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Summary

Mine warfare (MIW) almost always entails uncertainty and imprecise
assessments regarding risk. One approach to characterizing risks and
understanding inherent uncertainties is to use data to develop prob-
abilistic models that can support decision-making. Statistics can be
combined with intelligence estimates to help a commander assess the
number of residual mines after a clearance operation has been com-
pleted. Such assessments can provide a probability distribution for
the number of residual mines (i.e., the probability that zero mines
remain, that one mine remains, that two mines remain, etc.). Further
mathematical or computational analysis, aided by intelligence-based
assumptions regarding the mines’ characteristics, can then be used to
estimate the risk the mines pose to ships.

However, the use of statistical methods in MIW may be impeded by
psychological phenomena that are common in risk assessment. This
has been shown both in the context of psychological experiments and
in historical MIW decision-making. Decision-makers, including those
who are experienced with statistics, often make decisions that conflict
with the statistical insights available to them. They may dismiss statis-
tical analyses outright, or assume that the probability of an event is
proportional to their ability to envision it. Decision-makers also fre-
quently discern patterns in random phenomena, and often assume
that small samples of any data set are representative of the whole.
They are often led astray in their decisions by the way in which a ques-
tion is framed, or by the order in which particular possibilities are dis-
cussed.

These psychological phenomena can have an operational impact in
addressing mine warfare threats. Despite statistical guidance, a com-
mander may overestimate or underestimate the risk of transiting a
particular minefield, due to the common behaviors described above.
This can lead to unnecessary impedance of an operation, if ships do



not transit low-risk areas, or unacceptable casualty rates, if ships tran-
sit high-risk areas.

This paper provides two means of reducing the risk that command-
ers’ judgment will be overshadowed by these psychological influ-
ences, to the exclusion of statistical evidence. First, commanders who
may make decisions in a mined environment can make themselves
aware of these psychological tendencies, and thereby reduce their
susceptibility to them. Second, they can actively attempt to debias
their judgments, both by reviewing the statistics and by listing reasons
why their instinctive responses may be wrong. These techniques can
help to ensure that their decisions are as robust as possible, and that
they have overcome many of the biases people are susceptible to
when making decisions. This enhanced judgment is particularly
important as mine warfare is mainstreamed, and commanders whose
primary expertise lies in other warfare areas are increasingly called
upon to make decisions relating to mine warfare.



Introduction

When deciding whether (or how) to transit mined waters, command-
ers face a high degree of uncertainty regarding the threat posed by
the minefield. The commander of a ship or fleet has a mission to ful-
fill that would require transit or usage of the mined waterspace, but
knows that this entails some risk of mines damaging or even sinking
ships. The commander must weigh the importance of completing the
mission relative to the uncertain threat posed by the naval mines.

Some of the commander’s uncertainty can be ameliorated through
the use of statistical analysis, in tandem with mathematical or Monte
Carlo modeling to assess risk. Such analysis can provide a probability
that a ship transiting a minefield will be damaged by a mine. When
integrated with other sources of data (such as intelligence and
insights gleaned from experience), it can help to inform decision-

making and render it more effective.

Despite the potential value of statistical analyses in mine warfare
(MIW), both experimental psychology and historical examples dem-
onstrate impediments to their use. The purpose of this paper is to
enumerate both means by which statistical analyses can inform and
complement commanders’ judgment, and to illuminate some of the
psychological factors that can prevent such analyses from being used
effectively. By increasing awareness of human biases in judgment, and
offering tools for statistical assessment as well as active debiasing, the
paper aims to help commanders make better decisions in a mined
environment.

This paper is intended to be used by two distinct audiences. The first
consists of officers whose focus is on MIW. They can use it to better
understand how the concepts of risk, and the perception of risk,
affect the actions and decisions of the larger fleet. In addition, non-
MIW specialists who are responsible for decision-making regarding
the potential use of mined waters can understand what MIW risk



really means, and the impact of how information regarding risk is
analyzed, interpreted, and presented. This can enable them to
improve their decisions in the face of a potential MIW threat.

Overview of the paper

We begin by presenting a brief outline of how statistical analyses can
be used in MIW. Next, we examine the psychology of risk, judgment,
and decision-making. These analyses are integrated with mine-war-
fare examples, both historical and hypothetical, to demonstrate bar-
riers to good decision-making. Finally, we draw some conclusions
regarding the key points highlighted in the paper.



Statistical analysis of the MIW problem

Based on minefield clearance or reconnaissance data, statistics can be
used to assess the number of mines that remain in a given field. These
methodologies can also incorporate intelligence data and other
insights to develop a quantitative portrayal of the field. Below, we
begin by showing how the use of statistics can aid in assessing the
number of residual mines in a field after clearance. Building on this,
we then show how mathematical or Monte Carlo modeling can incor-
porate these results to gauge the overall risk that the minefield poses
to ships.

Assessing the number of residual mines after clearance

The process of minefield clearance not only reduces the hazard that
the minefield poses, but also provides information about the mine-
field itself. Specifically, the results of the clearance process can be
used to determine the probability that a given number of mines
remains after clearance has been conducted. For example, if a clear-
ance process has a known independent probability of clearing any
particular mine (under particular conditions), the number of mines
cleared in a given area can be used to back-calculate the probability
distribution for the number of mines remaining in that area. Table 1
illustrates a situation in which a clearance method (with 80% proba-
bility of clearing any given mine) has resulted in the clearance of 5

mines. Binomial calculations!

are used to determine the probability
that any given number of mines initially (5, 6, 7, etc.) resulted in the
clearance of exactly 5 mines. This uses the binomial formula that for
an independent probability p of clearance for each of n mines, the

probability of exactly y (in this case, 5) successes is:

Py, =p (1-p) ™Y nl / [y! (ny)!]

Assuming that we have no a prioriinformation (e.g., intelligence from
another source) regarding the number of mines initially, all



probabilities are weighted equally in the Bayesian calculation that fol-

lows; i.e., to normalize the probabilities so that they sum to 100%, we

divide each probability by their sum. This results in the distribution

shown in table 1, indicating that the average of the distribution for

the number of mines remaining is 1.50, which is an average of the

ensemble over all cases in which 5 mines were cleared.?2 The most

probable number of mines remaining is 1 and there is a greater than

95% probability that 4 or fewer mines remain.

Table 1. Probability distribution for the number of residual mines after clearance®

Initial number Number of Normalized probability that Cumulative | Contribution
of mines  mines remaining exactly 5 mines would be cleared = probability = to average
5 0 26.3% 26.3% 0.000
6 1 31.5% 57.7% 0.315
7 2 22.1% 79.8% 0.442
8 3 11.8% 91.6% 0.354
9 4 5.3% 96.9% 0.212
10 5 2.1% 99.0% 0.105
11 6 0.8% 99.8% 0.048
12 7 0.3% 100.0% 0.021
Total 100.0% 1.496

a. Binomial/Bayesian probability calculations were used. We assumed a clearance method that has an 80% inde-
pendent probability of clearing any particular mine, and which cleared 5 mines. The average of the distribution
is 1.50 (lower right cell), and there is a probability of greater than 95% that 4 or fewer mines remain.

In this paper, we briefly explain the application of binomial and Baye-
sian statistical methods, without delving into the mathematics behind
their use. If the reader is interested in learning more about the basis for
this type of analysis, almost any good probability or statistics textbook
can provide such information. Several good ones are Introduction to A
First Course in Probability [1] by Sheldon Ross, Probability and Statistics for
Scientists and Engineers [2] by Walter Rosenkrantz, Subjective and Objective
Bayesian Statistics [3] by S. James Press, and Statistics Manual [4] by
Edwin Crow et al.

Obviously, there cannot be exactly 1.5 mines remaining, since “half-
mines” do not exist. By way of analogy, the fact that a population has an
average of 2.4 children per family does not imply that any given family
has fractional children. However, knowing that the average value is 1.5
provides some insight into the actual whole number of mines that likely
remain.



We have incorporated these calculations into a spreadsheet. The
results from this spreadsheet are shown in figure 1, for an 80% prob-
ability of clearance, and different numbers of mines cleared. The
black numbers at the bottom of the figure show the number of mines
cleared, while the vertical axis shows the probability of any given
number of residual mines. The blue numbers within each column
show the number of residual mines. If three mines were cleared (cor-
responding to a 3 at the bottom of the graph), there would be a 41%
chance that 0 mines remained (shown by the length of the bottom
bar, marked with a 0, immediately above the 3). There would be a
33% chance that one mine remained (shown by the length of the
light blue bar containing a ‘1’ immediately above the bottom bar),
and so on. The most probable number of mines remaining for any
given number of mines cleared is indicated by the largest color block
in each bar. The green number at the top, 1.35, is the average number
of residual mines under these conditions.

Figure 1. Probability distributions for the number of residual mines?

Avg. # of
0.25 0.50 075 1.00 1.25 1.50 mihes
100% Z 2 3 3 — - T remaining
1 2 3 3
80% 1 2 B
£ ; 2
S 60%7 1 .
8 ] 1 # of mines
E 40%- 0 0 1 remaining
| 0
20%" 0 0 0
0,
0% 1 2 3 4 5
# of mines cleared p=0.8

a. This assumes an 80% probability of clearing any given mine, and no prior intelligence information about the number
of mines present.



Assumptions

Our analysis incorporates a few assumptions which we state explicitly
at this time. First, we have assumed that the probability of clearance
is uniform and precisely known. The probability of clearance may be
a function of the environment, the type of mine, operator experi-
ence, equipment reliability, and other factors. This probability may
differ from that which was assessed based on earlier documentation
and/or exercises. Moreover, clearing some areas may provide infor-
mation that raises the probability of clearance in other areas (e.g.,
what to look for or where to look for it, based on an adversary’s
mining tactics). As a result of these factors, the probability of clear-
ance may be uncertain and/or variable. Second, we have assumed
that the number of mines cleared is known. While this is often the
case, there could be circumstances under which suspected mines are
destroyed by detonation. If no secondary detonation or follow-up
identification occurs, it may not be entirely clear whether a particular
object was or was not a mine. Third, we have assumed that the enemy
is no longer engaged in hostile actions; these could include reseeding
of the minefield and/or attacking mine countermeasures (MCM)

assets.

Table 2 demonstrates the impact that such uncertainties can have on
the assessed average number of mines remaining. If we know that 5
mines were cleared and the probability of clearance was 80%, then
the average number of mines remaining would be 1.50. (There would
be a probabilistic distribution of the number remaining, as was shown
in table 1 and figure 1, but we have summarized that distribution by
a single number here.) However, if the probability of clearance were
somewhere between 75% and 85%), and the number of mines cleared
were either 4 or 5, then the average number of mines remaining
would be somewhere between 0.88 and 2.00. These data points are
encapsulated in a box near the center of table 2.

The range of possible numbers of mines remaining is greater than
the range of the averages for the data points boxed above. The prob-
ability distributions for the number of mines remaining is shown in
figure 2. For 5 mines cleared and a probability of clearance of 75%,
there is a 22% chance that at least four mines remain; for four mines



cleared and a probability of clearance of 85%, there is a 44% chance
that no mines remain at all (and only a 7% chance that at least four
remain).

Table 2. Average numbers of residual mines®

Probability of clearance
No. of mines cleared  p=70% p=75% p=80% p=85% p=90% p=95%
0 0.43 0.33 0.25 0.18 0.11 0.05
1 0.86 0.67 0.50 0.35 0.22 0.11
2 1.29 1.00 0.75 0.53 0.33 0.16
3 1.71 1.33 1.00 0.71 0.44 0.21
4 2.14 1.67 1.25 0.88 0.56 0.26
5 2.57 2.00 1.50 1.06 0.67 0.32
6 3.00 2.33 1.75 1.24 0.78 0.37
7 3.43 2.67 2.00 1.41 0.89 0.42

a. As a function of the number of mines cleared and the probability of clearance.

Figure 2. Probability distributions for the number of mines remaining.?

Avg. # of
1.67  2.00 0.88 1.06 mines
100%, = remaining
= = ] %
1 4
80% - 3 2 2
> 3
= | 2
ﬁ 60% - 2 1 1 # of mines
e 1 remaining
a 40% - 1 1
20% 7 0 0
] 0 0
0% Number of
4 5 4 5 m inl:: cf;a?"ed
y Y Probability
0.75 0.85 of clearance

a. Given probabilities of clearance of 75%-85% and 4 to 5 mines cleared.

A second major caveat is that we have assumed that we have no prior
information about the number of mines present. In mathematical
terms, we would say that all possible numbers of mines have equal a
priori probabilities. However, we could envision situations in which we
have additional information about the number of mines, and we can

use this information to complement data collected from clearance
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operations. For example, intelligence could indicate that 0-4 small
boats, each with a capacity of 5 mines, were used to mine the harbor.
We assume that there is a 20% probability that zero boats were used,
a 20% probability that one boat was used, a 20% probability that two
boats were used, etc., for up to four boats. We also assume that each
boat, if deployed, deployed the maximum complement of 5 mines.
Therefore, there is a 20% probability that 0 mines were laid, a 20%
probability that 5 mines were laid, etc., up to 20 mines. Intelligence
also indicates that each mine has a 10% probability of being defec-
tive.3

The probability for any given number of working mines is shown in
figure 3. Applying Bayes’ Theorem and assuming that we can clear
any working mine with a probability of 80% via influence sweeping,
we would obtain the probability distributions shown in figure 4 for
the number of mines remaining.

3.In this case, the a priori probability that there are z working mines is

P, = (0.2) (0.9)% (0.1) 2% {201/[2! (20-z)!]}

+(0.2) (0.9)%(0.1)152) (151 /[21(15-2) 11}

+(0.2) (0.9)%(0.1)1%2) (101/[2! (10-2)!1}

+(0.2) (0.9)%(0.1)5? (51/[2! (5-2)!]).

If z is greater than 5, the last term is removed from the equation; if it is
greater than ten, the second-to-last term is also removed; if it is greater

than 15, the third-to-last term is also removed. If z is 0, the a priori prob-
ability is 20%.



Figure 3.

A priori probabilities for different numbers of residual working mines®
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a. Assuming mines are laid in batches of 5, with a maximum of 20, and each mine has a 10% probability of being defec-

tive.

Figure 4.

Probability distributions for the number of residual working mines?

Avg. # of
. 0.01 2.58 1.95 1.35 0.86 1.01 mines
§100 A’i i ; = T remaining
3 80% 2 3
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a. Assuming an 80% independent probability of clearance for 0 to 5 mines cleared and a priori likelihoods as shown in

figure 3.

The intelligence we have used in this situation results in some inter-
esting changes relative to the previous case, in which we relied solely
on clearance data. In the previous case, the average number of resid-
ual mines (shown in green at the top of figure 2) increased linearly as
a function of the number of mines cleared. However, in the present
situation, the average number of mines remaining (shown in green at

11



the top of figure 4) does not rise monotonically with increasing
number cleared; rather, it bounces around. This reflects the intelli-
gence-based bias for initial numbers of working mines that are multi-
ples of 5 (or slightly less). Since it is very unlikely that there were
initially 1 to 2 working mines, clearing 1 to 2 mines implies that 2 to
3 more probably remain; clearing 4 mines, however, implies that 0 or
1 remain out of the group of 5.

Analysis of the threat posed by remaining mines

While we can use such calculations to assess the number of mines
remaining in the field, these analyses alone do not characterize the
risk that the mines pose to transitors. Risk is a primary measure of
effectiveness (MOE) in MIW: the probability that a ship will be dam-
aged by a mine is the most important metric for determining how (or
if) mined waters will be transited, and whether more MCM opera-
tions will be conducted.

Unfortunately, risk is a more complex MOE than the number of resid-
ual mines. The risk to ships is a function not only of the number of
mines, but also of various parameters governing mine-ship interac-
tions (such as actuation and damage radii, the use of shipcounters,
and mine reliability) and ships’ navigational behaviors. Once assump-
tions have been made regarding these areas, either Monte Carlo or
purely mathematical models (such as that currently incorporated
into the MEDAL tactical decision aid) can be used to evaluate risk.

Monte Carlo analysis

Monte Carlo methodologies simulate the interactions of mines and
ships, applying specified rules to assess the outcomes of these interac-
tions. For example, a Monte Carlo simulation may consist of a com-
puter program that creates minefields with particular characteristics.
CNA has developed such a Monte Carlo, called CAPTMEIN, which
will be described fully in forthcoming papers. Briefly, the program
simulates MCM by clearing mines according to a particular rule set
(e.g., each mine has an 80% chance of being eliminated). Subse-
quently, ships are assigned particular behaviors (e.g., straight paths
through the minefield), and the program then determines whether

12



ships’ paths had crossed within the damage radii of mines. The pro-
gram repeats this process thousands of times, and collects statistical
data on how varying inputs affect the outcomes. The result is a prob-
ability statement that characterizes the likelihood that a ship would
pass through this particular waterspace without being hit.

Mathematical analysis

Minefield risk can also be assessed using pure mathematics. This is
the way in which the MEDAL program evaluates risk, based on user
inputs and clearance data. However, relying on pure mathematics
usually involves making many simplifying assumptions that enable
complex situations to be made mathematically tractable.

We now present an example of such analysis. Ships need to transit a
channel 1 kilometer wide, which contains mines with 75-meter actua-
tion and damage radii. Ships transit perpendicular to the minefield,
so each mine effectively represents a linear hazard zone 150 meters
wide, perpendicular to the direction of transit. (In effect, the entire
minefield can be treated as a linear rather than an areal entity.) The
adversary, knowing the channel width and damage radius, has not
placed any mines within 75 meters of the edge (to maximize the
hazard posed). However, the adversary does not realize that the ships’
drafts confine them to the middle 600 meters of the channel.* A
layout of the minefield (assuming 3 mines are present) is shown in
figure 5. The mines have no shipcounters or other mine counter-
countermeasures, and all are 100% reliable. The probability of clear-
ance (independent probability of clearing any individual mine) is
80%, and 10 mines have already been cleared. Any remaining mines
are randomly distributed within the channel (i.e., they have a uni-
form probability of being anywhere within the Channel).5All a priori
probabilities for numbers of mines are equal.

4. Confining transits to the central 600 meters of the channel eliminates
edge effects (e.g., reduced hazard levels near the edges of the field).
This makes the problem more tractable for the present example.

5. This allows for independent probabilities of clearing any given mine,
even if their initial layout was ordered to some extent.

13



Figure 5.  Diagram indicating the layout of the minefield.

Hazard zone
(150 m)

Ship transits

1 km
Invoking the type of analysis described above, the probability distribu-
tion for the number of mines remaining is shown in figure 6 and the
first column of table 3.

Figure 6.  Probability distribution for the number of residual mines®

Number P
: Probability >9 0.6%
100%] ofmines ){ 8 1.0%
' 5 8.3% 7 =
o 80% 4 13.8%
% 60%-1 3 19.7%
= | Average value 2.75
& 40% 2 22.7%
20% 1 18.9%
0% 0 8.6%
0
10 mines cleared p=0.8

a. Assuming that 10 mines have been cleared, the probability of clearance is 80%, and a priori probabilities are uniform.

CAPTMEIN results for the threat to the first transitor (as a function
of the number of mines) are shown in table 3. The risk that the first
transitor is damaged by a mine is called the simple initial threat (SIT).
The overall SIT is the sum of the products of the second and fourth
columns (the probability that a given number of mines remains, mul-
tiplied by the SIT that such a number of mines would generate).

14



Table 3. SIT? as a function of the number of mines present

Number of mines

Probability that this Probability that this number

remaining number of mines remains  of mines or fewer remains SIT
0 8.6% 8.6% 0.0%
1 18.9% 27.5% 15.0%
2 22.7% 50.2% 27.8%
3 19.7% 69.8% 38.5%
4 13.8% 83.6% 47.8%
5 8.3% 91.8% 55.6%
6 4.4% 96.2% 62.3%
7 2.1% 98.4% 68.0%
8 1.0% 99.3% 72.9%
9 0.4% 99.7% 76.9%
Average (2.75 mines) 33.3%

a. SIT is the probability that the first transitor is damaged by a mine.

The probability that the first transitor is damaged by a mine is 33%.
However, if a series of ships were to transit along a single uniform
linear path, and a ship hit by a mine sunk immediately without
obstructing the path, the average number of ships hit would be 0.41.
This is simply the average number of mines, 2.75, multiplied by the
fraction of the total channel that each covers, 0.15/1.00. In other
words, while the probability that the pathway includes a nonzero
number of mines is 33%, the average number of mines in the pathway
is 0.41. CAPTMEIN Monte Carlo modeling generates the same result.
Again, this example could be solved mathematically because of its rel-
ative simplicity. If we had introduced complicating factors (e.g., com-
plex ship navigational behaviors or probabilistic mine effectiveness),
a Monte Carlo model such as CAPTMEIN would likely have been the
only means of analyzing the problem.

This result is not prescriptive in determining whether the ships
should or should not transit the field; that question depends on the
level of risk that the commander is willing to accept, and the opera-
tional advantages associated with transiting. However, this type of
assessment can help the commander to quantify the risk and thereby
make better decisions.

Naturally, it is always important to recognize the limitations and
assumptions of statistical analyses, and not to use them in isolation or

15



with undue reverence. Statistical and modeling analyses can help to
inform the decision-making process, alongside insights that experi-
ence and intelligence bring to bear on the problem.

Summary of statistical analyses

16

MCM clearance operations not only reduce risk by eliminating mines,
but also provide information that can be analyzed statistically to assess
the number of residual mines in the field. As shown above, this infor-
mation can be analyzed by itself, or it can incorporate additional
intelligence insights.

After this has been done, a commander can use mathematical models
(such as those contained within MEDAL) or Monte Carlo models
(such as CAPTMEIN) to help assess the risk posed by these residual
mines. These can serve as aids to decision-making in the face of a min-
efield, providing an indicator of the probability that ships entering
the field will be damaged by the mines.



Psychology in

MIW

The preceding section outlined methodologies for assessing the risk

posed by minefields to ships. These can help commanders make well-

grounded decisions about whether, or when, to transit minefields. By

weighing the importance of their mission being completed in a timely

fashion (or being completed at all) against the statistically calculated

risk to their ships, they can arrive at a decision that incorporates the

full breadth of knowledge available to them.

However, there are a variety of psychological factors that inhibit the

effective use of statistical insights in assessing risk. These include:

Dismissal of statistical evidence
Confounding familiarity of scenarios with their probability

Assuming that samples that are too small to be statistically sig-
nificant are representative of a larger set

Discerning patterns where they do not exist

Having perceptions of a problem shaped by the way in which
the problem is stated

Over-attachment to the first quantitative values used in discuss-
ing a problem

Overconfidence.

We begin by exploring how statistical information is often ignored, in
MIW and other contexts.

Dismissing statistical evidence

Unfortunately, both history and psychology suggest that statistical

analyses of minefields may be either ignored or unsought in the con-

text of actual decision-making. In Four Mining Campaigns: An

17
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Historical Analysis of the Decisions of the Commanders [5], James Mea-
cham analyzed naval mining in the Dardanelles, the North Sea,
Japan, and Korea. He concluded that in all of the campaigns, “There
is no indication that a percentage risk was ever considered by the
decision-makers faced with mines. On the contrary, there is much evi-
dence that they did not.” Rather, subjective perceptions and fears,
often with little relation to reality, guided decision-making. For exam-
ple, in the case of the Dardanelles [5]:

The British were afraid of the minefields. Sir Roger Keyes in
his memoirs declares, “There was never any question of
taking battleships through unswept minefields.” Nowhere
does there appear any indication that anyone made even a
rough attempt to calculate the chances of forcing the par-
tially-swept field...In fact, the minefields were probably in
bad shape. According to a German staff officer, a large
number [of mines] had been carried away by the current or
had sunk...It seems improbable that more than ten percent
were really working.

Other historical accounts will be cited below, in tandem with corre-
sponding insights from experimental psychologists, particularly
Amos Tversky and Daniel Kahneman [6, 7] 6 They have documented
that most people do not take statistical insights into account when
faced with risk and uncertainty. In particular, they found that risk

7 and inherent

assessment is guided primarily by a series of heuristics
biases, regardless of the subject population’s familiarity with statistical
methods; doctoral candidates who used statistics frequently were as
fallible as high-school students. Naval officers are unlikely to be less
susceptible to these psychological biases than other individuals. Some
of these heuristics and biases will be described below, together with
their implications for MIW. Our aim is not to criticize naval officers
for being subject, like other human beings, to biases in assessing

probability and risk. Rather, it is to help them debias themselves and

6. A compendium of their work is included in the book judgment under
Uncertainty: Heuristics and Biases [6], as well as in a companion volume,
Choices, Values, and Frames [7].

7. A heuristic is an approach to solving a problem.
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enable them to use all of the relevant information available to them,
partly by making them aware of common errors in risk perception.

Tversky and Kahneman made the case that people frequently dismiss
statistics in circumstances when statistical analysis could help them
make better decisions [8]. Tversky, Kahneman, and their colleagues
conducted a number of experiments that corroborate this assessment
[6]. In several experiments, doctors were given select information
and asked to diagnose diseases. When no verbal information was
given, the doctors used prior probabilities (the relative frequencies of
diseases in the population) to assess the probability that patients had
the disease. When verbal descriptions were provided, even ones that
provided little useful information, prior probabilities were almost
completely ignored [6]. A range of other experiments with different
populations (e.g., college students trying to determine other stu-
dents’ majors based on statistics and verbal descriptions) yielded sim-
ilar results.

In the context of MIW, a commander facing a minefield might be told
that no US ship had suffered mine damage in the preceding 14 years.
This statistic is almost completely irrelevant without additional infor-
mation, such as the number of times US ships were exposed to mine-
fields over this period, or the level of hazard that those minefields
posed. Likewise, referencing Admiral Farragut’s successful attack at
Mobile Bay (when he famously said, “Damn the torpedoes—full
speed ahead!”) would provide no insight into the immediate hazard
posed by mines. However, psychological research suggests that such
information can often trump the types of statistical analysis that were
demonstrated earlier in this paper, and have a greater impact on deci-
sion-making processes. Awareness of these biases, though, can ame-
liorate them; part of the purpose of this paper is to stimulate such
awareness.

The availability heuristic entails believing that the more readily an
example of an occurrence comes to mind, the more likely it is to exist.
Often, this involves oversimplifying situations and confounding famil-
iarity with likelihood; it usually complements the tendency to dismiss
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statistical analyses in favor of verbal accounts. According to Tversky
and Kahneman [9]:

Many of the events whose likelihood people wish to evaluate
depend on several interrelated factors. Yet it is exceedingly
difficult for the human mind to apprehend sequences of
variations of several interacting factors. We suggest that in
evaluating the probability of complex events only the sim-
plest and most available scenarios are likely to be consid-
ered...The tendency to consider only relatively simple
scenarios may have particularly salient effects in situations
of conflict...The production of a compelling scenario is
likely to constrain future thinking. There is much evidence
showing that, once an uncertain situation has been per-
ceived or interpreted in a particular fashion, it is quite diffi-
cult to view it in any other way. Thus, the generation of a
specific scenario may inhibit the emergence of other scenar-
ios, particularly those that lead to different outcomes...Con-
tinued preoccupation with an outcome may increase its
availability, and hence its perceived likelihood.

The authors demonstrated the availability heuristic through a
number of experiments [6]. One of these asked subjects whether it
was more likely that a randomly selected word started with the letter
K, or had K as its third letter. Although K is the third letter of a word
roughly twice as often as it is the first letter, a clear majority of subjects
thought that K was more commonly the first letter than the third.
(Similar tests with L, N, R, and V, all of which are more commonly in
the third position than the first, yielded comparable results.) This
bias can be attributed largely to the fact that it is easier to recall words
that begin with a particular letter than it is to recall words that have
the same letter in the third position. Similarly, when given a list of ten
people, subjects were asked to figure out whether there were more
possible two-person or eight-person committees. The number of pos-
sible committees is exactly the same for both cases (45), but because
it is easier to envision different two-person committees than eight-
person ones, it was perceived that more two-person committees could
be formed.

The availability heuristic is closely related to the dismissal of statistical
evidence, which was cited above. For example, if a commander has
trouble recalling an instance of a successful attack using mines, or



does not have strong visual imagery associated with such an attack, he
or she may discount the mine threat, regardless of other indicators
regarding its importance. When a commander is preoccupied with
another threat (e.g., submarine attack), the threat of mines may
appear negligible, and decisions may be made in ways that do not
consider the risk of mines as well as other threats. This is a particular
challenge for MIW, since only a few percent of naval officers have
extensive experience in this warfare area. Mines may not be perceived
as a threat by those who have spent careers pursuing aerial combat,
missile defense, or anti-submarine warfare.

Conversely, the mine threat can easily be overestimated if any ships
are damaged by mines, regardless of the actual threat they pose. A his-
torical example is cited by William L. Greer and James Bartholemew

[10]:

In October 1943, a single U.S. B-24 bomber dropped three
mines in Haiphong harbor. One of them sank a Japanese
freighter. The next month, another B-24 planted three
more mines, which sank another Japanese freighter. Then a
Japanese convoy of ten ships refused to enter Haiphong har-
bor, for fear of mines. After loitering outside the harbor for
a few hours, the convoy headed for Hainan Island. On the
way, it was detected and six of its ships were sunk. Mean-
while, a small 30-ton ship was sunk by one of the remaining
mines, and the port was closed to steel-hulled ships for the
remainder of the war. When that decision was made, a max-
imum of three mines remained. The Japanese estimate of
the remaining threat is not known, but there is little doubt
that their fears were exaggerated.

Representativeness

In general, people have a predisposition to believe that even small
samples are highly reflective of the character of the overall popula-
tion from which they are sampled. This heuristic, called representa-
tiveness, relates closely to the availability heuristic. People assume
that subsets of a sequence of events (e.g., coin tossings) should be
representative of the whole, just as they assume that whatever they can
most readily envision is also representative. Thus, when a coin is
tossed and they see a sequence of multiple heads (or tails) in a row,
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they presume that the sequence is not random, despite the fact that
occasional long streaks are likely to occur by chance [11]. (There is a
25% probability that a sequence of three coin tossings will result in all
heads or all tails; if a coin is tossed a few dozen times, streaks of four
or more will be common.)

To cite an example from MIW, figure 7 shows a randomly generated
array of 50 mines in a 20 km x 20 km square. Each mine has a uniform
probability of being anywhere in the square, but there are nonethe-
less some portions of the square that have much higher mine densi-
ties than others. Table 4 shows the mine density within each of the 16
squares of dimensions 5 km x 5 km. Fully 4 of the 16 smaller squares
(25%) have mine densities that differ from the average density by at
least 65%. Sampling any subset of the area could easily lead to a mis-
apprehension of the overall mine density.

Figure 7. Sample diagram of 50 randomly distributed mines?

a. Each mine has a uniform probability of being located anywhere in the 20 x 20 square.

Patterning

22

Human minds have a tendency to seek out patterns, and to perceive
them even when they are not there. For example, basketball players,
coaches, and fans often perceive that players are more likely to suc-
cessfully make a shot if the preceding shot succeeded (and less likely
if the shot missed). Statistically, this has been shown to be almost uni-
versally incorrect; rather, the probability of making or missing a shot
is almost independent of the previous shot [12]. Nonetheless, audi-
ences (including the players themselves) often disbelieve the analysis.



Table 4.  Numbers of mines in 5x5 sub-squares in figure 7

Number of mines in

Number of squares with  Mine density of these

square this many mines squares (mines/km?)

0 1 0.00

1 2 0.04

2 3 0.08

3 3 0.12

4 4 0.16

5 2 0.20

6 0 0.24

7 1 0.28
Average 0.12

This phenomenon is not limited to basketball, and can be partly
explained by the response of subjects to randomly generated
sequences of heads and tails (and similar experiments). As was men-
tioned earlier, when subjects view “streaks” of several heads (or tails)
in sequence, they view the patterns as nonrandom. According to Wil-
liam Feller, a scholar of probability, “To the untrained eye, random-
ness appears as regularity or tendency to cluster.” [13]

Revisiting figure 7, an observer who was unaware that the mines were
randomly distributed might perceive patterns (e.g., clusters) within
the figure. If this were part of a larger minefield, the belief that pat-
terns were present could lead to misapprehension that similar “pat-
terns” existed in other parts of the field, and MCM tactics could be
(mis) adapted accordingly.

Framing effects

Decisions are often heavily influenced by the way in which a particu-
lar problem is framed. Tversky and Kahneman cite a particularly dra-
matic example of this, in which they presented separate audiences
with two different scenarios [14]:

® Scenario 1. An unusual disease is expected to kill 600 people if
no countermeasures are taken, but there are two possible pro-
grams to combat the disease. If program A is adopted, 200
people will be saved. If program B is adopted, there is a
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one-third probability that 600 people will be saved, and a two-
thirds probability that no one will be saved.

® Scenario 2. An unusual disease is expected to kill 600 people if
no countermeasures are taken, but there are two possible pro-
grams to combat the disease. If program C is adopted, 400
people will die. If program D is adopted, there is a one-third
probability that no one will die, and a two-thirds probability
that 600 people will die.

Audiences presented with scenario 1 preferred program A over pro-
gram B by a wide margin (72% to 28%), while those presented with
scenario 2 showed an even stronger preference for program D over
program C (78% to 22%). However, the scenarios are exactly identi-
cal; programs A and C are the same, just as programs B and D are.
When confronted with descriptions that specified the number of
people saved, audiences preferred to save 200 people, rather than
have a one-third chance of saving 600. However, when the same
choices were presented in terms of the number of people who would
die, most subjects preferred to take a risk in the hopes that no one
would die, rather than accept 400 deaths.

Framing effects are also visible in other areas, such as choices about
gambling losses and gains [6, 12, 15, 16]. In general, people are more
willing to take risks to avoid losses than they are to take risks to
increase gains. By carefully phrasing a question (and introducing an
initial loss or gain that is not probabilistic), it is possible to obtain dif-
ferent answers. For example, informing a subject that they have just
lost $10, and they are then able to gamble to get it back (at the risk of
losing more money), will make them more willing to gamble than if
they had not been told of the initial loss. This is despite the fact that
the person’s overall financial status is essentially unaffected by the
$10, and the initial loss would seem unlikely to change the person’s
overall level of risk aversion.

In the field of MIW, it is easy to hypothesize situations in which fram-
ing effects alter decisions. Referring back to the situation portrayed
in figures 5 and 6, CAPTMEIN results for the SIT (as a function of the
number of mines) are reiterated in table 5. The overall SIT is the sum
of the products of the second and fourth columns (the probability



that a given number of mines remains, multiplied by the SIT that
such a number of mines would generate).8 Based on this informa-
tion, a commander might be told one of the following:

® There is a 33% probability that the first ship will be hit by a

mine.

® There is a 67% probability that the first ship will transit success-
fully.

The decision about how to proceed might depend on which of these
equivalent statements was presented. This is not to intimate that com-
manders are not fully capable of understanding and appreciating that
they are mutually equivalent; rather, it is because the mind does not
do well at intuiting probability and statistics [14, 15].

Table 5. SIT* as a function of the number of mines present

Number of mines

Probability that this Probability that this number

remaining number of mines remains  of mines or fewer remains SIT
0 8.6% 8.6% 0.0%
1 18.9% 27.5% 15.0%
2 22.7% 50.2% 27.8%
3 19.7% 69.8% 38.5%
4 13.8% 83.6% 47.8%
5 8.3% 91.8% 55.6%
6 4.4% 96.2% 62.3%
7 2.1% 98.4% 68.0%
8 1.0% 99.3% 72.9%
9 0.4% 99.7% 76.9%
Average (2.75 mines) 33.3%

a. SIT is the likelihood that the first transitor is damaged by a mine.

8. Note that the SIT (33%) is lower than the average number of mines in
a given straight pathway cited earlier (0.41). The SIT is the probability
that a ship taking this pathway encounters any nonzero number of
mines. The average number of mines in the pathway includes additional
weighting for the possibility that 2, 3, or more mines are present.
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Framing effects can be even more powerful when information is
selectively presented, or particular items are highlighted. For exam-
ple, based on table 5, the following statements are all true;”
nonetheless, if presented individually, they can steer decision-makers

into not properly taking all factors into consideration.

® There is 2 50% chance that three or more mines remain. If this
is the case, then the SIT is at least 39% (and it could plausibly
be over 70%).

® There is a 50% chance that two or fewer mines remain. If this
is the case, then the SIT is less than 28%, and it may be zero.

® There isa 16% chance that five or more mines remain. If this is
the case, then the SIT is at least 56% (and it could plausibly be
over 70%).

® There is a 70% chance that three or fewer mines remain. If this
is the case, then the SIT is less than 39%, and it may be zero.

Anchoring entails the overuse of data that arises early in the decision-
making process. In some cases, such data are not even relevant to the
problem. One of the more dramatic experiments conducted by Tver-
sky and Kahneman was to present audiences with one of two numbers
(10 or 65); the audiences were told that the numbers had been
selected randomly, and were then asked whether the percentage of
African countries in the United Nations was lower (or higher) than
the number they had given. Almost all respondents indicated that the
percentage was higher than 10 or lower than 65 (depending on which
question they were asked). When they were subsequently asked for
the actual percentage of African nations in the UN, their answers
were heavily biased by the initial, random data point which they had
been given. On average, those whose initial number was 10 estimated
that 25% of the countries in the UN were African, while those whose
initial number was 65 estimated that 45% of them were [12]. Other
experiments have shown that subjects tend to “anchor” around initial

9. Based on adding probabilities shown in the table.



numbers even when these are absurdly high or low; e.g., when they
are given temperatures of -50 or 200 degrees, and then asked to esti-
mate the median temperature in a particular country during a spe-
cific season [12].

In the context of MIW, anchoring can easily distract from the overall
statistical profile of the situation. In the scenario characterized in
table 5 (as well as figures 5 and 6 from the previous section), starting
the discussion with either of the following statements could affect
beliefs about minefields, and subsequent decisions:

® We did a good job clearing the minefield—I think the number
of mines left is zero.

® There is a possibility that nine or more mines remain.

Overconfidence

In general, subjects are more confident of their predictive capabilities
than statistical analyses or their own knowledge would warrant. For
example, in a series of experiments by Edward Russo and Paul Schoe-
maker [12], subjects were asked about the diameter of the moon in
miles, the air distance from London to Tokyo, Martin Luther King’s
age at death, and other quantitative data. They were supposed to give
90% confidence intervals for the answers to ten of these questions;
that is, they provided low and high values for the numbers, and were
supposed to be 90% sure that the numbers actually fell between those
high and low values. On average, individuals’ “90% confidence inter-
vals” actually included the correct value only about half of the time. A
number of other experiments corroborate the idea that people over-
estimate the accuracy of their predictions and assessments. While
experts in various fields are usually more accurate than novices at
their fields (as might be expected), they also exhibit overconfidence
relative to their tested ability to correctly assess situations [6, 12]. For
example, physicians initially diagnosing pneumonia or cancer, and
psychologists diagnosing brain damage, have been found to overstate
the accuracy of their diagnoses by 50% or more (based on subsequent
diagnostic data) [6, 12]. Overconfidence by economists, physicians,
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nurses, and other experts has been repeatedly demonstrated in the
academic literature [15, 17, 19].

Overconfidence, in MIW as in other fields, can be dangerous. Intense
confidence (e.g., that “the enemy wouldn’t mine” or “the mine threat
is insurmountable”), when uninformed by relevant analyses, includ-
ing statistical analyses, can lead to unfounded and inaccurate risk
assessments.

The preceding discussion described a number of heuristics that
inhibit effective assessment of risk using statistical evidence. These
heuristics include:

® Dismissal of statistical evidence

® Availability (confounding familiarity of scenarios with their
probability)

® Representativeness (assuming that samples that are too small to
be statistically significant are representative of a larger set)

® Pattern perception (discerning patterns where they do not
exist)

® Framing (having perceptions of a problem shaped by the way
in which the problem is stated)

® Anchoring (over-attachment to the first quantitative values
used in discussing a problem)

® Overconfidence.

All of these can contribute to misapprehension of risk in MIW (or
other areas), and hence to sub-optimal decision-making. In the next
section, we describe some of the ways in which these effects can be
diminished.



What this means—implications

The previous section outlined a series of inhibitors to accurate assess-
ment of MIW risk. These heuristics, singly or in combination, could
lead to bad decision-making by personnel desiring to use or transit
waters that may be mined to some degree. Specifically, they could
result in ships being sent into mined waters despite unacceptable
levels of risk (as defined by the fleet commander), unnecessary delay
due to MCM being conducted beyond the level of acceptable risk, or
the use of alternate (and less advantageous) waters.

In the psychological literature, there have been numerous examina-
tions of how individuals assessing risk can try to diminish the effects
of biases imposed by the heuristics described in the previous section
[6, 18]. The two that have been found to be most effective are surpris-
ingly straightforward:

® Making decision-makers aware of these potential biases

® Having decision-makers make an explicit list of reasons why
their initial assessments might be wrong.

As with any area of psychology, awareness of a behavior can some-
times enable the subject to avoid it. By understanding anchoring and
framing effects, the propensity to dismiss statistical evidence in favor
of irrelevant verbal information, and other heuristics that lead to sub-
optimal assessment of risk, fleet officers responsible for decisions in a
potentially mined environment can reduce their susceptibility to
these errors in judgment.

In addition, once a preliminary decision has been made regarding
whether to traverse potentially mined waters, composing a list of rea-
sons why this judgment may be erroneous can help to improve the
final decision. Of course, a commander must ultimately decide
whether or how to use potentially mined waterspace, and creating
such a list may seem to be an impediment to the process, rather than
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an aid to it. However, generating a basic awareness of some of the rea-
sons why an assessment could be wrong is likely to result in more
robust decision-making. The original judgment (or decision) may or
may not change, but it is more likely to make the best use of all avail-
able information if this exercise is conducted.

Also, it is important that decision-makers only compile a list of rea-
sons why the preliminary decision may be incorrect, not a dual list
describing why the decision may be right or wrong. Psychologists have
found that listing reasons why a decision may be either wrong or right
does not debias the result; rather, it tends to reinforce the original
judgment[6, 18]. When individuals are formally listing reasons why
their preliminary decision was right or wrong, the reasons in favor of
their original judgment are taken more seriously than those which
conflict with it.

A naval commander facing a potentially mined environment is likely
to be provided with data from the MCM commander (MCMC), who
characterizes the risk to ships, as well as the delay and resource
requirements associated with further MCM operations. In deciding
how to interpret the data, and what actions to take based upon it, a
knowledge of how risk can be misperceived can usefully improve the
commander’s chances success. Moreover, the naval commander who
maintains the ability to question a preliminary decision regarding risk
is more likely to make good decisions than one who does not.

Exercises and wargaming
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As with any skill set, the ability to assess risk in MIW and to make deci-
sions based on that assessment can benefit from practice. Exercises
and tabletop wargames could be used as opportunities to teach non-
MIW specialists about risk assessment in the context of MIW, and to
help them practice making decisions regarding that risk. It would also
give them the chance to exercise the debiasing procedures outlined
above.



Conclusions and implications for the
commander

Based on intelligence, reconnaissance, and clearance data, statistical
methodologies can be used to assess the number of mines remaining
within a particular minefield. Bayes’ theorem, when combined with
binomial statistics, can be used to develop a probability distribution
for the number of residual mines. The average number of residual
mines can be calculated, together with the probability that any given
number of residual mines exists. As more information becomes avail-
able, such assessments can be revised to improve their accuracy.

Building on such analyses, either mathematical modeling (such as
that contained in MEDAL) or Monte Carlo simulations (such as
CAPTMEIN) can be used to assess the risk posed by residual mines. A
commander can then use this information to make an informed judg-
ment regarding whether, or how, to have their ships enter a particular
area. Understanding the value of statistical analyses is particularly
important in the context of mainstreaming of MIW. Officers with
little exposure to MIW may be called upon to make decisions regard-
ing this warfare area, and a modicum of education can help them to
better appreciate how they can use statistics to make better decisions.

However, there are a number of psychological biases and heuristics
that can inhibit the effective use of statistical insights in MIW deci-
sion-making. These biases and heuristics—which have been demon-
strated in numerous psychological experiments—include:

® Dismissal of quantitative or probabilistic information in favor of
verbal information

® The availability heuristic (assuming that the probability of an
event is a function of how readily it can be recalled)
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® The representativeness heuristic (assuming that even small
samples of a population will be highly representative of the
population as a whole)

® Discerning patterns in random phenomena

® Framing effects (in which a response to a question varies,
depending on the way in which the question is asked)

® Anchoring (overreliance on particular data points, however
irrelevant)

¢ Overconfidence in the accuracy of judgments.

When evaluated experimentally, these biases have generally been
shown to be largely independent of the subjects’ prior knowledge of
statistics, unless they were explicitly instructed to use statistics to solve
the problems. The relevance of these psychological experiments to
MIW is corroborated by the historical record. On a number of occa-
sions, commanders have made decisions about whether to transit
minefields without trying to assess the risks of doing so.

To prevent such episodes from recurring, commanders can make
themselves cognizant of how statistical methods can inform risk
assessment, and the common biases which lead to subjective misap-
prehension of risk. By doing so, they can more accurately assess risks
in light of all available information. Conscious debiasing—explicitly
considering the reasons why their assessments might be wrong—can
also aid in improving their judgment. Such assessments reduce the
likelihood that their decisions will unnecessarily inflict casualties or
impede operations, and enable them to increase the overall effective-
ness and safety of their forces.

Moreover, commanders can prepare themselves to make better deci-
sions regarding minefield transit via exercises or wargaming. For
example, board games or computer-based games could be developed
to give commanders experience in assessing MIW risk. By repeating
such games in a “safe” tabletop environment, they can be trained to
think in nuanced and statistically sound ways about the threat posed
by a minefield, minimizing their biases when faced with a challenging
real-world choice.
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