# Consolidation Return on Investment (cROI) Programming Tool:

Development and Use

Burton L. Streicher • S. Alexander Yellin • Daniel D. Steeples • Robert P. Trost • Kyle J. Kretschman • Zachary T. Miller



DRM-2012-U-000402-Final March 2012



Photo credit line: 090313-N-9198L-071 GROTON Conn. (March 13, 2009) Capt. Mark S. Ginda, commanding officer of Naval Submarine Base New London, begins the demolition of building 442 as he takes the controls of an EC460BLC excavator. The demolition of this building, as well as others slated for demolition, is part of the Navy's Shore Vision 2035, a program to reduce base infrastructure by reusing the land under unneeded buildings. This will restructure naval bases to meet the changing needs of the Navy, reduce costs, and decrease the Navy's infrastructure footprint. (U.S. Navy photo by Electronics Technician 3rd Class Alexander Lockman/Released)

Approved for distribution:

March 2012

ala, Marca

Alan J. Marcus, Director Infrastructure and Resource Management Team Resource Analysis Division This document represents the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the Department of the Navy.

Approved for Public Release; Distribution Unlimited. Specific authority: **N00014-11-D-0323** Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123.

#### Copyright © 2012 CNA

This work was created in the performance of Federal Government Contract Number N00014-11-D-0323. Any copyright in this work is subject to the Government's Unlimited Rights license as defined in DFARS 252.227-7013 and/or DFARS 252.227-7014. The reproduction of this work for commercial purposes is strictly prohibited. Nongovernmental users may copy and distribute this document in any medium, either commercially or noncommercially, provided that this copyright notice is reproduced in all copies. Nongovernmental users may not use technical measures to obstruct or control the reading or further copying of the copies they make or distribute. Nongovernmental users may not accept compensation of any manner in exchange for copies. All other rights reserved.

## Contents

| Summary                                                                | 1 |
|------------------------------------------------------------------------|---|
| Introduction                                                           | 5 |
| Background                                                             | 5 |
| Research approach                                                      | 5 |
| Issues                                                                 | 9 |
| Organization of report                                                 | 9 |
| What is a consolidation project?                                       | 1 |
| Purpose of consolidation projects                                      | 2 |
| Building a successful project.                                         | 2 |
| Project evaluation factors                                             | 5 |
| Financial return on investment (FROI)                                  | õ |
| Project data inputs                                                    | 5 |
| Factor calculations                                                    | 6 |
| Results measure                                                        | 6 |
| Footprint reduction                                                    | 6 |
| Project data inputs                                                    | 6 |
| Factor calculations                                                    | 7 |
| Results measure                                                        | 7 |
| Mission criticality. $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $1'$ | 7 |
| Project data inputs                                                    | 3 |
| Factor calculations                                                    | 3 |
| Results measure                                                        | 3 |
| Utilization improvement                                                | 3 |
| Project data inputs                                                    | 3 |
| Factor calculations                                                    | 9 |
| Results measure                                                        | 9 |
| Facility condition improvement                                         | 9 |
| Project data inputs                                                    | 9 |
| Factor calculations                                                    | 0 |
| Results measure                                                        | ) |

| Facility age improvement                              |
|-------------------------------------------------------|
| Project data inputs                                   |
| Factor calculations                                   |
| Results measure                                       |
| Normal distribution conversion                        |
| Theory                                                |
| Application                                           |
| Metric conversion example                             |
| Programming tool structure                            |
| Model framework                                       |
| Worksheets                                            |
| Sample rating                                         |
| Multiple project example                              |
| Process for program evaluation                        |
| Introduction                                          |
| Statement of budget problem: consolidation project    |
| A revealed preference and market basket approach 48   |
| Consolidation project program selection example 50    |
| Recommendations                                       |
| Better consolidation project identification           |
| Leverage OSF strategy for project development         |
| Improve the individual evaluation factor weights      |
| Update the cROI tool normalization table              |
| Revealed preference and market basket programming 59  |
| Appendix A: cROI user guide                           |
| Background                                            |
| User instructions                                     |
| Completion of cROI project evaluation tool 61         |
| Appendix B: cROI programming tool electronic files 65 |
| File attributes                                       |
| Project evaluation worksheets                         |
| Project DD Form 1391 documents.                       |

| Glossary         | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 73 |
|------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| References       | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 77 |
| List of figures  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |   | 79 |
| List of tables . |   | • |   |   |   |   |   |   |   |   |   | • | • |   |   | • | • | • |   |   |   |   |   |   |   |   |   | 81 |

This page intentionally left blank.

## Summary

The Navy has recently begun development of a new Optimal Shore Footprint (OSF) strategy. The intent of this initiative is to develop an enduring, top-down strategic approach to effectively balance mission readiness, operational and fiscal efficiency, and innovation in order to minimize the overall Navy shore infrastructure footprint.

To support this evolving OSF strategy, the Shore Readiness Division of the Office of the Chief of Naval Operations (OPNAV N46) asked CNA to develop a new consolidation return on investment (cROI) programming tool. This new evaluation tool will be used to compare submitted consolidation/demolition projects against each other in order to select the best projects for programming. The Navy OSF working group determined that project contributions to shore footprint reduction, facility mission criticality, facility category code utilization improvement, facility condition rating, and facility age should be measured, in addition to financial return on investment.

We expanded upon an earlier CNA-developed demolition return on investment (dROI) evaluation tool in order to address the working group's recommendations. We added the following new metrics to the original dROI tool:

- Footprint reduction
- Facility mission criticality
- Facility condition rating
- Facility age

The finished cROI evaluation tool is a single Microsoft Excel workbook with 10 worksheet tabs and a hyperlink to the project DD Form 1391<sup>1</sup> scope write-up. We created the workbook with the idea that for each new project the user will generate a new evaluation workbook file and combine them into one folder for retention and future referral. We also created a simplified field version that the sponsor can distribute to shore installations for use while developing future consolidation projects.

The cROI tool produces a financial return on investment (FROI) threshold check—measured in years to payback—and a single consolidated project benefit ranking score that falls between zero and one. A higher score reflects greater benefits in supporting the OSF strategy. A higher score also means that the project is a better candidate for programming.

We used several new concepts to improve the usability and accuracy of the cROI tool. These include the following:

- Installation base operating savings are allocated to individual facilities by plant replacement value (PRV) rather than by square foot measures.
- We introduced the concept of using square foot equivalents to measure footprint reduction. This conversion method allows demolished facilities that are measured in units of measure other than square feet to be changed to a square foot equivalent measure. These facilities that were not measured in square feet and were previously excluded are now included in the total measure for footprint reduction.
- We generated the concept of using normal distribution curves based on historical consolidation/demolition project execution results to normalize the current project's scores.
- We provided for user-determined adjustable programming levels for the FROI measure so that the anticipated cost avoidances for sustainment (ST), facility modernization (FM), and base operating services (BOS) can be adjusted to match current programming levels.

<sup>1.</sup> The DD Form 1391 is the standard Department of Defense form used to document the nature, location, scope, complexity, costs, and urgency of a facilities project.

• We provided adjustable factor weights, which allow the user to determine the amount of contribution allowed for each of the six metrics within the final consolidated project benefit score.

We tested the evaluation tool on a group of 18 proposed consolidation projects, which were provided to us by OPNAV. We found that ten of the 18 projects would provide a good candidate pool of projects. Even though, through use of this cROI tool, we can now list these projects in descending order of benefit to the OSF strategy, this is not enough to build future project packages for programming. The tool does not offer a way of selecting which projects, when taken together, will also meet budget and strategic requirements.

Therefore, we still need to apply market basket approaches, which take into account available funding and other strategic considerations for building actual fiscal year programs. We provide some additional background information on how to use the cROI project evaluation tool with revealed preference/market basket approaches for developing program packages from suitable discrete investment projects.

In considering our results, we provide five recommendations relating to the future use of the cROI evaluation tool.

- Develop a process that facilitates the identification of more and better consolidation projects.
- Use the OSF process to support more direct development of consolidation projects.
- Continue to work on improving the individual factor weights.
- Update the cROI tool as future projects are completed by expanding the normalization table.
- Consider future modification of the project evaluation process, including a revealed preference/market basket approach for program generation.

This page intentionally left blank.

## Introduction

Given the current economic conditions in the United States and the budget constraints placed on the Department of Defense (DOD), the Navy must be more adept in aligning its operational force structure with its shore infrastructure in order to achieve the current Maritime Strategy. The Navy's infrastructure must be carefully studied, and the Navy must ensure that it is properly sized and configured to support present and future needs without supporting unnecessary additional capacity.

To that end, the Navy is looking to eliminate all unnecessary shore infrastructure in an effort to reduce the long-term costs associated with base operating expenses, sustainment, and restoration. However, the Navy wants to take a prudent and rational approach to eliminating unneeded infrastructure. It would like to eliminate excess while still preserving the capability for any potential surge needs.

### Background

The Director, Shore Readiness Division, OPNAV N46, tasked CNA to develop a robust, quantitative procedure for evaluating consolidation projects and determining, with a mathematical decision-support approach, the set of consolidation projects that should be recommended for funding.

## **Research approach**

In addition to including the standard FROI metric that is commonly used in the private sector to evaluate capital budgeting decisions, N46 has asked CNA to include additional metrics and criteria in the evaluation process. Beyond FROI, the Navy must consider other factors in its decisions about where to reduce the shore infrastructure. Whereas private corporations are focused on maximizing stockholder wealth, the Navy's investment decision criteria must include factors related to its mission (i.e., securing the high seas and supporting war operations).

These additional factors are related to the Optimal Shore Footprint (OSF) strategy, which states that the shore footprint must incorporate mission effectiveness, operational and fiscal efficiency, and technical innovation into the decision process. The central goal of OSF is to meet the required shore facilities at minimal cost.

Although the OSF concept is still in its infancy, the basic premise of the effort is to better align shore assets with the overall mission of the Navy. This includes developing systems that provide managerial decision-makers with real-time information on the status of all facilities in the naval inventory. This leads to better decisions when allocating limited resources to sustainment and restoration efforts.

Altogether, the Navy identified six criteria that should be incorporated into the process of determining which consolidation projects should be funded. These six criteria are:

- Financial return on investment (FROI)
  - FROI is based on the estimated annual reduction in sustainment (ST), modernization (FM), and base operating support (BOS) divided by project cost. This is termed the simple payback period in financial language.
- Footprint reduction
  - This is the net reduction in shore footprint quantity as measured in square foot equivalents (SFE).
- Mission criticality
  - This identifies the average mission dependency index (MDI) of the facilities being demolished.
- Utilization improvement
  - This measures the degree of installation capacity utilization improvement in terms of reducing unneeded capacity.

- Condition improvement
  - This notes the average condition rating of the facilities being demolished.
- Facility age reduction
  - This measures the average age from initial construction of the facilities being demolished.

The purpose of this project is to develop a method for identifying the optimal subset of all consolidation projects submitted by the installations. By optimal, we mean that the projects selected, as a portfolio, should be such that collectively they maximize some overall objective function while the total expenditure for all selected projects remains within the available budget.

In FY 2009, CNA developed an optimization model for the Director, Shore Readiness Division (N46), that focused specifically on demolition projects [1]. In that project, our goal was to develop a model that would identify the optimal set of demolition projects that should be funded so as to maximize the net present value (NPV) of savings from the selected projects given the levels of funding available for demolition projects. The model was also capable of determining the optimal set of projects to fund if the objectives were to maximize the total reduction in square feet of excess capacity. From a purely financial viewpoint, the only driver should have been the NPV of savings, but the Navy also wanted to reduce its actual shore footprint by eliminating unneeded capacity.

In that previous effort, we studied the characteristics of the demolition projects submitted by the installations. Included in each project submission was (1) the net reduction in square footage if the demolition project was undertaken and (2) the estimated NPV of savings from the project. If the footprint reduction for the demolished facility was measured in something other than square feet, that measure was only recorded on the project submission and not included in the analysis. In that previous study, the problem was to determine, in some manner, the optimal set of demolition projects to undertake given the available budget. We recognized that we were looking at a traditional "knapsack problem,"<sup>2</sup> where there are two separate objective functions to consider. The knapsack problem is normally characterized as a maximization, 0 to 1 integer programming problem, where there is a single constraint and the values for the decision variables can only assume the value of 0 or 1 in any solution. If the variable assumes the value of 1, it implies the project is selected for funding; however, if the variable assumes the value of 0, it implies the project was not selected to be funded.

The first objective function used to determine the set of demolition projects to undertake was that of maximizing the total NPV of savings across all projects. The optimization problem solution set consists of those projects that should be selected for funding based on their total NPV of savings. We then allowed the available budget to vary over a range of values to assess how the optimal mix of projects would change for given changes in the funding availability.

The second objective function considered was to maximize the total square footage of excess capacity eliminated over all projects selected for funding. Note there is a positive relationship between the NPV of a project and the net reduction in square footage; projects that yield a large NPV in savings are also likely to eliminate a large amount of excess square footage. However, the choice of demolition projects to fund under the criterion of maximizing excess inventory turned out to be different from the set of projects that had an objective of maximizing the total NPV in savings.

To reconcile the two different project selections in that earlier effort, we combined the two objective criteria using a multi-criteria approach. The two respective criteria were assigned weights (with the weights summing to 1), and the problem was resolved. In that analysis, the weights were allowed to vary, and, in this manner, decision-

<sup>2.</sup> The traditional knapsack problem is a statistical problem in combinatorial optimization: Given a set of items, each with a weight and a value, we determine the count of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most useful items. This problem often arises in resource allocation with financial constraints.

makers could parametrically determine how the set of projects selected for funding changed as the weights for the two objective functions changed.

#### Issues

In this current project, the problem structure is identical to that previous effort, except that OPNAV N46 now requests that six decision criteria be considered instead of just two. The problem is similar in that there is a fixed budget available to fund consolidation projects. However, the process to determine which set of consolidation projects to fund so as to maximize the overall objective (that is now an aggregation of six individual criteria) is different. The structure of this new problem is called a multiple criteria knapsack problem. The overall knapsack problem is characterized by there being a single constraint; the constraint in this problem is a limited budget.

To summarize, selecting the set of consolidation projects to fund is an optimization problem whereby the decision-maker wishes to maximize the total value of the projects selected subject to budget restrictions. The difficult part of the problem is in how to construct a function that constitutes the overall value of the selected projects since there are six criteria being used to evaluate projects and these six criteria must all be weighted together to form a single objective function.

## **Organization of report**

This report is organized into eight sections. First, we describe those characteristics of a consolidation project that are attractive from a strategic viewpoint. This gives guidance to installation personnel who develop potential projects. Next, we describe the factors that are used to evaluate projects submitted for review. In these descriptions, we include the required project data inputs, how the factors are calculated, and how each factor is incorporated into the final decision. We next discuss how, for each factor, we transform the observed value for the factor to an index that allows for a common measurement scale for each of the six factors included in the decision-support system. Specific data from 18 submitted projects are presented and the factor

scores are given for each project. We then provide background information on revealed preference and market basket analysis to show how the problem may be cast as a multiple criteria knapsack problem once the Navy has evaluated the other available consolidation projects. This allows each factor to be incorporated into the objective function via a weighting scheme, and selection of the best mix of projects can be made based on the funding available. Lastly, we present our recommendations, discussing how N46 can use the model to develop an optimal set of consolidation projects to fund.

## What is a consolidation project?

The Navy programs two different types of facilities projects: military construction projects and special projects. The difference between these two types of projects is related to size. Military construction projects are larger and need congressional budget line item approvals prior to their execution. Special projects are programmed as a lump sum budget item and approval for execution lies within the Navy. There are several kinds of special projects; they are categorized by the preponderance of work type performed. The following is a listing of the different types:

- Repair
- Construction
- Maintenance
- Equipment installation

These work types are funded under the following investment accounts:

- Restoration and modernization (RM)
- Sustainment (ST)
- Demolition (DE)
- New footprint (NF)

A consolidation project can be either military construction or a special project, and any or all of the above work types can be included within its scope; however, the majority of the work is normally demolition.

## Purpose of consolidation projects

Consolidation projects are used to relocate personnel and equipment from underutilized and usually deficient facilities to other facilities. Consolidation projects include restoration, modernization, and possibly some new construction to prepare the new space. This is done in order to allow the previously occupied facilities to be demolished.

Development of new consolidation projects is not easy and can be a time-consuming process. There are many possible alternative scopes to select from since there is no single need driving the requirement to focus the project development. Balancing the trade-offs between elimination of underutilized facilities and the provision of new or restored spaces can be challenging. It often requires working with current facility tenants who have had the past luxury of extra space or their own dedicated facilities. An effective consolidation project often requires them to move to much smaller spaces and to share facilities with other organizations. Therefore, development of successful consolidation projects requires significant care and attention to scope content.

## Building a successful project

This section provides a general description of the characteristics of a consolidation project that would likely be a strong candidate for funding. That is, the project will yield results that support the Navy's OSF strategy.

It is important to consider each of the six factors that are used to evaluate consolidation projects.

- Financial return on investment (FROI)
  - FROI is the measure of the annual reduction in ST, FM, and BOS costs against the cost of the project. FROI can be measured in two ways. First, it can be measured in terms of simple payback, which refers to the number of years required to recoup, in savings, the amount of money spent on the project. Second, it can be measured in terms of the NPV of the savings less the initial consolidation project cost.

- Footprint reduction
  - Footprint reduction is the net reduction in shore footprint quantity as measured in square foot equivalents (SFE). The newly constructed facilities SFE are subtracted from the sum of the demolished facilities SFE.
- Mission criticality
  - Mission criticality refers to the value of the mission supported by those demolished facilities affected by the consolidation project. It is calculated by averaging their mission dependency index (MDI) ratings.
- Utilization improvement
  - The utilization improvement metric focuses on measuring the degree of installation capacity utilization improvement in terms of reducing unneeded capacity within each facility category code.
- Facility condition
  - Facility condition refers to the physical condition of the facilities demolished by the consolidation project. It is calculated by averaging their facility condition index ratings.
- Facility age
  - Facility age refers to the average actual age of the facilities demolished by the consolidation project. It may be more desirable to eliminate older facilities than newer ones.

Given the above criteria, we prescribe a set of guidelines for developing consolidation projects that yield positive results. Initially, installations should look for facilities that are expensive to maintain and have a significant amount of deferred maintenance. This also coincides with a facility that will contribute to a reduction in shore footprint and total PRV. Facilities that are scheduled for demolition in a consolidation process will most likely be occupied, and, if these facilities are demolished, personnel will need to be relocated. Projects where the amount of additional facility restoration or consolidation costs needed to relocate the displaced personnel is small are more attractive consolidation projects.

Buildings that are underutilized should also be considered for a consolidation project. Underutilized buildings often have low MDI values and poor condition ratings. These factors help to identify buildings or facilities that are good candidates for inclusion in consolidation projects.

Policy-makers are also interested in reducing the visual footprint of facilities at naval installations. In particular, the Navy is interested in identifying and eliminating those facilities that contribute the most to the overall shore footprint. Therefore, large facilities represent good candidates for inclusion in a consolidation project.

To summarize, attractive consolidation projects should consist of large, underutilized facilities that are high in cost, expensive to operate and maintain, are in poor condition, and have low MDI scores. In addition, attractive consolidation projects should consist of more demolition work and less new construction since the overall goal is to reduce the shore footprint.

## **Project evaluation factors**

In coordination with the OSF task force, we developed six evaluation factors in the cROI programming tool to be used to compare consolidation projects that have been submitted by the Commander, Navy Installations Command (CNIC) regions:

- Financial return on investment (FROI)
- Footprint reduction
- Mission criticality
- Utilization improvement
- Condition improvement
- Facility age improvement

### Financial return on investment (FROI)

FROI is a measure that compares the initial cost of a consolidation project with the long-term savings that occur after the project is completed. This calculation creates a metric representing a project's payback period in years. The shorter the payback period, the better the project.

#### **Project data inputs**

Current working estimate (CWE) is the total project cost from the project DD Form 1391.

The annual sustainment cost requirements are found in the current Office of the Secretary of Defense (OSD) Facility Sustainment Model (FSM) for each demolished facility. The percentage of the FSM output programmed by the Navy is used to calculate the estimated annual sustainment cost savings for each demolished facility. The annual facility modernization cost requirements come from the OSD Facility Modernization Model (FMM) for each demolished facility. The percentage of the FMM model output programmed by the Navy is used to calculate the estimated annual modernization savings for each demolished facility.

The annual BOS costs for the base come from the Navy's certified financial reports from the end of the previous fiscal year. The total base PRV supported by Navy operations and maintenance is found in the Internet Navy Facility Asset Data Store (iNFADS). The PRV and size of each facility demolished by the project also comes from iNFADS. Dividing the total base annual BOS costs by the total base PRV creates a BOS\$/PRV\$ factor. This factor is then multiplied by the demolished facility's PRV. This yields an estimated annual BOS cost savings for the demolished facility.

#### **Factor calculations**

The sum of the estimated annual ST, FM, and BOS savings for all the demolished facilities is divided into the project's CWE to determine the project's FROI in years.

#### **Results measure**

The FROI is measured in years.

### **Footprint reduction**

Footprint reduction is a measure of the size of the facilities that are demolished by a consolidation project, reduced by the size of any facilities built by the project. The larger the amount of facilities eliminated, the better the project.

#### **Project data inputs**

The total square feet (SF) for base facilities measured in SF and the total PRV for all base facilities measured in SF are extracted from iNFADS. This total PRV amount divided by this total SF creates a square foot equivalent (SFE) conversion factor for that specific base.

The total area for all facilities, by unit of measure (UOM), demolished by the project, and the total PRV for these facilities also comes from iNFADS.

The SFE conversion factor is multiplied by the PRV of the demolished facilities to obtain an SFE number. These individual amounts measured in SFE are added together with the facilities measured in SF to provide a total SFE reduction quantity. The total SFE for newly constructed facilities comes from the project DD Form 1391. The input includes these newly constructed facilities, but not renovated ones.

#### **Factor calculations**

To obtain the net footprint reduction for the project, the total amount of new facilities built (if any) is calculated in SFE and subtracted from the total amount of any facilities demolished.

The amount of facilities demolished is calculated by adding the SF of any demolished facility, measured in SF, to the SFE of any demolished facility, measured in units other than SF. The SFE is calculated by multiplying the demolished facility's PRV by the base's SFE conversion factor.

The amount of new facilities built is calculated by adding the SF of any new facility, measured in SF, to the SFE of any new facility, measured in units other than SF. SFE is calculated by multiplying the new facility's PRV by the base's SFE conversion factor.

#### **Results measure**

The footprint reduction factor is measured in SFE.

### **Mission criticality**

Mission criticality is a measure of how dependent base missions are on the facilities being demolished by the consolidation project. The less critical the facilities are, the better the project.

Mission criticality uses the MDI rating, which is a number between 1 and 100 that is assigned to each facility by base personnel and

approved by the Installation Commander. The MDI reflects the importance of the facility to the base's mission performance.

#### **Project data inputs**

The MDI rating and PRV amount for each demolished facility comes from iNFADS.

#### **Factor calculations**

This factor is calculated by multiplying each demolished facility's MDI rating by its PRV amount. These are added together and the total is divided by the total PRV for all the demolished facilities in order to calculate a PRV-weighted average MDI rating for the project.

#### **Results measure**

Mission criticality is a number from 1 to 100 that represents the PRVweighted average MDI for the demolished facilities.

## **Utilization improvement**

The utilization improvement is a measure of the portion of a facility type's "available" facilities at a base that are demolished by the consolidation project. The larger the elimination, the better the project.

Available facility amounts are determined in the Navy's facility planning process; for each facility category code (CCN) at a base, the total amount of facility assets available is compared with the total requirement for these assets at the base. If the available assets exceed the requirement, then the difference is the available facility amount. This is measured in the UOM for that CCN. This is an interim metric pending implementation of the new Naval Facilities Engineering Command (NAVFAC) utilization factor.

#### **Project data inputs**

The size, CCN, and PRV for each facility demolished by the project is obtained from iNFADS.

The amount of "available" facilities at the project's base for each of the project's CCNs is obtained from iNFADS.

#### **Factor calculations**

The facilities being demolished are grouped by CCN. The total demolished size for that CCN is calculated by adding the SF or SFE for each facility. The total demolished size is divided by the amount of available facilities for that CCN in order to calculate a ratio that represents the portion of that CCN's available facilities that are eliminated by the project.

The individual CCN ratios are each weighted by the project's total PRV for that CCN. These weighted ratios are added together and divided by the total project PRV for demolished facilities in order to determine a PRV-weighted average of available facility reduction.

#### **Results measure**

The utilization improvement factor is the PRV-weighted average percentage amount of available facility reduction.

## Facility condition improvement

The facility condition improvement factor is a measure of the current condition of the facilities being demolished by the consolidation project. The poorer the condition of the eliminated facilities, the better the project.

The facility condition improvement factor, which is a number between 1 and 100, uses the facility condition index rating for each facility.

#### **Project data inputs**

The facility condition index rating and PRV for each demolished facility are obtained from iNFADS.

#### **Factor calculations**

The condition rating for each demolished facility is multiplied by the facility's PRV. These are added and the total is divided by the total PRV of all the demolished facilities in order to determine a PRV-weighted condition rating.

#### **Results measure**

The facility condition improvement is a number from 1 to 100 that represents a PRV-weighted average condition index for the demolished facilities.

## Facility age improvement

The facility age improvement is a measure, based on the original construction date, of the age of the facilities being demolished by the consolidation project. The older the demolished facilities are, the better the project.

#### **Project data inputs**

The original year of construction and PRV for each demolished facility are found in iNFADS.

#### **Factor calculations**

For each demolished facility, the age is calculated by subtracting the original construction date from the current year; this age is multiplied by the facility's PRV. These are added together and divided by the total PRV for all demolished facilities in order to determine a PRV-weighted average facility age for the project.

#### **Results measure**

The facility age improvement factor is the PRV-weighted average age of the facilities demolished by the project.

## Normal distribution conversion

As discussed in the previous section, there are six different metrics that define each of the projects. These metrics are measured in a variety of units and the range of each metric is vastly different. Therefore, to calculate a single project score, each metric must be standardized to the same scale. In this section, we describe how we do this.

### Theory

To standardize, we convert each metric to an index number by assuming a distribution for each of the metrics. We assume that the mission criticality, utilization improvement, condition improvement, and facility age improvement metrics are from a normal distribution and that the footprint reduction and FROI metrics are log normally distributed. Assuming that the footprint reduction and FROI metrics are log normally distributed is equivalent to assuming that the natural log of each metric is normally distributed. So, from this point forward we do not differentiate these metrics from the other four. We made these distributional assumptions after analyzing the means, standard deviation, ranges, and histograms of each metric.

After calculating the metric value for each project, we found the index number by evaluating the baseline cumulative normal distribution at the metric value. This methodology makes intuitive sense since each index number is the probability that the metric is greater than another random metric value. This method is also very convenient because a normal distribution has two parameters, mean and standard deviation, that are simple to calculate. Additionally, a normal distribution has a range that covers all real numbers, which makes this methodology compatable with the introduction of new projects. Sometimes, new projects have metrics that are vastly different from previous project submissions and fall outside the current standardization range. The more common linear scaling transformation techniques do not easily accommodate out-of-range values. The full range of the normal distribution allows the metrics to be converted to index numbers for any possible new project.

In using this technique, we gain a flexible, intuitive, and computationally simple way of combining multiple metrics into a single project score. In summary, there are three main advantages to assuming each metric is distributed normally:

- The method is flexible (or robust to the introduction of new projects). Normal distributions do not have minimum or maximum values, so all potential projects and their metric values can be evaluated.
- The method produces index scores that have an intuitive analytical interpretation. The index score is the probability that another project will have a metric lower than the current project. For example, an index score of 0.7500 implies that there is a 75-percent chance of another metric being smaller than the current project.
- This method is computationally simple; it is easy to fit a normal distribution to the data. One need only calculate a mean and standard deviation of the previous project metrics, and then use the normal distribution functions that are built into most software packages to calculate the index score.

## Application

We used the results from 210 programmed FY 2009 and FY 2010 demolition projects to calculate the baseline normal distribution for each metric. We calculated the new metrics for each of the previous demolition projects and used these values to generate a sample mean and standard deviation for each measure to use as the parameters for establishing the baseline normal distributions. Since there are six metrics, there are six different baseline normal distributions. The current consolidation metrics are then evaluated with their baseline distributions. Table 1 provides a sample mean, standard deviation, and coefficient of variability for each metric.

|             |                  |        | Standard  |             |
|-------------|------------------|--------|-----------|-------------|
| Metric      | Measure          | Mean   | deviation | Variability |
| FROI        | Natural log      | 1.560  | 1.022     | 0.655       |
| Footprint   | Natural log      | 9.330  | 1.718     | 0.184       |
| Mission     | Weighted average | 41.621 | 25.400    | 0.610       |
| Utilization | Weighted average | 0.326  | 0.344     | 1.055       |
| Condition   | Weighted average | 64.838 | 18.523    | 0.286       |
| Age         | Weighted average | 57.385 | 20.550    | 0.358       |

 Table 1.
 Normalization table mean, standard deviation, and variability results

The coefficient of variability is equal to the standard deviation/mean and reflects the degree of variation within a metric distribution. A value higher than 1.000 indicates a high degree of variance within the distribution. In this case, only utilization displays a variability coefficient higher than 1.000; therefore, the consolidated score result is more sensitive to equal swings in utilization value when compared with the other metrics.

#### Metric conversion example

Here we give a simple numerical example of how the metric is converted into an index number. Assume that the weighted average facility age metric for a consolidation project equals 59.5 years. Assume also that the average of the facility age metrics for all the baseline demolition projects is 57.4 years and that the standard deviation for this sample of metrics is 20.6. The index value for the consolidation project equals the cumulative distribution of a normal distribution with mean 57.4 and standard deviation 20.6 evaluated at 59.5. This equals 0.541, which means that if one were to pick another facility age metric at random, there is a 54-percent chance that the random number would be lower than 59.5 years. Therefore, by this methodology, the metric is transformed into a standard index value that shows the size of the metric in probability terms.

Note that since the mean for both FROI and footprint reduction were both close to zero, as shown in figures 1 and 2, we had to utilize the natural log of the raw score to achieve a better normalization curve.

Figure 1. Normalization table FROI distribution





Figure 2. Normalization table footprint reduction distribution

When we use the natural log function to convert the raw scores, a value less than one will result in a negative result. This only happens with FROI as several projects had a payback of less than a year. The negative scores do not bother the normalization because we calculate the area under the curve to obtain the result.

Figures 3 through 8 provide distribution histograms for each of the metrics within the sample set.



### Figure 3. Normalization table FROI natural log distribution



Figure 4. Normalization table footprint reduction natural log distribution



Figure 6. Normalization table utilization improvement distribution



Figure 8. Normalization table facility age distribution

Using these normalization curves allows us to convert the raw scores into compatable normalized scores between zero and one. Since we want the measure of positiveness to be 1.0, we take the inverse area measure for FROI, mission dependency, and condition rating so that they are consistent with the other benefit measures. We can then consolidate these measures into one overall score with user-provided factor weights.

The distributional assumptions and baseline data show one limitation of this approach. The mission and condition metrics are necessarily constrained to values between 0 and 100, and the utilization metric is constrained between 0 and 1. As previously mentioned, the normal distribution allows for a full range of values, so the actual range of the metrics and the normal distribution range do not match exactly. However, one feature of the normal distribution is that the probability of any value more than three standard deviations away from the mean is so small as to be trivial for practical purposes. The limitation of our method is that fitting a normal distribution to these baseline metrics produces distributions where there is some non-trivial probability outside the range of the metrics. For example, the baseline mission metric has a mean of 41.6 and standard deviation 25.4. Based on these values, the normal distribution assumptions places non-trivial probability on the range [-34.6, 117.8]. Since the lowest raw value possible is zero, the net effect is a reduction of the benefit score range from [0, 1] to [0, 0.9494]. If the mean becomes higher and/or the standard deviation tighter with the addition of new projects to the normalization table, this benefit score truncation effect goes away.

This limitation could be relaxed by assuming a different distribution for these metrics. However, we feel that the normal distribution assumption is the practical choice in this case because choosing another distribution with truncation would greatly complicate the normalization process without providing many benefits. For the condition and mission metrics, three standard deviations away from the mean does not extend very far beyond the [0, 100] range. Therefore, a different distributional assumption would not drastically change any results.
# **Programming tool structure**

Each consolidation project candidate should be evaluated with a separate algorithm/worksheet so that it can be linked to the project DD Form 1391 scope of work and cost estimate. In addition, each metric should be calculated on a separate worksheet and linked to an overall summary worksheet. This will help provide the programming tool with the following attributes: clarity of metric evaluation, completeness in necessary evaluation data, and simplicity in composite score calculation.

## **Model framework**

We use Microsoft Excel workbooks to structure the programming tool and standardize the formatting as much as possible in order to minimize adjustments to the worksheet. Figure 9 provides a concept flow diagram of how the different elements of the project evaluation link together.

#### Figure 9. Project worksheet layout



The necessary facility evaluation information is extracted from the project data worksheet, which feeds the six evaluation factor worksheets. The individual benefit scores are automatically transferred to the summary sheet, which applies the user-supplied factor weighting in order to generate a ROI composite score. A hyperlink on the summary sheet quickly opens the project DD Form 1391 scope of work for reference. The normalization worksheet provides the mean and standard deviation from previous projects to each of the factor sheets in order to index the raw factor benefit scores into an index that is compatible with the other factor indexes. Finally, a documentation worksheet contains the model version and information sources.

## Worksheets

To evaluate the model we chose special project RM09-2831, "Consolidation to M207 and demolition," which was submitted by Naval Station Guantanamo Bay, Cuba. The first worksheet in the model is the summary worksheet. Figure 10 shows an example of this sheet.

Figure 10. cROI programming tool-project summary sheet

| /M CYCLE:<br>OGRAMMED FY:                                                                                    | 2014<br>2014                                                    |                                            |             | DATA BASELINE FY:                                                                        | 2010                                                                |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|-------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                                                                                                              | PROJECT DATA S                                                  | SUMMARY                                    |             | INSTAL                                                                                   | LATION DATA SUMMARY                                                 |
| PROJECT TYPE:<br>PROJECT NUMBER:<br>PROJECT TITLE:<br>PRIMARY CAT CODE:<br>391 DATE:<br>PROJECT AMOUNT(\$K): | RM<br>RM09-2831<br>CONSOLIDATI<br>61010<br>6/12/2009<br>\$4,461 | ON TO M207 AND DEMO                        | lition      | PROJECT UIC:<br>PROJECT LOCATION:<br>PROJECT SITE ID:<br>TOTAL FACILITIES:<br>TOTAL PRV: | N60514<br>NS GUANTANAMO BAY CUBA<br>138<br>2,862<br>\$3,053,979,705 |
| ACILITY IMPACT:<br>IUMBER:<br>PROJECT CWE(\$K):<br>PRV(\$K):                                                 | DE<br>13<br>\$970<br>\$22,098                                   | RM NF<br>1 0<br>\$3,391 \$0<br>\$9,872 \$0 |             | AVERAGE CONDTION RATING:<br>AVERAGE AGE:<br>AREA COST FACTOR:<br>TOTAL SFE:              | 81.1<br>38.0<br>1.55<br>9,342,145                                   |
| LINK TO DD1391<br>RM09-2831                                                                                  |                                                                 |                                            |             | TOTAL ANNUAL BOS:<br>TOTAL FSM ST RQMT:<br>TOTAL FMM FM RQMT:                            | \$51,691,900<br>\$55,889,725<br>\$44,995,098                        |
| .IFE CYCLE COST RETURN:<br>'ROI less than or equal to 6.0 years)                                             | 4.4                                                             |                                            |             |                                                                                          |                                                                     |
| Financial                                                                                                    | Footprint                                                       | Mission                                    | Utilization | Condition Age                                                                            |                                                                     |
| 0.5320                                                                                                       | 0.8510                                                          | 0.1305                                     | 0.4579      | 0.2221 0.5436                                                                            |                                                                     |
| Veights (%) 49% +                                                                                            | 35%                                                             | + 5%                                       | 0%          | + 11% + 0%                                                                               | = 100%                                                              |
| ETURN ON INVESTMENT COM                                                                                      | POSITE SCORE:                                                   | 0.5                                        | 396         |                                                                                          |                                                                     |
|                                                                                                              |                                                                 |                                            |             |                                                                                          |                                                                     |

Figure 11 shows the first factor benefit score evaluation: FROI.

|                                                                                                                                                                                                                                                                                                                                       |                                                                                                            |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                                        |       |                                      |                    | UNC             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------------------------|--------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                       | / N46                                                                                                      | CONSOLID                                                                                                                                  | ATION RETU                                                                                                                                                         | RN ON INVE                                                                                                                                                             | стме  | NT (cROI) PRC                        | GRAMMING T         | OOL - FINANCIAL |
|                                                                                                                                                                                                                                                                                                                                       |                                                                                                            |                                                                                                                                           |                                                                                                                                                                    |                                                                                                                                                                        |       |                                      |                    |                 |
| TYPE FAC ID                                                                                                                                                                                                                                                                                                                           | FAC NO                                                                                                     | ANNUAL ST                                                                                                                                 | ANNUAL FM                                                                                                                                                          | ANNUAL BOS                                                                                                                                                             |       | ANNUAL ST (NF)                       | ANNUAL FM (NF)     | ANNUAL BOS (NF) |
| TYPE FAC ID   DE NFA100001032125   DE NFA100001032125   DE NFA100001032125   DE NFA100001032125   DE NFA100001032125   DE NFA100001045764   DE NFA100001045764   DE NFA100001038039   DE NFA100001038310   DE NFA100001038310   DE NFA10000103733   DE NFA100001030730   DE NFA100001030736   DE NFA100001030766   DE NFA100001031867 | PAC NO<br>1111<br>AV79<br>191<br>2164<br>M129<br>2132<br>2022<br>M222<br>190<br>865<br>AV81<br>M202<br>760 | ANNUAL S1<br>S34.874<br>S12.449<br>S2.054<br>S32.287<br>S17.294<br>S5.640<br>S11.710<br>S2.054<br>S9.59<br>S96.275<br>S14,180<br>S114.846 | Annoval FM<br>\$11,498<br>\$8,903<br>\$15,535<br>\$25,960<br>\$10,456<br>\$5,935<br>\$4,725<br>\$12,221<br>\$1,535<br>\$7,122<br>\$57,958<br>\$11,620<br>\$111,652 | ANNUAL BOS<br>\$19,530<br>\$18,110<br>\$3,093<br>\$48,179<br>\$33,349<br>\$12,074<br>\$9,998<br>\$26,6246<br>\$3,093<br>\$14,488<br>\$116,415<br>\$22,829<br>\$266,382 |       | ANNUAL SI (NF)                       | ANNUAL FM (NF)     | ANNUAL BOS (NF) |
| CALCULATIONS                                                                                                                                                                                                                                                                                                                          | Totals (DE):<br>Less totals (NF):<br>Totals:<br>Program level:<br>Annual reduction:                        | \$355.922<br>\$0<br>\$355.922<br>80%<br>\$284,738                                                                                         | \$279,020<br>\$0<br>\$279,020<br>50%<br>\$139,510                                                                                                                  | \$593,787<br>\$0<br>\$593,787<br>100%<br>\$593,787                                                                                                                     | =     | Discount Rate<br>3.1%<br>\$1,018,035 | Lower              | IS BETTER       |
| NPV = -\$4,461,000<br>(5 years)                                                                                                                                                                                                                                                                                                       | +                                                                                                          | \$1,300,301                                                                                                                               | \$637,094                                                                                                                                                          | \$2,711,623                                                                                                                                                            | =     | \$188,018                            | -3 -1              | 1 3 5           |
| RESULTS                                                                                                                                                                                                                                                                                                                               |                                                                                                            | Financial ROI                                                                                                                             |                                                                                                                                                                    | 4.4                                                                                                                                                                    | years |                                      | NORMAL DISTRIB     | UTION INDEXING  |
|                                                                                                                                                                                                                                                                                                                                       |                                                                                                            | Cumulative Proba                                                                                                                          | ability                                                                                                                                                            | 0.4680                                                                                                                                                                 |       | NATURAL LOG<br>1.477                 | Mean:              | 1.560           |
| FINANCIAL BENEFIT SCORE:                                                                                                                                                                                                                                                                                                              |                                                                                                            | 0.5320                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                        |       |                                      | Standard Deviation | n: 1.022        |

Figure 11. cROI programming tool—project financial sheet

Each of the six factor worksheets is divided into inputs, calculations, and results. This sheet calculates both the five-year NPV and the simple return on investment ratio in terms of years to investment recovery. The normalization chart is a visual representation of where the project's FROI value falls in comparison with the mean for past projects included in the normalization table. In this case, a lower value (i.e., shorter ROI) is better. The shaded area is equal to the financial benefit score value. The total area under the normalization curve is equal to one.

| <b>(2)</b>                                                                             | OPNAV                                                                                                                                                                                                        | N46                                                                                                       | CONSOLI                                                                                                                                                                    | DATION RETUR                                                                                                               | N ON II                                                         | IVESTME                                                         | ENT (cRC                                                                                                           | DI) PRO  | GRAMMING TOOL - FOOTPRINT                |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------|
| INPUTS<br>TYPE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE | FAC ID<br>NFA10001032125<br>NFA10001032919<br>NFA1000104754<br>NFA10001040376<br>NFA10001039039<br>NFA10001039039<br>NFA10001039039<br>NFA10001039039<br>NFA10001038049<br>NFA10001038049<br>NFA100001038049 | FAC NO<br>1111<br>AV79<br>91<br>2164<br>M129<br>2132<br>2022<br>M222<br>190<br>865<br>AV81<br>M202<br>760 | PRV x   \$726,820 \$673,999   \$115,120 \$1,793,044   \$1,241,135 \$5449,333   \$372,104 \$976,772   \$115,120 \$539,199   \$4,332,510 \$849,623   \$9,913,700 \$9,913,700 | AREA (DE) AREA (NF)<br>10,516<br>440<br>594<br>4,144<br>960<br>1,920<br>2,142<br>594<br>1,152<br>15,549<br>2,856<br>22,198 | UOM<br>SF<br>SF<br>SF<br>SF<br>SF<br>SF<br>SF<br>SF<br>SF<br>SF | SFE CONV<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | SFE (DE)<br>10,516<br>544<br>4,144<br>3,344<br>9600<br>1,920<br>2,142<br>594<br>1,152<br>15,549<br>2,256<br>22,198 | SFE (NF) |                                          |
| CALCULATIO                                                                             | DNS                                                                                                                                                                                                          |                                                                                                           | Sum of DE SFE<br>Less sum of NF S<br>Net footprint red                                                                                                                     | FE<br>uction                                                                                                               |                                                                 | 67,409<br>0<br>67,409                                           | SFE<br>SFE<br>SFE                                                                                                  |          | HIGHER IS BETTER                         |
| FOOTPRINT                                                                              | BENEFIT SCORE:                                                                                                                                                                                               |                                                                                                           | 0.8510                                                                                                                                                                     |                                                                                                                            |                                                                 | NATURAL L                                                       | .OG                                                                                                                |          | Mean: 9.330<br>Standard Deviation: 1.718 |

Figure 12. cROI programming tool—project footprint reduction

In the past, structure and utility demolitions were not given credit for removal since they were not measured in SF. To address this shortcoming, we introduce the concept of square feet equivalents (SFE). Facilities measured in SF at the host installation have their total SF divided into that year's PRV for those facilities. This conversion ratio is multiplied by the other UOM total PRVs in order to calculate the SFE for each. This allows us to sum the footprint reduction area for all demolished facilities into a total SFE number for evaluation.

The next factor benefit calculation relates to shore footprint reduc-

tion. Figure 12 shows an example of this worksheet.

The next factor worksheet uses the average (weighted by PRV) MDI to assess the mission importance of the facilities being demolished. Figure 13 provides an example of this worksheet.

Figure 13. cROI programming tool-mission importance

|                                                                                        |                                                                                                                                                                                                       |                                                                                                            | _                                                                                                                                                                                    |                                                                              |                   | UNCLASSIFIE                                                            |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------|
| ۲                                                                                      | OPNAV                                                                                                                                                                                                 | N46                                                                                                        | CONSOLIE                                                                                                                                                                             | ATION RETURN ON INVE                                                         | STMENT (CROI) PRO | OGRAMMING TOOL - MISSION                                               |
| INPUTS<br>TYPE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE | FAC ID<br>NFA100001032125<br>NFA100001032125<br>NFA100001045754<br>NFA100001041080<br>NFA1000010403030<br>NFA100001039039<br>NFA100001045763<br>NFA100001045763<br>NFA100001030706<br>NFA100001030706 | FAC NO<br>1111<br>AV79<br>191<br>2164<br>M129<br>2132<br>2022<br>M222<br>190<br>865<br>AV81<br>M202<br>760 | PRV<br>\$726,820<br>\$673,999<br>\$115,120<br>\$1,733,044<br>\$1,241,135<br>\$449,333<br>\$372,104<br>\$976,772<br>\$115,120<br>\$539,199<br>\$4,332,510<br>\$449,623<br>\$9,913,700 | MDI<br>65<br>70<br>11<br>72<br>36<br>50<br>50<br>11<br>17<br>50<br>16<br>100 |                   |                                                                        |
| CALCULATI                                                                              | ONS                                                                                                                                                                                                   | Totals                                                                                                     | 22,098,479<br>PRV Weighted D                                                                                                                                                         | Sum Product PRV and MDI<br>E Average Mission Score                           | 1,550,700,810     | LOWER IS BETTER                                                        |
| RESULTS<br>MISSION BE                                                                  | ENEFIT SCORE:                                                                                                                                                                                         |                                                                                                            | Cumulative Prot                                                                                                                                                                      | ability                                                                      | 0.8695            | NORMAL DISTRIBUTION INDEXING<br>Mean: 41.6<br>Standard Deviation: 25.4 |

The next factor benefit rating sheet, shown in figure 14, reflects a more complicated calculation process. In this case, we need to evalu-

| 51172     |                 |                    |         |                                |          |         |               |           |                    |                                              |               |           |       |
|-----------|-----------------|--------------------|---------|--------------------------------|----------|---------|---------------|-----------|--------------------|----------------------------------------------|---------------|-----------|-------|
|           | OPNAV           | N46                |         | CONSOLI                        | DATION   | IRET    | URN ON INVE   | STMENT (c | ROI) PRO           | GRAMMING                                     | TOOL - U      | TILIZATIO | N     |
| IPUTS     |                 |                    |         |                                |          |         |               |           | -                  |                                              |               |           |       |
| 72377     | FAC ID          | FAC NO<br>1111     | DE      | S726 820                       | 10 516   | SE      | CCN AVAILABLE |           | Data<br>Sum of PPV | Sum of AREA (DE)                             | AVAILABLE     | REDUCTION | RATIO |
| 73020     | NEA100001032125 | AV79               | DE      | \$673,999                      | 1 4 4 0  | SE      | 25,967        | 61010     | \$10 890 472       | 24 340                                       | 197 192       | 24 340    | 0 123 |
| 73077     | NFA100001045754 | 191                | DE      | \$115,120                      | 594      | SF      | 42.833        | 72377     | \$726,820          | 10.516                                       | 23,967        | 10,516    | 0.439 |
| 73010     | NFA100001041080 | 2164               | DE      | \$1,793,044                    | 4,144    | SF      | 0             | 73010     | \$1,793,044        | 4,144                                        | 0             | 0         |       |
| 74044     | NFA100001040376 | M129               | DE      | \$1,241,135                    | 3,344    | SF      | 0             | 73020     | \$1,662,531        | 3,552                                        | 15,957        | 3,552     | 0.223 |
| 73020     | NFA100001039039 | 2132               | DE      | \$449,333                      | 960      | SF      | 15,957        | 73077     | \$230,240          | 1,188                                        | 42,833        | 1,188     | 0.028 |
| 74077     | NFA100001038316 | 2022               | DE      | \$372,104                      | 1,920    | SF      | 26,525        | 74008     | \$849,623          | 2,856                                        | 0             | 0         | 4 000 |
| 61010     | NFA100001038110 | M222               | DE      | \$976,772                      | 2,142    | SF      | 197,192       | 74036     | \$4,332,510        | 15,549                                       | 10,072        | 10,072    | 1.000 |
| 73020     | NEA100001045763 | 190                | DE      | \$115,120                      | 1 152    | SE      | 42,033        | 74044     | \$1,241,135        | 3,344                                        | 26.525        | 1 920     | 0.072 |
| 74036     | NEA100001030706 | AV81               | DE      | \$4,332,510                    | 15 549   | SE      | 10 072        | 14011     | \$572,104          | 1,520                                        | 20,525        | 1,520     | 0.072 |
| 74008     | NFA100001038049 | M202               | DE      | \$849,623                      | 2,856    | SF      | 0             |           |                    |                                              |               |           |       |
| 61010     | NFA100001031867 | 760                | DE      | \$9,913,700                    | 22,198   | SF      | 197,192       |           |                    |                                              |               |           |       |
|           |                 |                    |         |                                |          |         |               |           |                    |                                              |               |           |       |
|           |                 |                    |         |                                |          |         |               |           |                    | HIG                                          | HER IS BETTER |           |       |
|           |                 |                    |         |                                |          |         |               |           |                    | 1.5                                          |               |           | 1     |
| ALCULATIC | INS             | Totals<br>PRV Weig | hted DE | \$22,098,479<br>Average Surpli | Sum Prod | uct PR\ | / and RATIO   | 6,399,057 | 1                  | 1.5<br>1 -<br>0.5<br>-1 0<br>NORMAL DISTRIBU |               | 2         |       |
| ESULTS    |                 |                    |         |                                |          |         |               | 1200      |                    |                                              |               |           |       |

Figure 14. cROI programming tool-utilization improvement

individual facilities.

The demolished facilities have to be organized by CCNs and summed in order to compare with the amount of available space within that CCN at that installation. The raw score is a percentage of total availability within that CCN reduced by the total demolished available footprint. This PRV weighted reduction percentage is then converted to a utilization benefit score. We note that NAVFAC is currently developing a new approach for measuring facility utilization, so this metric is considered temporary until the Navy selects a different methodology.

ate the utilization improvement on the facility CCNs rather than on

The next factor worksheet calculates the facility condition rating weighted by PRV. This is one of the more straightforward calculations; it provides insight into the condition of the demolished facilities prior to disposal. Figure 15 provides an example of this worksheet.

Figure 15. cROI programming tool—condition assessment

|                                                                                             | OPNAV                                                                                                                                                                                                                        | N46                                                                                                        | CONSOLIDATION RETURN ON INVESTMENT (CRC                                                                                                                                                                                               |                                                                |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| NPUTS<br>TYPE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE<br>DE | FAC ID<br>NFA10001032125<br>NFA1000104754<br>NFA1000104754<br>NFA1000104076<br>NFA10001040376<br>NFA10001038310<br>NFA10001038110<br>NFA10001030733<br>NFA10001030733<br>NFA10000103074<br>NFA10000103045<br>NFA100001031867 | FAC NO<br>1111<br>AV79<br>191<br>2164<br>M129<br>2132<br>2022<br>M222<br>190<br>865<br>AV81<br>M202<br>760 | PRV CND SCORE   \$7726,620 67.0   \$673,999 62.0   \$115,120 100.0   \$1,793,044 81.0   \$1,241,135 66.0   \$449,333 59.0   \$372,104 70.0   \$976,772 61.0   \$115,120 100.0   \$533,199 54.0   \$43,332,510 70.0   \$9,913,700 91.0 |                                                                |
| ALCULATIC                                                                                   | DNS                                                                                                                                                                                                                          | Totals                                                                                                     | 22,098,479 Sum Product PRV and CND 1,745,964,500                                                                                                                                                                                      | Lower is Better                                                |
| ESULTS                                                                                      |                                                                                                                                                                                                                              |                                                                                                            | PRV Weighted DE Average Condition Score 79.1                                                                                                                                                                                          | 0 0 50 100 150<br>0 NORMAL DISTRIBUTION INDEXING<br>Mean: 64.8 |
|                                                                                             | BENEFIT SCORE:                                                                                                                                                                                                               |                                                                                                            | 0.2221                                                                                                                                                                                                                                | Standard Deviation: 18.5                                       |



The next worksheet contains the facility data that were used as inputs for the factor benefit worksheets. Figure 17 provides an example of this worksheet. It lists all facilities affected by the consolidation project and captures the relevant information for the workbook.

| ۲                      | (            | DPI  | NA۱    | / N4   | 6                              | CONSOL          | IDATIC             | NRET                                  | JRN OI         | N INVE                           | STMEN       | IT (cR | OI) PF       | ROGR          | AMMIN          | <b>д</b> то  | OL - D                 | ATA                 |                     |               |               |               |           |           |           |     |     |     |     |               |
|------------------------|--------------|------|--------|--------|--------------------------------|-----------------|--------------------|---------------------------------------|----------------|----------------------------------|-------------|--------|--------------|---------------|----------------|--------------|------------------------|---------------------|---------------------|---------------|---------------|---------------|-----------|-----------|-----------|-----|-----|-----|-----|---------------|
| UNIT PROJECT<br>NUMBER | FUND<br>Type | FY   | RPSUID | AUIC   | ACTIVITY<br>NAME               | FACILITY ID     | FACILITY<br>NUMBER | FACILITY<br>NAME                      | PRIMARY<br>CCN | SHORE<br>CAPABIL<br>ITY AREA     | PRV         | UOM    | QUANT<br>ITY | SFE<br>FACTOR | CCN<br>SURPLUS | WORK<br>TYPE | FAC NF<br>CWE<br>(\$K) | FAC RM<br>CWE (\$K) | FAC DE<br>CWE (\$K) | FAC NF<br>UOM | FAC RM<br>UOM | FAC DE<br>UOM | FSM REQ   | FMM REQ   | BOS REQ   | MDI | CND | CFG | САР | YEAR<br>BUILT |
| 460514-RM09-2831       | DE           | 2012 | 138    | N60514 | NS<br>GLIANTANAMO<br>BA'Y CUBA | NFA100001032125 | 1111               | BOQ<br>STORAGE<br>BUILDING            | 72377          | SALOR<br>AND<br>FAMLY<br>SUPPORT | \$726,820   | SF     | 10,516       | 1.00          | 23,967         | DE           | \$0                    | \$0                 | \$32                | 0             | 0             | 10,516        | \$34,874  | \$11,498  | \$19,530  | 55  | 67  | 100 | 100 | 1954          |
| 60514-RM09-2831        | DE           | 2012 | 138    | N60514 | NS<br>GUANTANAMO<br>BA'Y CUBA  | NFA100001032919 | AV79               | SECURITY<br>DET.<br>AUGMENT<br>BLDG.  | 73020          | BASE<br>SUPPORT                  | \$673,999   | SF     | 1,440        | 1.00          | 15,957         | DE           | \$0                    | \$0                 | \$30                | 0             | 0             | 1,440         | \$12,449  | \$8,903   | \$18,110  | 70  | 62  | 71  | 89  | 1942          |
| 160514-RM09-2831       | DE           | 2012 | 138    | N60514 | NS<br>GUANTANAMO<br>BAY CUBA   | NFA100001045754 | 191                | GENERAL<br>PURPOSE<br>WH MA191        | 73077          | BASE<br>SUPPORT                  | \$115,120   | SF     | 594          | 1.00          | 42,833         | DE           | \$0                    | \$0                 | \$5                 | 0             | 0             | 594           | \$2,054   | \$1,535   | \$3,093   | 11  | 100 | 100 | 100 | 1943          |
| 460514-RM09-2831       | DE           | 2012 | 138    | N60514 | NS<br>GUANTANAMO<br>BA'Y CUBA  | NFA100001041080 | 2164               | FIRE DEPT<br>ADMIN /<br>RED<br>CROSS  | 73010          | BASE<br>SUPPORT                  | \$1,793,044 | SF     | 4,144        | 1.00          | 0              | DE           | \$0                    | \$0                 | \$79                | 0             | 0             | 4,144         | \$23,287  | \$25,960  | \$48,179  | 72  | 81  | 16  | 93  | 1991          |
| 460514-RM09-2831       | DE           | 2012 | 138    | N60514 | NS<br>GUANTANAMO<br>BA'Y CUBA  | NFA100001040376 | M129               | FITNESS<br>CENTER                     | 74044          | SALOR<br>AND<br>FAMLY<br>SUPPORT | \$1,241,135 | SF     | 3,344        | 1.00          | 0              | DE           | \$0                    | \$0                 | \$54                | 0             | 0             | 3,344         | \$17,294  | \$18,456  | \$33,349  | 36  | 66  | 64  | 37  | 1986          |
| 160514-RM09-2631       | DE           | 2012 | 138    | N60514 | NS<br>GUANTANAMO<br>BAY CUBA   | NFA100001039039 | 2132               | SECURITY<br>DET.<br>ADMIN.            | 73020          | BASE<br>SUPPORT                  | \$449,333   | SF     | 960          | 1.00          | 15,957         | DE           | \$0                    | \$0                 | \$20                | 0             | 0             | 960           | \$8,299   | \$5,935   | \$12,074  | 17  | 59  | 100 | 89  | 1982          |
| 460514-RM09-2831       | DE           | 2012 | 138    | N60514 | NS<br>GUANTANAMO<br>BA'Y CUBA  | NFA100001038316 | 2022               | STORAGE<br>BUILDING                   | 74077          | SALOR<br>AND<br>FAMLY<br>SUPPORT | \$372,104   | SF     | 1,920        | 1.00          | 26,525         | DE           | \$0                    | \$0                 | \$16                | 0             | 0             | 1,920         | \$6,640   | \$4,725   | \$9,998   | 0   | 70  | 100 | 100 | 1972          |
| 160514-RM09-2831       | DE           | 2012 | 138    | N60514 | NS<br>GUANTANAMO<br>BAY CUBA   | NFA100001038110 | M222               | PENTAD<br>OPERATIO<br>NS              | 61010          | BASE<br>SUPPORT                  | \$976,772   | SF     | 2,142        | 1.00          | 197,192        | DE           | \$0                    | \$0                 | \$43                | 0             | 0             | 2,142         | \$11,710  | \$12,221  | \$26,246  | 50  | 61  | 100 | 100 | 1941          |
| N60514-RM09-2631       | DE           | 2012 | 138    | N60514 | NS<br>GLIANTANAMO<br>BAY CUBA  | NFA100001045763 | 190                | GENERAL<br>PURPOSE<br>WH MA190        | 73077          | BASE<br>SUPPORT                  | \$115,120   | SF     | 594          | 1.00          | 42,833         | DE           | \$0                    | \$0                 | \$5                 | 0             | 0             | 594           | \$2,054   | \$1,535   | \$3,093   | 11  | 100 | 100 | 100 | 1943          |
| N60514-RM09-2831       | DE           | 2012 | 138    | N60514 | NS<br>GLIANTANAMO<br>BAY CUBA  | NFA100001030733 | 865                | SECURITY<br>FORCE<br>BLDG.            | 73020          | BASE<br>SUPPORT                  | \$539,199   | SF     | 1,152        | 1.00          | 15,957         | DE           | \$0                    | \$0                 | \$24                | 0             | 0             | 1,152         | \$9,959   | \$7,122   | \$14,488  | 17  | 54  | 100 | 89  | 1943          |
| N60514-RM09-2831       | DE           | 2012 | 138    | N60514 | NS<br>GUANTANAMO<br>BA'Y CUBA  | NFA100001030706 | AV81               | HOBBY<br>SHOP<br>ARTS &<br>CRAFTS     | 74036          | SALOR<br>AND<br>FAMLY<br>SUPPORT | \$4,332,510 | SF     | 15,549       | 1.00          | 10,072         | DE           | \$0                    | \$0                 | \$190               | 0             | 0             | 15,549        | \$98,275  | \$57,958  | \$116,415 | 50  | 70  | 100 | 100 | 1941          |
| N60514-RM09-2831       | DE           | 2012 | 138    | N60514 | NS<br>GUANTANAMO<br>BA'Y CUBA  | NFA100001038049 | M202               | EXCHANGE<br>SERVICE<br>OUTLETS<br>(Ba | 74008          | SALOR<br>AND<br>FAMLY<br>SUPPORT | \$849,623   | SF     | 2,856        | 1.00          | 0              | DE           | \$0                    | \$0                 | \$37                | 0             | 0             | 2,856         | \$14,180  | \$11,620  | \$22,829  | 16  | 69  | 100 | 23  | 1941          |
| 460514-RM09-2831       | DE           | 2012 | 138    | N60514 | NS<br>GUANTANAMO<br>BAY CUBA   | NFA100001031867 | 760                | NAVSTA<br>LEGAL<br>BUILDING           | 61010          | BASE<br>SUPPORT                  | \$9,913,700 | SF     | 22,198       | 1.00          | 197,192        | DE           | \$0                    | \$0                 | \$435               | 0             | 0             | 22,198        | \$114,846 | \$111,552 | \$266,382 | 100 | 91  | 96  | 100 | 1943          |
| 160514-RM09-2831       | DE           | 2012 | 138    | N60514 | NS<br>GUANTANAMO<br>BAY CUBA   | NFA100001038076 | M207               | CLOSE<br>BATTLE<br>TRANER             | 61010          | BASE<br>SUPPORT                  | \$9,872,106 | SF     | 22,534       | 1.00          | 197,192        | RM           | \$0                    | \$3,491             | \$0                 | 0             | 25,146        | 0             | \$102,972 | \$131,369 | \$265,264 | 68  | 69  | 100 | 100 | 1941          |

Figure 17. cROI programming tool-facilities data file

The final two worksheets are reference worksheets that do not have to be edited once they are set for the year. The first is the normalization table, which includes the data from previously completed demolition projects. This information allows us to calculate a normal distribution curve and normalize the new project raw values. Figure 18 is a screenshot of this worksheet. The worksheet can be expanded each year to include new executed projects.

|      |        |            |                                                      |                               |          |                    |                          |                                         |        |             | UNC       | LASSIFIED      |
|------|--------|------------|------------------------------------------------------|-------------------------------|----------|--------------------|--------------------------|-----------------------------------------|--------|-------------|-----------|----------------|
| C    | 9      | OPN        | IAV N46                                              | CONSOLIDATION RETUR           | RN ON IN | VESTME             | NT (cR                   | OI) PROGRA                              | MMING  | TOOL - N    | ORMALIZ   |                |
|      |        |            |                                                      | MEAN                          |          |                    | 1.560                    | 9.330                                   | 41.621 | 0.326       | 64.838    | 57.385         |
|      |        |            |                                                      | STANDARD DEVIATION            |          |                    | 1.022                    | 1.718                                   | 25.400 | 0.344       | 18.523    | 20.550         |
| FY   | UIC    | PROJECT NO | PROJECT TITLE                                        | PROJECT LOCATION              | RPSUID   | TOTAL CWE<br>(\$K) | FROI<br>(NATURAL<br>LOG) | FOOTPRINT<br>REDUCTION<br>(NATURAL LOG) | MDI    | UTILIZATION | CONDITION | AGE<br>(YEARS) |
| 2009 | N00128 | DE08-0217  | DEMOLISH BUILDING 51                                 | NAVSTA GREAT LAKES IL         | 194      | \$222              | 1.492                    | 9.709                                   | 34.0   | 1.000       | 54.0      | 92.0           |
| 2009 | N00129 | DE08-0391  | DEMOLITION IN SUPPORT OF NEW COMMISSARY              | NAVSUBASE NEW LONDON CT       | 153      | \$1,777            | -1.281                   | 9.083                                   | 6.0    |             | 89.5      | 81.3           |
| 2009 | N00206 | DE08-0003  | DEMOLISH BUILDINGS 37, 89, 122, 159, 418, & 902      | NAS JRB NEW ORLEANS LA        | 141      | \$481              | 0.939                    | 9.798                                   | 31.6   | 0.279       | 83.7      | 37.0           |
| 2009 | N00207 | DE09-0001  | DEMOLISH VARIOUS FACILITIES                          | NAS JACKSONVILLE FL           | 168      | \$4,119            | 3.017                    | 9.904                                   | 21.1   | 0.003       | 72.6      | 67.4           |
| 2009 | N00245 | DE08-0140  | DEMOLISH TEST BUILDING, POST OFFICE, AND DIVERS SHOP | NAVSTA SAN DIEGO CA           | 181      | \$731              | 0.893                    | 10.581                                  | 55.3   | 0.066       | 73.5      | 48.7           |
| 2009 | N00245 | DE08-0141  | DEMOLISH DDDC WAREHOUSE B-3302                       | NAVSTA SAN DIEGO CA           | 181      | \$2,106            | 1.759                    | 11.112                                  |        | 0.874       |           | 27.0           |
| 2009 | N00245 | DE08-0182  | DEMOLISH BLDGS 3053, 3591, AND 3592                  | NAVSTA SAN DIEGO CA           | 181      | \$345              | 1.767                    | 9.059                                   | 54.5   | 0.423       | 63.0      | 40.7           |
| 2009 | N00245 | DE08-0183  | DEMOLISH BLDGS 3368, 3370, AND 3603                  | NAVSTA SAN DIEGO CA           | 181      | \$588              | 2.358                    | 9.132                                   | 35.9   | 0.736       | 57.1      | 22.0           |
| 2009 | N00245 | DE09-0207  | DEMOLISH BUILDING 3493                               | NAVSTA SAN DIEGO CA           | 181      | \$33               | 2.086                    | 6.286                                   | 60.0   | 0.000       | 84.0      | 15.0           |
| 2009 | N00245 | DE09-0208  | DEMOLISH BUILDING 88                                 | NAVSTA SAN DIEGO CA           | 181      | \$833              | 1.858                    | 9.711                                   | 68.0   | 0.000       | 69.0      | 66.0           |
| 2009 | N00245 | DE09-0213  | DEMOLISH PIER 14                                     | NAVSTA SAN DIEGO CA           | 181      | \$3,480            | 2.310                    | 9.172                                   | 12.0   | 0.000       | 45.0      | 63.0           |
| 2009 | N00246 | DE07-0001  | DEMOLISH 8 FACILITIES AND CONSOLIDATE FUNCTIONS      | NAS NORTH ISLAND SAN DIEGO CA | 180      | \$2,292            | 1.054                    | 11.458                                  | 66.7   | 0.286       | 77.7      | 70.3           |
| 2009 | N00620 | DE02-0102  | DEMOLISH VARIOUS BUILDINGS NWSTF BOARDMAN, OR        | NAS WHIDBEY ISLAND WA         | 1015     | \$489              | 1.393                    | 9.457                                   | 43.5   | 0.602       | 62.4      | 53.5           |
| 2009 | N00620 | DE04-0101  | DEMOLISH RADIO TOWER AND EQUIPMENT                   | NAS WHIDBEY ISLAND WA         | 1017     | \$178              | 2.512                    | 7.511                                   | 4.7    | 0.078       | 65.7      | 26.0           |
| 2009 | N00620 | DE09-1119  | DEMOLISH VARIOUS BUILDINGS                           | NAS WHIDBEY ISLAND WA         | 193      | \$438              | 1.772                    | 9.088                                   | 27.9   | 0.571       | 67.9      | 49.3           |
| 2009 | N00620 | DE09-1186  | DEMOLISH SECURITY BUILDINGS AND CONSOLIDATE          | NAS WHIDBEY ISLAND WA         | 193      | \$3,170            | 2.686                    | 9.747                                   | 82.2   | 0.963       | 69.4      | 58.4           |
| 2009 | N00620 | DE09-2096  | DEMOLISH 17A & 17 (PORTION OF NEX)                   | NAS WHIDBEY ISLAND WA         | 290      | \$209              | 1.679                    | 8.266                                   | 69.0   | 0.217       | 64.0      | 52.8           |
| 2009 | N0428A | DE07-0061  | DEMOLISH 19 BUILDINGS (NRC SOLOMONS)                 | NAS PATUXENT RIVER MD         | 907      | \$1,093            | 2.201                    | 9.850                                   |        | 0.000       | 63.9      | 62.2           |
| 2009 | N31188 | DE09-0501  | DEMOLISH BUILDING 88A                                | NGSA SUGAR GROVE WV           | 173      | \$38               | 3.175                    | 5.298                                   |        |             | 78.0      | 21.0           |
| 2009 | N32411 | DE08-0329  | DEMOLISH BUILDINGS 85 CHI AND 1931 CP                | NAVSTA NEWPORT RI             | 200      | \$673              | 0.488                    | 10.345                                  | 20.4   | 0.305       | 62.6      | 83.7           |
| 2009 | N32411 | DE09-0103  | DEMOLISH ABANDONED STEAM LINES                       | NAVSTA NEWPORT RI             | 200      | \$793              |                          |                                         |        |             |           |                |
| 2009 | N32414 | DE08-0190  | DEMOLISH VARIOUS BUILDINGS (PNY-ANNEX)               | NAVSUPPACT MECHANICSBURG PA   | 972      | \$2,100            | 0.399                    | 12.083                                  | 28.0   | 0.390       | 54.0      | 67.3           |
| 2009 | N47609 | DE05-0001  | DEMOLISH GROVES SCHOOL                               | NAWS CHINA LAKE CA            | 201      | \$809              | 1.026                    | 9.992                                   |        | 0.000       | 63.6      | 55.9           |
| 2009 | N57095 | DE08-0388  | PARTIAL DEMOLITION TO NH-18                          | NSA NORFOLK VA                | 161      | \$682              | 1.015                    | 7.842                                   | 41.0   | 0.000       | 75.0      | 42.0           |
| 2009 | N60042 | DE09-0244  | DEMOLISH BUILDING 409                                | NAF EL CENTRO CA              | 174      | \$1,100            | 0.929                    | 10.276                                  | 47.0   | 0.000       | 58.0      | 64.0           |
| 2009 | N60042 | DE09-0245  | DEMOLITION OF STORAGE WAREHOUSE                      | NAF EL CENTRO CA              | 174      | \$403              | 2.747                    | 7.601                                   |        | 0.190       | 58.0      | 63.0           |
| 2009 | N60241 | DE05-0001  | DEMOLISH BUILDINGS 2700 AND 3720                     | NAS KINGSVILLE TX             | 205      | \$2,456            | 1.545                    | 10.817                                  | 23.2   | 0.842       | 93.8      | 50.1           |
| 2009 | N61008 | DE09-1228  | DEMOLISH OLD BUNKERS                                 | NSA PANAMA CITY FL            | 257      | \$540              | 2.772                    | 7.665                                   | 19.8   | 0.399       | 69.1      | 60.5           |
| 2009 | N61014 | DE09-0201  | DEMOLISH/CONSOLIDATE B351, B428, AND B349            | NAVSUPPDET MONTEREY CA        | 258      | \$543              | 2.005                    | 8.672                                   | 44.7   | 0.000       | 72.9      | 21.4           |
| 2009 | N61014 | DE09-3013  | DEMOLISH BUILDING 249                                | NAVSUPPDET MONTEREY CA        | 509      | \$40               | 2.044                    | 5.991                                   |        | 0.000       | 78.0      | 57.0           |
| 2009 | N61018 | DE09-3277  | DEMOLISH MINEFILL BUILDINGS & BERM                   | NSA CRANE IN                  | 246      | \$1,700            | 2.699                    | 9.257                                   | 12.0   | 0.062       | 84.0      | 66.6           |

Figure 18. cROI programming tool—normalization table

Because we used most of the Navy's FY 2009 and FY 2010 demolition projects to populate the initial baseline, we show a shortened version of the large table. The normalization table worksheet contains the control data fields to build the normalization graph indicators that are located on each benefit score worksheet. These tables use the metric mean and standard deviation to build a standardized normalization curve that shows the relationship of the current project metric to the mean. There is one control table for each metric. None of the tables in the normalization worksheet require user input or manipulation after the previous year's project values are appended to the existing list.

The final worksheet is a documentation sheet. It provides reference information to inform the users which version of the model they have and which data sources were used as inputs for this evaluation. Figure 19 provides a sample model documentation sheet.

Figure 19. cROI programming tool-model documentation

| Version:<br>Vate created:<br>Designer:<br>Contact:<br>Changes since initial release:  | 1.0<br>13-Mar-2012<br>Center for Naval Analyses<br>Dr. Burton L. Streicher, PE<br><u>streichb@cna.org</u><br>None | CNA |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----|
| ta version control<br>Project Number:<br>Created by:<br>Date created:<br>Baseline FY: | RM09-2831<br>Dr. Burton L. Streicher, PE<br>13-Mar-2012<br>2010                                                   |     |
| Source data<br>iNFADS<br>FXM:<br>Financial:                                           | EOFY 2010<br>13-3<br>EOFY 2010                                                                                    |     |

A user guide is provided in appendix A, which goes through the steps for updating the model version, completing the worksheet, and evaluating the results. We also developed a field version of this model. That version does not link to the DD Form 1391 project file or include the additional facility demographic information that is related to the installation. Neither the form nor the additional demographic information are essential for calculating the benefit rating. The sponsor's intention is to provide this version of the model to the installations to assist them with development of more robust consolidation projects. Electronic copies of both models are included in appendix B.

### Sample rating

To build and test the cROI model, we used information from consolidation project RM09-2831, "Consolidation to M207 and Demolition," submitted by Naval Station Guantanamo Bay, Cuba. This project proposes to renovate and convert building M207, which formerly supported a close battle trainer, into an administrative office facility. It also proposes consolidating the personnel from 13 smaller facilities; those buildings can then be demolished. The project scope is dated July 12, 2009, and is estimated to cost \$4,461,000.

Table 2 provides the evaluation results for each of the six metrics used to calculate the ROI composite score for the project.

|                       |            |               |        | Benefit      |
|-----------------------|------------|---------------|--------|--------------|
| Metric                | Raw value  | Benefit score | Weight | contribution |
| Financial             | 4.38 years | 0.5320        | 49.4%  | 0.2628       |
| Footprint             | 67,409 SFE | 0.8510        | 34.8%  | 0.2962       |
| Mission               | 70         | 0.1305        | 4.9%   | 0.0064       |
| Utilization           | 29.0%      | 0.4579        | 0%     | 0.0000       |
| Condition             | 79.0       | 0.2221        | 10.9%  | 0.0242       |
| Age                   | 59.6 years | 0.5436        | 0%     | 0.0000       |
| Composite total score |            |               |        | 0.5896       |

Table 2. RM09-2831 project evaluation results

This evaluation indicates that this project is an excellent candidate for programming in FY 2014 as its life-cycle cost return is less than the threshold of 6.0 years for payback. In addition, it has a large footprint reduction amount, an average category surplus reduction, and an average age of facilities demolished. The only areas that should be discussed with the project sponsor are the relatively high MDI and condition rating of the facilities being demolished. This will allow for validation of the MDI and condition rating scores within iNFADS. However, overall this project will compete well for programming because of its above average composite total score. This page intentionally left blank.

# **Multiple project example**

OPNAV N46 gave us a list of 18 candidate consolidation projects (14 special projects and 4 military construction projects) to evaluate using this new tool. Table 3 provides the results of our evaluation. They are listed in order of descending ROI composite scores.

#### Table 3. Multiple project evaluation results

| Project   |                                                              |                                       | Cost     | FROI    | Composite |
|-----------|--------------------------------------------------------------|---------------------------------------|----------|---------|-----------|
| number    | Project title                                                | Location                              | (\$K)    | (years) | score     |
| DE09-2367 | Consolidate B141/156 and demolish B148                       | NAVSUBASE New Lon-<br>don, CT         | \$826    | 1.85    | 0.7413    |
| DE09-2179 | Consolidate bays in B27                                      | NSA Mechanicsburg,<br>PA              | \$5,767  | 5.62    | 0.6030    |
| DE09-1999 | Consolidate and demolish two buildings                       | NAS Lemoore, CA                       | \$1,645  | 5.39    | 0.4616    |
| DE07-0003 | Consolidate fitness facilities & demolish various structures | NAVBASE Ventura<br>County Pt Mugu, CA | \$1,229  | 2.67    | 0.6789    |
| DE07-0100 | Consolidate 8 buildings at<br>Carderock                      | NSA North Potomac,<br>MD              | \$635    | 2.47    | 0.6265    |
| DE09-2411 | Repair B510/B152 & demolish<br>B208                          | NSA Mechanicsburg,<br>PA              | \$4,865  | 6.80    | 0.6089    |
| DE08-0213 | Consolidate B140 & demolish<br>B155 MWR office               | NAVSTA Great Lakes,<br>IL             | \$362    | 2.40    | 0.6082    |
| DE07-0007 | Consolidate EOD into B22<br>and demolish 6 facilities        | NAS Whidbey Island,<br>WA             | \$2,900  | 4.48    | 0.6075    |
| RM09-2831 | Consolidate M207 and demolish 13 facilities                  | NAVSTA Guantanamo<br>Bay, Cuba        | \$4,461  | 4.38    | 0.5896    |
| P807      | TSC applied instruction facil-<br>ity                        | NAVSTA Great Lakes,<br>IL             | \$52,260 | 7.05    | 0.5386    |
| DE01-0012 | Consolidate PSD/NAVPTO/<br>SATO and demolish B92             | NSA Washington, DC                    | \$2,639  | 4.44    | 0.5661    |
| DE09-1940 | Consolidate SWOS trainers<br>B138 & B1164                    | NAVSTA Newport, RI                    | \$1,729  | 5.22    | 0.5152    |
| P622      | Air traffic control facility                                 | NAS Jacksonville, FL                  | \$49,930 | 18.02   | 0.4411    |
| P491      | Combat vehicle maintenance shop                              | NAVBASE Ventura<br>County Pt Mugu, CA | \$27,510 | 36.05   | 0.4304    |

| Project   |                                                     |                             | Cost     | FROI    | Composite |
|-----------|-----------------------------------------------------|-----------------------------|----------|---------|-----------|
| number    | Project title                                       | Location                    | (\$K)    | (years) | score     |
| DE10-0057 | Consolidate fire inspectors and demolish B57        | NSA Washington, DC          | \$792    | 5.24    | 0.4153    |
| P229      | Strategic systems weapons evaluation test           | NAVWPNSTA Seal<br>Beach, CA | \$32,960 | 69.31   | 0.3665    |
| RM10-9009 | Consolidation of aircraft crash rescue and fire HQ  | NAS Key West, FL            | \$10,693 | 21.52   | 0.3466    |
| DE11-7522 | Consolidate MWR admin in rec mall and demolish B352 | CBC Gulfport, MS            | \$2,344  | 23.30   | 0.2094    |

#### Table 3. Multiple project evaluation results

Only 11 of the projects generate a FROI score that is less than the lifecycle cost return hurtle rate of 6.0 years. Of these 11, only project DE10-0057 has a composite score that is below the average mean. The remaining ten projects, valued at \$22.2 million, should form the candidate project pool for selection. Electronic copies of these individual project evaluation worksheets and their corresponding project scope and cost estimate documents are included in appendix B. There are several methods for selecting the optimum projects depending on the amount of funding available to support the program. In the next section, we will discuss some issues related to program evaluation.

# **Process for program evaluation**

At various levels within the Navy, decisions must be made on the allocation of scarce resources. In these decisions, the Navy seeks to allocate the budget imposed by Congress in such a way as to maximize benefits for the United States. One method for making these decisions is to construct a linear combination of several different benefits accruing to each program that gives a single cardinal index of overall benefits to each program. One can then choose the allocation of resources among different programs that maximizes an overall cardinal index of benefits to the Navy.

The advantage of this approach is that, when used at the individual program office, it gives a very quick initial answer to the allocation problem. We applied this selection approach in our multiple project example. The disadvantage of this approach is that it may be an oversimplification of the overall allocation problem since the benefit derived from separate governmental programs cannot always be easily measured using cardinal numbers.<sup>3</sup> In addition, the benefit derived from one program may depend on the level of spending on other programs, making it difficult to compare the benefits derived from different market baskets (combinations) of all governmental programs.

However, the benefits from different budget allocations that stay within the budget constraint can be given an ordinal rank when compared with other budget allocations with pair-wise comparisons by Navy subject matter experts.<sup>4</sup> Given a budget, we need to reveal the preferences of these experts who must choose among the affordable combinations of governmental programs. We discuss how this

<sup>3.</sup> The idea that many problems are too complex to be solved by simple mathematical models has a long history in decision-making. See, for example, the work on bounded rationality by Simon (1957) [2] and Simon (1991) [3].

approach can be applied using the cROI tool generated scores to select which consolidation projects to fund for a given budget.

#### Introduction

The underlying assumption of the revealed preference market basket approach is that the benefit derived from separate governmental programs cannot always be easily measured using cardinal numbers.<sup>5</sup> Even more difficult is measuring and comparing the benefits derived from different market baskets (combinations) of governmental programs.

#### Statement of budget problem: consolidation project selection

The Director, Shore Readiness Division (OPNAV N46) must make recommendations about which consolidation projects to fund. More generally, the director must make facility funding decisions for the Navy as a whole. Relying on the OSF strategy as a link between naval operations and facility condition and size, the Director must choose among a diverse assortment of funding options to determine which options will best achieve the goals of the U. S. Navy and the United States as a whole.

We previously presented a single cardinal index number approach for making such funding decisions using the project scores generated by the cROI tool. We now present another method for refining the single cardinal index number approach to take account of the complexities of the problem not addressed by that approach.

#### A revealed preference and market basket approach

The single index number approach to rank consolidation projects for funding has the following drawbacks:

5. See Trost and Ye (2003) [6] for a further discussion of this problem.

<sup>4.</sup> This is often referred to as the knapsack problem in the decision science literature. For a discussion of the knapsack problem and how to solve it, see Soland (1979) [4] and Steuer (Chapter 13, 1986) [5].

- It relies too heavily on cardinal rather than ordinal simple rank measurements.
- It does not consider complementarities and substitutability among the six criteria. Doing so would allow for the possibility that the whole is greater than the sum of the parts within any one project. A popular term for this concept is synergy. Economists call this concept the complementarity between two separate criteria.
- The cardinal index number approach evaluates each project separately rather than comparing different market basket combinations of projects. Hence, the resulting combination of projects based solely on cROI benefit score magnitude may not be optimal for a given budget. As with different criterion within a project, there may be synergy between two or three different consolidation projects.
- The size of the budget is not explicitly incorporated into the decision process since the size of the budget does not alter the individual ranking of projects.
- The approach assumes that all criteria are measured without error, both in general and within a separate project.

Given these potential shortcomings, we suggest four ways for improving the simple cardinal index number program development approach:

- Use the theory of revealed preference and pair-wise ordinal comparisons to evaluate the benefits of individual projects relative to one another.
- Compare the benefits of different affordable market baskets.
- Base the final decision on the market basket of projects that is optimal for a given budget.
- Assign an accuracy index to each criterion within each project.

## Consolidation project program selection example

We will describe how to implement the first three improvements in a simple example. We use the top ten cROI ranked consolidation projects from our analyses to provide a candidate list of projects for selection.

Let the 10 projects that are considered for funding be denoted by X. Let the subscript i be the ith project, i = 1, 2, ..., 10. We have the cost of each of these projects, denoted P<sub>i</sub>, for the cost of the ith project.

The maintained hypothesis is that the exact benefit the Navy will receive by funding a single project or basket of projects is unknown and is potentially not measurable using ordinal numbers only. Given a budget, denoted B, our goal is to reveal the preferences of those who must choose among the affordable combinations of the ten projects.

For any given market basket of tasks, denoted J(k), it must be true that

$$\sum_{J=1^{j=J(k)}} P_{j(k)} \le B$$

where subscript j(k) is the jth project of the total J(k) projects in the kth market basket.

Suppose there are K different affordable baskets for a given budget B. Our goal is to find the optimal basket,  $k^*$  from all market baskets (choice sets) of k = 1, 2, ..., K.

Table 4 lists the top ten projects, that meet the FROI hurtle rate, in the order they are ranked by the cardinal index number approach.

|      |           |                                                              |                                            | CWE     | FROM | Composite |
|------|-----------|--------------------------------------------------------------|--------------------------------------------|---------|------|-----------|
| Rank | Project#  | Project title                                                | Installation name                          | (\$K)   | FROI | score     |
| 1    | DE09-2367 | Consolidate B141/156 and demolish B148                       | NAVSUBASE New London, CT                   | \$826   | 1.85 | 0.7413    |
| 2    | DE07-0003 | Consolidate fitness facilities & demolish various structures | NAVBASE Ven-<br>tura County Pt<br>Mugu, CA | \$1,229 | 2.67 | 0.6789    |
| 3    | DE07-0100 | Consolidate 8 buildings at Card-<br>erock                    | NSA North Poto-<br>mac, MD                 | \$635   | 2.47 | 0.6265    |
| 4    | DE08-0213 | Consolidate B140 & demolish<br>B155 MWR office               | NAVSTA Great<br>Lakes, IL                  | \$362   | 2.40 | 0.6082    |
| 5    | DE07-0007 | Consolidate EOD into B22 and demolish 6 facilities           | NAS Whidbey<br>Island, WA                  | \$2,900 | 4.48 | 0.6075    |
| 6    | DE09-2179 | Consolidate bays in B27                                      | NSA Mechanics-<br>burg, PA                 | \$5,767 | 5.62 | 0.6030    |
| 7    | RM09-2831 | Consolidate M207 and demol-<br>ish 13 facilities             | NAVSTA Guantan-<br>amo Bay, Cuba           | \$4,461 | 4.38 | 0.5896    |
| 8    | DE01-0012 | Consolidate PSD/NAVPTO/<br>SATO and demolish B92             | NSA Washington,<br>DC                      | \$2,639 | 4.44 | 0.5661    |
| 9    | DE09-1940 | Consolidate SWOS trainers<br>B138 & B1164                    | NAVSTA Newport,<br>RI                      | \$1,729 | 5.22 | 0.5152    |
| 10   | DE09-1999 | Consolidate and demolish two buildings                       | NAS Lemoore, CA                            | \$1,645 | 5.39 | 0.4616    |

Table 4. Top ten consolidation projects as ranked by composite score

Table 5 re-orders these ten projects from least expensive to most expensive.

| Table 5. Top ten consolidation projects in ascending order of co |
|------------------------------------------------------------------|
|------------------------------------------------------------------|

|      |           |                                                |                            | CWE   |      | Composite |
|------|-----------|------------------------------------------------|----------------------------|-------|------|-----------|
| Rank | Project#  | Project title                                  | Installation name          | (\$K) | FROI | score     |
| 1    | DE08-0213 | Consolidate B140 & demolish<br>B155 MWR office | NAVSTA Great<br>Lakes, IL  | \$362 | 2.40 | 0.6082    |
| 2    | DE07-0100 | Consolidate 8 buildings at Carderock           | NSA North Poto-<br>mac, MD | \$635 | 2.47 | 0.6265    |

|      |           |                                                              |                                            | CWE     |      | Composite |
|------|-----------|--------------------------------------------------------------|--------------------------------------------|---------|------|-----------|
| Rank | Project#  | Project title                                                | Installation name                          | (\$K)   | FROI | score     |
| 3    | DE09-2367 | Consolidate B141/156 and demolish B148                       | NAVSUBASE New<br>London, CT                | \$826   | 1.85 | 0.7413    |
| 4    | DE07-0003 | Consolidate fitness facilities & demolish various structures | NAVBASE Ven-<br>tura County Pt<br>Mugu, CA | \$1,229 | 2.67 | 0.6789    |
| 5    | DE09-1999 | Consolidate and demolish two<br>buildings                    | NAS Lemoore, CA                            | \$1,645 | 5.39 | 0.4616    |
| 6    | DE09-1940 | Consolidate SWOS trainers<br>B138 & B1164                    | NAVSTA Newport,<br>RI                      | \$1,729 | 5.22 | 0.5152    |
| 7    | DE01-0012 | Consolidate PSD/NAVPTO/<br>SATO and demolish B92             | NSA Washington,<br>DC                      | \$2,639 | 4.44 | 0.5661    |
| 8    | DE07-0007 | Consolidate EOD into B22 and demolish 6 facilities           | NAS Whidbey<br>Island, WA                  | \$2,900 | 4.48 | 0.6075    |
| 9    | RM09-2831 | Consolidate M207 and demol-<br>ish 13 facilities             | NAVSTA Guantan-<br>amo Bay, Cuba           | \$4,461 | 4.38 | 0.5896    |
| 10   | DE09-2179 | Consolidate bays in B27                                      | NSA Mechanics-<br>burg, PA                 | \$5,767 | 5.62 | 0.6030    |

Table 5. Top ten consolidation projects in ascending order of cost

The ranking listed in table 4 has at least two flaws if used solely to select projects for funding. First, looking at table 5, if the program budget were \$1 million, the first two lowest-cost individual projects are affordable. However, in table 4, only the lowest ROI composite score project DE09-2367, "Consolidate building 141/156 and demolish building 148" is affordable with a \$1 million budget. So, this is where Navy subject matter experts need to decide between the affordable combinations of projects versus each of the individual project's cost and ROI composite benefit score. The index number approach gives no clear guidance on how to make this choice. Second, if the budget is \$5 million, only the first four of the ranked projects are affordable. However, if we allow experts to vote on the first four items versus an alternative bundle of the five lowest cost projects at a cost of about \$4.7 million, the experts may well choose the larger bundle of five projects versus the cardinal index number approach of only funding the first four ranked projects.

The example demonstrates that there is really no universal project portfolio, but rather many budget-specific alternative combinations of projects. Using a revealed preferences approach,<sup>6</sup> one can choose which affordable bundle to fund through pairwise comparison of project preferences. Figure 20 gives a process flow chart for applying a revealed preference approach, as discussed in Trost and Ye (2003) [6].

<sup>6.</sup> This basic approach is also used in the Analytical Network Processing (ANP) software, as opposed to the Analytical Hierarchy Processing (AHP) software which takes the cardinal index number approach. See Satty (1994) [7] and Saaty (2005) [8] for a discussion of the AHP and ANP decision-making software, respectively.



Figure 20. Flow chart of revealed preference market basket approach

Finally, a method to implement the fourth recommended improvement is to add an attribute to each criterion within a project that captures the accuracy of how well that criterion is measured. This introduces an important significance variable, which can be assessed when evaluating the cROI benefit scores.

The full portfolio of consolidation projects were not available in time for us to evaluate and demonstrate a revealed preference and market basket approach for populating a budget restrained program selection process. However, we hope the previous limited example and discussion will help guide future utilization of the approach. This page intentionally left blank.

## Recommendations

We have the following recommendations for the Navy to consider when using this new evaluation tool.

#### Better consolidation project identification

The Navy should pursue a process that facilitates identification of greater numbers of better consolidation projects. The success of the consolidation program is primarily dependent on the quality of the projects funded and implemented. This process starts with project development at the base and CNIC region level. The cROI evaluation tool is only helpful if it is used to compare a robust set of projects that in total exceed the consolidation program's budget.

The development of consolidation projects is not an easy process. It often requires working with facility tenants who have had the luxury of extra space or their own dedicated facilities. An effective consolidation project often requires them to move to much smaller spaces and to share facilities with other organizations.

We recommend that N46, CNIC, and NAVFAC work together to develop and publish guidance concerning consolidation project preparation with the goal of generating more worthwhile projects. Identification of a consolidation project should not be a voluntary or optional process when underutilized facilities exist on a base. When better facility utilization information becomes available, as is expected, just providing oversight will become an easier option. However in the interim, greater policy direction and pressure is needed to improve the quality of consolidation project submissions.

#### Leverage OSF strategy for project development

We suggest that the OSF strategy process be leveraged to support more direct development of consolidation projects. The current OSF strategy, as we understand it, does not leverage the involved organization's capabilities to influence the near-term preparation of more consolidation projects. We believe that, because of the organizations involved, the OSF organization could provide an ideal source of direction to the bases and regions concerning consolidation projects. More specific policy direction as part of the OSF strategy may help overcome some of the challenges at the base and region level to be more aggressive in developing consolidation projects.

#### Improve the individual evaluation factor weights

We recommend that the OSF working groups continue to pursue the improvement of the individual evaluation factor weights. The cROI tool output included in this report uses the initial four factor weights provided to us to generate the scores for the 18-project sample set. Both the utilization improvement and facility age evaluation factors were zeroed out. We recommend that the Navy review the project rankings that resulted from those initial factor weights and better align the weights to the overall OSF strategy.

We designed the cROI tool to easily accommodate changes to the factor weights. As the Navy continues to review the weighting options, we recommend that the tool's capability be used to perform sensitivity analyses to determine how various weighting options change the relative scores of the sample projects or new projects that may be identified.

#### Update the cROI tool normalization table

The Navy should update the cROI tool normalization table by appending future projects as they are completed. One of the major enhancements made to the previous dROI tool in the new cROI tool is the use of past approved projects to determine evaluation factor scores. The tool allows those historical data to be updated annually with results from the previous year. With these updates, the tool will better maintain its ability to provide comparative scores for future consolidation projects.

## Revealed preference and market basket programming

We recommend that the Navy include a revealed preference and market basket approach to building annual facility consolidation project programs. This may become a more important option if the number of consolidation projects submitted significantly exceeds the program budget.

If, for example, the financial threshold requirement eliminates enough projects to allow most of the remaining projects to be funded, then using a rank order of cROI project evaluation scores may be sufficient. However, if a number of otherwise worthy projects score below a budget-derived cut line, then the revealed preference and market basket approach might be useful in determining the total group of approved projects that are more beneficial to the Navy than a group determined strictly by their cROI evaluation tool score. This page intentionally left blank.

# Appendix A: cROI user guide

## Background

CNA developed a facility investment consolidation project evaluation tool to evaluate proposed consolidation/demolition projects for programming. This appendix describes how to use the evaluation tool developed in that report.

This cROI tool is based on the research presented in the CNA report, "Consolidation Return on Investment (cROI) Programming Tool: Development and Use." The mathematical model developed in that report is coded into one Microsoft Excel workbook. There are two outputs from this evaluation tool:

- A financial return on investment (FROI) threshold check
- A single consolidated project rating between zero and one

The project evaluation tool is in "20120313 cROI Model Template.xls." The field version of the tool is located in "20120313 cROI Field Model Template.xls."

#### User instructions

The main difference between the models is that the field version does not include installation background information and a link to the project scope document. Although less information is captured for future program reference, it does allow for a simpler calculation of the project benefit score.

#### Completion of cROI project evaluation tool

The cROI programming tool should be used to evaluate new consolidation/demolition projects in the following annual cycle.

- 1. Calculate actual project results from the previous execution year and append to the template normalization project list. Adjust the mean and standard deviation cell ranges for each of the six metrics to include the new projects.
- 2. Update the documentation page in the templates to identify the data sources to be used for this evaluation cycle.
- 3. Release the next cycle project submission call to the field with programming guidance. Include the current year version of the field model as part of the guidance.
- 4. After the submission cut-off date, extract candidate DD Form 1391 project scopes from the electronic project generator (EPG) as pdf files and place them in a data folder labeled "FYXX project vault."
- 5. Create blank cROI worksheets for each project for later evaluation. Populate the data worksheet with the pertinent project facility data by building the facility data table manually using the DD Form 1391 project information and iNFADS extracts.
- 6. Refresh the pivot table on the utilization worksheet to extract the new facility information. There should be one line for each affected facility category code.
- 7. On the summary page, fill in the installation data fields and project specific fields that are highlighted in blue for future reference; note that these are not necessary for the model to calculate the return on investment composite score.
- 8. Link the project DD Form 1391 pdf document from the project vault to the summary page through a reference hyperlink.
- 9. You have now completed the project worksheet and it can be saved and closed. If desired, to organize the project portfolio, the summary scores could be transferred to a master project list in a separate MS Excel worksheet.
- 10. After all the submitted consolidation/demolition projects have been evaluated and completed, the results should be stored for future reference in one data folder with an FYDP project programming master project summary list, a worksheet file for

each project, and the FYXX project vault subfolder containing the project DD Form 1391s.

Appendix A

This page intentionally left blank.

# Appendix B: cROI programming tool electronic files

The Navy consolidation return on investment (cROI) programming tool prototype software model version 1.0 is attached to this report as an electronic Microsoft Excel worksheet. A simplified version 1.01 is also included for installation use in order to help shape future consolidation project submissions. These models were build to support the POM-13 budget development cycle. The models have to be reset with new normalization data in order to support later cycles.

### **File attributes**

File name: 20120313 cROI Model Template.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: cROI Model Template Author: Dr. Burton L. Streicher, PE Size: 524 KB

File name: 20120313 cROI Field Model Template.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: cROI Field Model Template Author: Dr. Burton L. Streicher, PE Size: 521 KB

#### **Project evaluation worksheets**

As part of testing the new evaluation tool, sample project rating worksheets were developed for 18 previously submitted consolidation projects. These sample project evaluations are included in the following electronic files: File name: 20120313cROI Model DE01-12.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE01-12 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 517 KB

File name: 20120313cROI Model DE03-07.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE03-07 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 520 KB

File name: 20120313cROI Model DE007-07.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE007-07 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 520 KB

File name: 20120313cROI Model DE09-1940.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE09-1940 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 517 KB

File name: 20120313cROI Model DE09-1999.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE09-1999 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 517 KB

File name: 20120313cROI Model DE09-2179.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE09-2179 cROI Evaluation
Author: Dr. Burton L. Streicher, PE Size: 517 KB

File name: 20120313cROI Model DE09-2367.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE09-2367 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 517 KB

File name: 20120313cROI Model DE09-2411.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE09-2411 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 517 KB

File name: 20120313cROI Model DE11-7522.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE11-7522 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 516 KB

File name: 20120313cROI Model DE57-10.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE57-10 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 518 KB

File name: 20120313cROI Model DE100-07.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE100-07 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 521 KB

File name: 20120313cROI Model DE0213-08.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project DE213-08 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 517 KB

File name: 20120313cROI Model P229.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project P229 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 517 KB

File name: 20120313cROI Model P491.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project P491 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 525 KB

File name: 20120313cROI Model P622.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project P622 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 522 KB

File name: 20120313cROI Model P807.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project P807 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 521 KB

File name: 20120313cROI Model RM10-9009.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project RM10-9009 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 517 KB File name: 20120313cROI Model RM09-2831.xls File type: MS Excel 97-2003 worksheet Date: 16 March 2012 Title: Project RM09-2831 cROI Evaluation Author: Dr. Burton L. Streicher, PE Size: 524 KB

#### **Project DD Form 1391 documents**

The individual DD Form 1391 project scope and cost estimates for each project are located in the following files and can be opened using the links within the project evaluation worksheets.

File name: N00128-DE08-0213.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 12.5 KB

File name: N00128-P807.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 32.9 KB

File name: N00129-DE09-2367.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 9.5 KB

File name: N00207-P622.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 44.0 KB File name: N00213-RM10-9009.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 22.0 KB

File name: N00620-DE07-0007.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 16.7 KB

File name: N32411-DE09-1940.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 16.5 KB

File name: N32414-DE09-2179.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 10.3 KB

File name: N32414-DE09-2411.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 12.9 KB

File name: N60515-RM09-2831.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 15.0 KB

File name: N61065-P229.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 38.5 KB

File name: N61142-DE01-0012.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 10.2 KB

File name: N61142-DE10-0057.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 12.0 KB

File name: N62604-DE11-7522.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 16.9 KB

File name: N63042-DE09-1999.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 13.8 KB

File name: N68469-DE07-0100.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 12.6 KB

File name: N69232-DE07-0003.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 13.4 KB

File name: N69232-P491.pdf File type: Adobe Acrobat Document Date: 6 October 2011 Title: DD Form 1391 Project Scope Author: Oracle Reports Size: 51.8 KB

## Glossary

## A

| AHP      | Analytical hierarchy processing       |
|----------|---------------------------------------|
| ANP      | Analytical network processing         |
|          |                                       |
| п        |                                       |
| <u>B</u> |                                       |
| BOS      | Base operating support                |
| DOD      | base operating support                |
|          |                                       |
| С        |                                       |
|          |                                       |
| CAP      | Capacity rating                       |
| CCN      | Category code number                  |
| CND      | Condition                             |
| CNIC     | Commander, Navy Installations Command |
| CNO      | Chief of Naval Operations             |
| cROI     | Consolidation return on investment    |
| CWE      | Current working estimate              |
|          | -                                     |

### <u>D</u>

| DE   | Demolition                      |
|------|---------------------------------|
| DOD  | Department of Defense           |
| dROI | Demolition return on investment |

#### <u>E</u>

| EPG | Electronic project generator |
|-----|------------------------------|
| EOD | Explosive ordnance disposal  |

<u>F</u>

| FM                                            | Facilities modernization                                                                                                                                     |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FMM                                           | Facilities modernization model                                                                                                                               |
| FROI                                          | Financial return on investment                                                                                                                               |
| FSM                                           | Facilities sustainment model                                                                                                                                 |
| FXM                                           | Facilities sustainment, modernization, and operation                                                                                                         |
|                                               | models                                                                                                                                                       |
| FY                                            | Fiscal year                                                                                                                                                  |
| <u>G</u>                                      |                                                                                                                                                              |
| H                                             |                                                                                                                                                              |
| Ī                                             |                                                                                                                                                              |
| iNFADS                                        | Internet Naval Facilities Assets Data Store                                                                                                                  |
|                                               |                                                                                                                                                              |
| Ţ                                             |                                                                                                                                                              |
| <u>K</u>                                      |                                                                                                                                                              |
| _                                             |                                                                                                                                                              |
| <u>L</u>                                      |                                                                                                                                                              |
| <u>L</u><br><u>М</u>                          |                                                                                                                                                              |
| <u>L</u><br><u>М</u><br>м                     | Modernization                                                                                                                                                |
| <u>L</u><br><u>М</u><br>м<br>моі              | Modernization<br>Mission dependency index                                                                                                                    |
| L<br>M<br>M<br>MDI<br>MWR                     | Modernization<br>Mission dependency index<br>Morale, welfare, and recreation                                                                                 |
| L<br>M<br>M<br>MDI<br>MWR                     | Modernization<br>Mission dependency index<br>Morale, welfare, and recreation                                                                                 |
| L<br>M<br>M<br>MDI<br>MWR<br>N                | Modernization<br>Mission dependency index<br>Morale, welfare, and recreation                                                                                 |
| L<br>M<br>M<br>MDI<br>MWR<br>N<br>NAVFAC      | Modernization<br>Mission dependency index<br>Morale, welfare, and recreation<br>Naval Facilities Engineering Command                                         |
| L<br>M<br>M<br>MDI<br>MWR<br>NAVFAC<br>NAVFTO | Modernization<br>Mission dependency index<br>Morale, welfare, and recreation<br>Naval Facilities Engineering Command<br>Navy Passenger Transportation Office |

| NF  | New footprint     |
|-----|-------------------|
| NPV | Net present value |

## <u>0</u>

| OPNAV | Office of the Chief of Naval Operations |
|-------|-----------------------------------------|
| OSD   | Office of the Secretary of Defense      |
| OSF   | Optimal Shore Footprint                 |

## <u>P</u>

| PRV | Plant replacement value      |
|-----|------------------------------|
| PSD | Personnel support department |

## <u>R</u>

Q

| R      | Restoration                          |
|--------|--------------------------------------|
| ROI    | Return on investment                 |
| RPSUID | Real property site unique identifier |

## <u>S</u>

| SATO | Scheduled air transportation office |
|------|-------------------------------------|
| SF   | Square feet                         |
| SFE  | Square feet equivalent              |
| ST   | Sustainment                         |
| SWOS | Surface warfare officer's school    |
|      |                                     |

## <u>T</u>

| TSC | Training support center |
|-----|-------------------------|
|     |                         |

## <u>U</u>

UIC Unit identification code

| UOM          | Unit of measure |
|--------------|-----------------|
| $\mathbf{V}$ |                 |
| W            |                 |
| X            |                 |
| Y            |                 |
| <u>Z</u>     |                 |

## References

- Burton L. Streicher and Dan Steeples. Navy Excess Infrastructure: Review, Identify, and Reduce through Improved Demolition Program Processes. CNA Research Memorandum D0020422.A2/ Final. Jul. 2009.
- [2] Herbert A. Simon. *Models of Man.* New York: John Wiley and Sons, 1957.
- [3] Herbert A. Simon. "Bounded Rationality and Organizational Learning." *Organization Science* 2, no. 1, Feb. 1991: 125–134.
- [4] Richard M. Soland. "Multicriteria Optimization: A General Characterization of Efficient Solutions." *Decision Sciences* 10, 1979: 26–38.
- [5] Ralph E. Steuer. *Multiple Criteria Optimization: Theory, Computation, and Application.* New York: John Wiley and Sons, 1986.
- [6] Robert P. Trost and Michael Ye. Choosing R&D Technology Investments. CNA Research Memorandum D0007330.A2/ Final. 2003.
- [7] Thomas L. Saaty. Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process. Pittsburgh: RWS Publications, 1994.
- [8] Thomas L. Saaty. Theory and Applications of the Analytic Network Process: Decision Making with Benefits, Opportunities, Costs, and Risks. Pittsburgh: RWS Publications, 2005.
- [9] *DoD Facilities Pricing Guide for FY 2010.* Department of Defense Unified Facilities Criteria (UFC) 3-701-01. 2010.

This page intentionally left blank.

## List of figures

| Figure 1.  | Normalization table FROI distribution                            | 24 |
|------------|------------------------------------------------------------------|----|
| Figure 2.  | Normalization table footprint reduction distribution             | 25 |
| Figure 3.  | Normalization table FROI natural log distribution .              | 26 |
| Figure 4.  | Normalization table footprint reduction natural log distribution | 27 |
| Figure 5.  | Normalization table MDI distribution                             | 27 |
| Figure 6.  | Normalization table utilization improvement distribution         | 28 |
| Figure 7.  | Normalization table condition rating distribution .              | 28 |
| Figure 8.  | Normalization table facility age distribution                    | 29 |
| Figure 9.  | Project worksheet layout                                         | 32 |
| Figure 10. | cROI programming tool—project summary sheet .                    | 33 |
| Figure 11. | cROI programming tool—project financial sheet                    | 34 |
| Figure 12. | cROI programming tool—project footprint reduction                | 35 |
| Figure 13. | cROI programming tool—mission importance                         | 36 |
| Figure 14. | cROI programming tool—utilization improvement.                   | 37 |
| Figure 15. | cROI programming tool—condition assessment                       | 38 |
| Figure 16. | cROI programming tool—age                                        | 39 |
| Figure 17. | cROI programming tool—facilities data file                       | 40 |

| Figure 18. cROI programming tool—normalization table       | 41         |
|------------------------------------------------------------|------------|
| Figure 19. cROI programming tool—model documentation       | 42         |
| Figure 20. Flow chart of revealed preference market basket | <b>.</b> . |
| approach                                                   | 54         |

# List of tables

| Table 1. | Normalization table mean, standard deviation, and variability results | 23 |
|----------|-----------------------------------------------------------------------|----|
| Table 2. | RM09-2831 project evaluation results                                  | 43 |
| Table 3. | Multiple project evaluation results                                   | 45 |
| Table 4. | Top ten consolidation projects as ranked by composite score           | 51 |
| Table 5. | Top ten consolidation projects in ascending order of cost             | 51 |

This page intentionally left blank.

DRM-2012-U-000402-Final

