInitialFile As String
 strDialogTitle As String
' Default extension to append to file if user didn't specify one.
' Default = System Values (Open File, Save File).
 strDefaultExtension As String
' Flags (see constant list) to be used.
' Default = no flags.
 lngFlags As Long
' Full path of file picked. When the File Open dialog box is presented,
' if the user picks a nonexistent file, only the text in the "File Name" box is returned.
 strFullPathReturned As String
' File name of file picked.
 strFileNameReturned As String
' Offset in full path (strFullPathReturned) where the file name (strFileNameReturned) begins.
 intFileOffset As Integer
' Offset in full path (strFullPathReturned) where the file extension begins.
 intFileExtension As Integer
End Type
Private Type OPENFILENAME
 lStructSize As Long
 hWndOwner As Long
 hInstance As Long
 lpstrFilter As String
 lpstrCustomFilter As Long
 nMaxCustrFilter As Long
 nFilterIndex As Long
 lpstrFile As String
 nMaxFile As Long
 lpstrFileTitle As String
 nMaxFileTitle As Long
 lpstrInitialDir As String
 lpstrTitle As String
45

Appendix B
 Flags As Long
 nFileOffset As Integer
 nFileExtension As Integer
 lpstrDefExt As String
 lCustrData As Long
 lpfnHook As Long
 lpTemplateName As Long
End Type
Public Function FindFile(SearchPath As String, Title As String, FilterName As String, Filter As String) As
String
'Syntax: FindFile(SearchPath = Initial Path to set dialog to,
' Title = Title of the dialog box,
' Filtername - name for type of files to be located (E.G. "Excel Files"),
' Filter - Wildcard Patern for Files (E.G. *.xls))
' Returns the full path to File.
 Dim msaof As MSA_OPENFILENAME

 ' Set options for the dialog box.
 msaof.strDialogTitle = Title
 msaof.strInitialDir = SearchPath
 msaof.strFilter = MSA_CreateFilterString(FilterName, Filter)

 ' Call the Open dialog routine.
 MSA_GetOpenFileName msaof

 ' Return the path and file name.
 FindFile = Trim(msaof.strFullPathReturned)
End Function
Private Function MSA_CreateFilterString(ParamArray varFilt() As Variant) As String
' Creates a filter string from the passed in arguments.
' Returns "" if no arguments are passed.
' Expects an even number of arguments (filter name, extension),
' but if an odd number is passed in, it appends "*.*".
 Dim strFilter As String
 Dim intRet As Integer, intNum As Integer

 intNum = UBound(varFilt)
 If (intNum <> -1) Then
 For intRet = 0 To intNum
 strFilter = strFilter & varFilt(intRet) & vbNullChar
 Next
 If intNum Mod 2 = 0 Then
 strFilter = strFilter & "*.*" & vbNullChar
 End If
 strFilter = strFilter & vbNullChar
 Else
 strFilter = ""
 End If

 MSA_CreateFilterString = strFilter
End Function
Private Function MSA_GetOpenFileName(msaof As MSA_OPENFILENAME) As Integer
' Opens the Open dialog.
 Dim of As OPENFILENAME
 Dim intRet As Integer

 MSAOF_to_OF msaof, of
 intRet = GetOpenFileName(of)
 If intRet Then
46

Appendix B
 OF_to_MSAOF of, msaof
 End If
 MSA_GetOpenFileName = intRet
End Function
Private Sub MSAOF_to_OF(msaof As MSA_OPENFILENAME, of As OPENFILENAME)
' This sub converts from the Microsoft Access structure to the Win32 structure.
 Dim strFile As String * 512
' Initialize some parts of the structure.
 'of.hWndOwner = Application.hWndAccessApp
 of.hInstance = 0
 of.lpstrCustomFilter = 0
 of.nMaxCustrFilter = 0
 of.lpfnHook = 0
 of.lpTemplateName = 0
 of.lCustrData = 0

 If msaof.strFilter = "" Then
 of.lpstrFilter = MSA_CreateFilterString(ALLFILES)
 Else
 of.lpstrFilter = msaof.strFilter
 End If
 of.nFilterIndex = msaof.lngFilterIndex

 of.lpstrFile = msaof.strInitialFile _
 & String(512 - Len(msaof.strInitialFile), 0)
 of.nMaxFile = 511
 of.lpstrFileTitle = String(512, 0)
 of.nMaxFileTitle = 511
 of.lpstrTitle = msaof.strDialogTitle
 of.lpstrInitialDir = msaof.strInitialDir
 of.lpstrDefExt = msaof.strDefaultExtension
 of.Flags = msaof.lngFlags
 of.lStructSize = Len(of)
End Sub
Private Sub OF_to_MSAOF(of As OPENFILENAME, msaof As MSA_OPENFILENAME)
' This sub converts from the Win32 structure to the Microsoft Access structure.
 msaof.strFullPathReturned = Left(of.lpstrFile, InStr(of.lpstrFile, vbNullChar) - 1)
 msaof.strFileNameReturned = of.lpstrFileTitle
 msaof.intFileOffset = of.nFileOffset
 msaof.intFileExtension = of.nFileExtension
End Sub
47

Appendix B
RndmRun

Option Explicit
Sub MakeRuns()
 Application.ScreenUpdating = False
 Dim i As Byte, bytRuns As Byte

 On Error Resume Next
 Application.DisplayAlerts = False
 Sheets("CleanOblig").Delete
 Application.DisplayAlerts = True
 On Error GoTo err_exit
 bytRuns = InputBox("Enter Number of Runs", "Make Random Runs")
 On Error GoTo 0
 Application.DisplayAlerts = False
 For i = 1 To bytRuns
 CreateAviFcstProducts False
 Sheets("CleanOblig").Move
 ActiveWorkbook.SaveAs Filename:=ActiveWorkbook.Path & "Run" & i & ".xls"
 ActiveWorkbook.Close
 Next
err_exit:
 Application.DisplayAlerts = True
 Application.ScreenUpdating = True
End Sub
48

Appendix B
CC_1 Controller

Option Explicit
Option Base 1

'Public DataWithLabels As Range
'Public AllObligData As Range

Private DataSheets(7) As String
Private CriteriaFields(7, 3) As Integer '3 fields per sheet
Private CriteriaValues(7, 3) As String '3 values per sheet
Private DaysRangeNames(7, 3) As String 'Name of day range
Private DaysRangeStartCell(3) As String 'Start cell of Day range

Sub CreateCharts()
 Application.ScreenUpdating = False
 Dim i As Byte, bytRuns As Byte, wb As Workbook
 Set wb = ActiveWorkbook
 On Error Resume Next
 Application.DisplayAlerts = False
 Worksheets("CleanOblig").Delete
 On Error GoTo 0

 bytRuns = InputBox("Enter Number of Runs", "Random Runs")
 Workbooks.Open Filename:=ActiveWorkbook.Path & "\Run1.xls"
 Sheets("CleanOblig").Move Before:=wb.Sheets(1)
 Cells(LastCell(Worksheets("CleanOblig")).Row + 1, 1).Select
 For i = 2 To bytRuns
 Workbooks.Open Filename:=ActiveWorkbook.Path & "\Run" & i & ".xls"
 Range("A2", LastCell(Worksheets("CleanOblig"))).Select
 Selection.Copy
 wb.Activate
 Cells(LastCell(Worksheets("CleanOblig")).Row + 1, 1).Select
 ActiveSheet.Paste
 Workbooks("Run" & i & ".xls").Close
 Next

 Range("Runs").Value = bytRuns
 Call NameDataRange
 Call FillArrays
 Call ClearDataSheets
 Call FillSheets
 Call NameDayRanges
 ChartTitles
 Worksheets("CleanOblig").Delete
 Set wb = Nothing
 Application.DisplayAlerts = True
 Application.ScreenUpdating = True
End Sub
Sub NameDataRange()
 Dim n%
 Dim i%
 Dim TempLastRow%
 Dim TempName As String

' Delete names
 n = ActiveWorkbook.Names.Count
 For i = n To 1 Step -1
49

Appendix B
 TempName = ActiveWorkbook.Names(i).Name
 If (TempName = "DataWithLabels") Then
 ActiveWorkbook.Names(i).Delete
 End If
 Next i

' Rename data range
 Worksheets("CleanOblig").Activate
 Columns("AE:IV").EntireColumn.Delete
 Worksheets("CleanOblig").Range(Cells(1, 1), _
 LastCell(Worksheets("CleanOblig"))).Name = "DataWithLabels"
End Sub

Sub FillArrays()

 Dim i%
 Dim j%

' Fill the DataSheets array from the Parameters sheet
 Worksheets("Parameters").Activate
 Range("B2").Select
 For i = 1 To 7
 DataSheets(i) = ActiveCell.Offset(i, 0).Value
 Next

' Fill in range names and start cells from Parameters sheet
 Worksheets("Parameters").Activate
 Range("B12").Select
 For i = 1 To 7
 For j = 1 To 3
 DaysRangeNames(i, j) = ActiveCell.Offset(i, j).Value
 DaysRangeStartCell(j) = ActiveCell.Offset(11, j).Value
 Next
 Next

' Fill in filter criteria fields from Parameters sheet
 Worksheets("Parameters").Activate
 Range("B27").Select
 For i = 1 To 7
 For j = 1 To 3
 CriteriaFields(i, j) = ActiveCell.Offset(i, j).Value
 Next
 Next

' Fill in filter criteria values from Parameters sheet
 Worksheets("Parameters").Activate
 Range("B37").Select
 For i = 1 To 7
 For j = 1 To 3
 CriteriaValues(i, j) = ActiveCell.Offset(i, j).Value
 Next
 Next
End Sub

Sub ClearDataSheets()
' Clear the previous data but retain formulas in the top row
' of columns AE - AG

 Dim MySheet As Worksheet
50

Appendix B
 Dim i%
 Dim iLastRow%

 For i = 1 To 7
 Set MySheet = Worksheets(DataSheets(i))
 iLastRow = LastCell(MySheet).Row

 If iLastRow >= 2 Then MySheet.Range("A2", "AD" & iLastRow).ClearContents
 ' Retain the formulas in top row of calculated fields
 If iLastRow >= 3 Then MySheet.Range("AE3", "AG" & iLastRow).ClearContents
 Next
End Sub

Sub FillSheets()
 Dim MySheet As Worksheet
 Dim SourceRange As Range
 Dim FillRange As Range
 Dim TempLastRow%
 Dim i%

' Select a sheet
 For i = 1 To 7
 Set MySheet = Worksheets(DataSheets(i))

 Dim f1%
 Dim f2%
 Dim f3%
 Dim v1$
 Dim v2$
 Dim v3$

' Set criteria
 f1 = CriteriaFields(i, 1)
 v1 = CriteriaValues(i, 1)
 f2 = CriteriaFields(i, 2)
 v2 = CriteriaValues(i, 2)
 f3 = CriteriaFields(i, 3)
 v3 = CriteriaValues(i, 3)

' Autofilter and copy data
 Range("DataWithLabels").AutoFilter Field:=f1, Criteria1:=v1
 Range("DataWithLabels").AutoFilter Field:=f2, Criteria1:=v2
 Range("DataWithLabels").AutoFilter Field:=f3, Criteria1:=v3
 Range("DataWithLabels").Copy Destination:=MySheet.Range("A1")
 Worksheets("CleanOblig").ShowAllData

' Autofill the formulas of adjacent cells
 TempLastRow = LastCell(MySheet).Row
 Set SourceRange = MySheet.Range("AE2", "AG2")
 Set FillRange = MySheet.Range("AE2", "AG" & TempLastRow)
 If TempLastRow > 2 Then SourceRange.AutoFill Destination:=FillRange

' Format Columns
 MySheet.Activate
 Range("A1").CurrentRegion.Select
 With Selection
 .HorizontalAlignment = xlLeft
 .EntireColumn.AutoFit
 End With
51

Appendix B
 Next
Worksheets("CleanOblig").AutoFilterMode = False
End Sub
Sub NameDayRanges()

 Dim TempRN$
 Dim TempSC$
 Dim i%
 Dim j%

 For i = 1 To 7
 Worksheets(DataSheets(i)).Activate
 For j = 1 To 3
 TempRN = DaysRangeNames(i, j)
 TempSC = DaysRangeStartCell(j)
 If TempRN <> "EMPTY" Then
 With Range(TempSC)
 Range(.Cells(1, 1), .End(xlDown)).Name = TempRN
 End With
 End If
 Next
 Next

End Sub
Sub ChartTitles()
 Dim strMOS As String
 On Error GoTo err_exit
 strMOS = Range("MOS").Value

 Sheets("Chart For Slide Current").Select
 ActiveChart.ChartTitle.Text = strMOS & " Future Inventory Levels - Current Aviators Only"
 ActiveChart.Deselect

 Sheets("Chart For Slide").Select
 ActiveChart.ChartTitle.Text = strMOS & " Future Inventory Levels"
 ActiveChart.Deselect

 Worksheets("Charted").Activate
 ActiveSheet.ChartObjects("Chart 1").Chart.ChartTitle.Text = strMOS & " Future Inventory Levels"
err_exit:
 On Error GoTo 0
End Sub
52

Appendix B
RangeUtilities

Option Explicit

Sub SetLastRow()
 Dim r As Integer
 Dim Flag As Boolean

 r = ActiveSheet.UsedRange.Rows.Count
 Flag = True
 Do
 If Not (IsEmpty(Cells(r, 1))) Then Flag = False
 r = r - 1
 Loop While Flag
 LastRow = r + 1
' MsgBox "LastRow is " & LastRow
End Sub
Function LastRow(SheetName As String) As Integer

 Dim r As Integer
 Dim Flag As Boolean

 Worksheets(SheetName).Activate
 r = ActiveSheet.UsedRange.Rows.Count
 Flag = True
 Do
 If Not (IsEmpty(Cells(r, 1))) Then Flag = False
 r = r - 1
 Loop While Flag
 LastRow = r + 1
' MsgBox "LastRow is " & LastRow

End Function
Sub SetLastColumn()
 Dim c As Integer
 Dim Flag As Boolean

 c = ActiveSheet.UsedRange.Columns.Count
 Flag = True
 Do
 If Not (IsEmpty(Cells(1, c))) Then Flag = False
 c = c - 1
 Loop While Flag
 LastColumn = c + 1
' MsgBox "LastColumn is " & LastColumn
End Sub

Sub SelectActiveArea()
 Range(Range("A1"), ActiveCell.SpecialCells(xlLastCell)).Select
End Sub

Sub NumberLastRowAndColumn()
' Doesn't work when you can't eliminate the extra rows/cells

 Call SelectActiveArea
 LastColumn = Selection.Columns.Count
 LastRow = Selection.Rows.Count
53

Appendix B
 MsgBox "LastRow is " & LastRow

End Sub

Function RenameActiveSheet(SheetName As String)
 ActiveSheet.Name = SheetName
End Function

Sub DeleteEmptyRowsWithinData()
 Dim lrow As Integer
 Dim r As Integer

 lrow = ActiveSheet.UsedRange.Rows.Count
 Application.ScreenUpdating = False
 For r = lrow To 1 Step -1
 If Application.WorksheetFunction.CountA(Rows(r)) = 0 _
 Then Rows(r).Delete
 Next r
End Sub

Sub ActivateNextBlankDown()
 ActiveSheet.Cells(1, 1).Select
 Do While Not IsEmpty(ActiveCell)
 ActiveCell.Offset(1, 0).Select
 Loop
End Sub

Sub SelectActiveColumn()
 Dim TopCell As Range
 Dim BottomCell As Range

 If IsEmpty(ActiveCell) Then Exit Sub
' ignore error if activecell is in Row 1
 On Error Resume Next
 If IsEmpty(ActiveCell.Offset(-1, 0)) Then Set TopCell = ActiveCell Else Set TopCell =
ActiveCell.End(xlUp)
 If IsEmpty(ActiveCell.Offset(1, 0)) Then Set BottomCell = ActiveCell Else Set BottomCell =
ActiveCell.End(xlDown)
 Range(TopCell, BottomCell).Select

End Sub
Function LastCell(TheSheet As Worksheet) As Range
' Returns a single-cell range object that represents
' the intersection of the last non-empty row and the
' last non-empty column
 Dim ExcelLastCell As Range
 Dim Row As Long, Col As Integer
 Dim LastRowWithData As Long, LastColWithData As Integer

' ExcelLastCell is what Excel thinks is the last cell
 Set ExcelLastCell = TheSheet.Cells.SpecialCells(xlLastCell)

' Determine the last row with data in it
 LastRowWithData = ExcelLastCell.Row
 Row = ExcelLastCell.Row
 Do While Application.CountA(TheSheet.Rows(Row)) = 0 And Row <> 1
 Row = Row - 1
 Loop
54

Appendix B
 LastRowWithData = Row

' Determine the last column with data in it
 LastColWithData = ExcelLastCell.Column
 Col = ExcelLastCell.Column
 Do While Application.CountA(TheSheet.Columns(Col)) = 0 And Col <> 1
 Col = Col - 1
 Loop
 LastColWithData = Col

' Create the range object
 Set LastCell = TheSheet.Cells(Row, Col)
End Function
Function NextWingingDt()
 NextWingingDt = DateAdd("q", 1, Now)
 NextWingingDt = DateSerial(Year(NextWingingDt), Int(Month(NextWingingDt) / 3) * 3, 1)
End Function
55

Appendix B
RndmRun

Option Explicit
'Option Private Module
Public Sub RunRandom()
 Application.ScreenUpdating = False
 Dim c As Range, ws As Worksheet, wb As Workbook
 Dim i As Byte, bytRuns As Byte, strGroup As String, lngLast As Long
 Set ws = ActiveWorkbook.Worksheets("Check")
 Set wb = ActiveWorkbook

 bytRuns = InputBox("Enter Number of Runs", "Random Runs")
 On Error Resume Next
 wb.Names("All").Delete
 On Error GoTo 0
 wb.Names.Add Name:="All", RefersToLocal:= _

"=BinnedData!A3:A35,BinnedData!C3:D35,BinnedData!F3:H35,BinnedData!J3:L35,BinnedData!N3:O3
5,BinnedData!Q3:Q35,BinnedData!S3:U35,BinnedData!W3:AB35"

 For i = 1 To bytRuns
 Workbooks.Open Filename:=ActiveWorkbook.Path & "\Run" & i & ".xls"
 Sheets("CleanOblig").Move Before:=wb.Sheets(1)
 CreateCharts
 For Each c In Range("MOSs")
 strGroup = "'" & c.Value
 Range("MOS").Value = strGroup
 lngLast = LastRow("Check")
 ws.Cells(lngLast + 1, 22) = strGroup
 ws.Cells(lngLast + 1, 23) = i

 Range("All").Copy
 ws.Cells(lngLast + 1, 1).Select
 Selection.PasteSpecial Paste:=xlValues

 ws.Range(Cells(lngLast + 1, 22), Cells(lngLast + 1, 23)).Select
 Selection.Copy
 ws.Range(Cells(lngLast + 1, 22), Cells(lngLast + 33, 23)).Select
 ActiveSheet.Paste
 Next
 Application.DisplayAlerts = False
 wb.Worksheets("CleanOblig").Delete
 Application.DisplayAlerts = True
 Next
 Application.CutCopyMode = False
 Set ws = Nothing
 Set wb = Nothing
 Application.ScreenUpdating = True
End Sub
Public Sub RunRandom2()
 Application.ScreenUpdating = False
 Dim c As Range, ws As Worksheet
 Dim bytRuns As Byte, strGroup As String, lngLast As Long
 Set ws = ActiveWorkbook.Worksheets("Check")

 On Error Resume Next
 ActiveWorkbook.Names("All").Delete
 On Error GoTo 0
 ActiveWorkbook.Names.Add Name:="All", RefersToLocal:= _
56

Appendix B

"=BinnedData!A3:A35,BinnedData!C3:D35,BinnedData!F3:H35,BinnedData!J3:L35,BinnedData!N3:O3
5,BinnedData!Q3:Q35,BinnedData!S3:U35,BinnedData!W3:AB35"

 For Each c In Range("MOSs")
 strGroup = "'" & c.Value
 Range("MOS").Value = strGroup
 lngLast = LastRow("Check")
 ws.Cells(lngLast + 1, 22) = strGroup

 Range("All").Copy
 ws.Cells(lngLast + 1, 1).Select
 Selection.PasteSpecial Paste:=xlValues

 Cells(lngLast + 1, 22).Select
 Selection.Copy
 ws.Range(Cells(lngLast + 1, 22), Cells(lngLast + 33, 22)).Select
 ActiveSheet.Paste
 Next

 Application.CutCopyMode = False
 Set ws = Nothing
 Application.ScreenUpdating = True

This Workbook

Private Sub Workbook_Open()
 Range("wing_dt").Value = NextWingingDt
End Sub

Sheet4 (Model Params)

Private Sub cmdBang_Click()
 CreateAviFcstProducts
End Sub
57

List of figures

Figure 1. Process flow of aviator inventory 2

Figure 2. Aviator Obligation Forecaster Spreadsheet 7

Figure 3. Prompt for location of ODSE data file 8

Figure 4. Prompt for number of runs for Aviator
Obligation Forecaster 8

Figure 5. Aviator Inventory Chart Creator Spreadsheet 10

Figure 6. Inventory Chart—Current Aviators Only 10

Figure 7. Inventory chart—all aviators 11

Figure 8. Figure 8. Chart for specified grouping—
AH-1 pilots . 14

Figure 9. Model overview . 22
59

C
IM

 D
00

14
62

9.
A

1/
F

in
al

	Contents
	Introduction
	Making an aviator
	Forecasting model

	Data
	Running the model
	Concluding comments
	Current aviator inventory
	Future aviator inventory
	Model overview

	List of figures

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

