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Abstract 

The military is on the cusp of a major technological revolution, in which warfare is 
conducted by unmanned and increasingly autonomous weapon systems. However, 
unlike the last “sea change,” during the Cold War, when advanced technologies were 
developed primarily by the Department of Defense (DoD), the key technology 
enablers today are being developed mostly in the commercial world. This study looks 
at the state-of-the-art of AI, machine-learning, and robot technologies, and their 
potential future military implications for autonomous (and semi-autonomous) 
weapon systems. While no one can predict how AI will evolve or predict its impact on 
the development of military autonomous systems, it is possible to anticipate many of 
the conceptual, technical, and operational challenges that DoD will face as it 
increasingly turns to AI-based technologies. This study examines key issues, 
identifies analysis gaps, and provides a roadmap of opportunities and challenges. It 
concludes with a list of recommended future studies. 

 

 

 



 

 

 

 ii  
 

This page intentionally left blank. 



 

 

 

 iii  
 

Executive Summary / White Paper 

A notable number of groundbreaking artificial intelligence (AI)-related technology 
announcements and/or demonstrations took place in 2016:1 

1. AI defeated the reigning world champion in the game of Go, a game that is so 
much more “complex” than chess that, prior to this event, most AI experts 
believed that it could not be done for another 15-20 years.2 

2. AI learnedon its ownwhere to find the information it needs to accomplish 
a specific task.3 

3. AI predicted the immediate future (by generating a short video clip) by 
examining a single photograph (and is also able to predict the future from 
studying video frames).4 

4. AI automatically inferred the rules that govern the behavior of individual 
robots within a robotic swarm simply by watching.5 

5. AI learned to navigate the London Underground by itself (by consulting its 
own acquired memories and experiences, much like a human brain).6 

6. AI speech recognition reached human parity in conversational speech.7 

                                                   
1 Most of the innovations on this list are described in the Artificial Intelligence section of the 
main narrative of this report (pp. 44-71). A few others also appear in the appendix. 

2 C. Koch, “How the Computer Beat the Go Master,” Scientific American, 19 March 2016. 

3 K. Narasimhan et al., “Improving Information Extraction by Acquiring External Evidence with 
Reinforcement Learning,” presented at EMNLP 2016, https://arxiv.org/abs/1603.07954. 

4 C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating Videos with Scene Dynamics,” 
presented at the 29th Conference on Neural Information Processing Systems, Barcelona, Spain, 
2016: http://web.mit.edu/vondrick/tinyvideo/paper.pdf. 

5 W. Li, M. Gauci, and R. Gross, “Turing learning: a metric-free approach to inferring behavior 
and its application to swarms,” Swarm Intelligence 10, no. 3, September 2016:  
http://link.springer.com/article/10.1007%2Fs11721-016-0126-1. 

6 E. Gibney, “Google's AI reasons its way around the London Underground,” Nature, Oct 2016. 

7 X. Xiong et al., “Achieving Human Parity in Conversational Speech Recognition,” arXiv, 2016: 
https://arxiv.org/abs/1610.05256. 
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7. An AI communication system invented its own encryption scheme, without 
being taught specific cryptographic algorithms (and without revealing to 
researchers how its method works).8 

8. An AI translation algorithm invented its own “interlingua” language to more 
effectively translate between any two languages (without being taught to do so 
by humans).9 

9. An AI system interacted with its environment (via virtual actuators) to learn 
and solve problems in the same way that a human child does.10 

10. An AI-based medical diagnosis system at the Houston Methodist Research 
Institute in Texas achieved 99% accuracy in reviewing millions of 

mammograms (at a rate 30 faster than humans).11 

These and other recent similar breakthroughs (e.g., IBM’s Watson’s defeat of the two 
highest ranked Jeopardy! players of all time in 2011),12 are notable for several 

reasons. First, they collectively provide evidence that we, as a species, have already 

crossed over into an era in which seeing AI outperform humansat least for specific 

tasksis almost routine (perhaps in the same way that landing on the moon was 

“almost” routine after the first few Apollo missions).13 Second, they offer a glimpse of 
how different AI is from human intelligence, and how inaccessible its “thinking” is to 
outside probes. And third, they demonstrate the power of AI to surprise us (including 
AI system developers, who nowadays are closer in spirit to “data collectors” and 
“trainers” than to traditional programmers)—i.e., AI, at its core, is fundamentally 
unpredictable. In the second game of the Go match between the AI that defeated Lee 

SeDol (an 18-time world champion in Go), the AI made a move so surprising that 

                                                   
8 M. Abadi and D. Andersen, “Learning to Protect Communications with Adversarial Neural 
Cryptography,” arXiv:1610.06918v1: https://arxiv.org/abs/1610.06918. 

9 Q. Le and M. Schuster, “A Neural Network for Machine Translation, at Production Scale,” 
Google Research Blog, 27 Sep 2016: https://research.googleblog.com/2016/09/a-neural-
network-for-machine.html. 

10 M. Denil, P. Agrawal, T. Kulkarni, et al., “Learning to perform physics experiments via 
deep reinforcement learning,” under review as a conference paper to ICLR 2017: 
https://arxiv.org/pdf/1611.01843v1.pdf. 

11 T. Patel et al., “Correlating mammographic and pathologic findings in clinical decision 
support using NLP and data mining methods,” Cancer 123, 1 Jan 2017. 

12 S. Baker, Final Jeopardy: Man vs. Machine and the Quest to Know Everything, Houghton 
Mifflin Harcourt, 2011. 

13 Unlike the Apollo program, however, AI is here to stay: Artificial Intelligence and Life in 2030: 
One Hundred Year Study on Artificial Intelligence, Report of the 2015 Study Panel, Stanford 
University, Sep 2016. 
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SeDol had to leave the room for 15 minutes to recover his composure: “It’s not a 
human move. I’ve never seen a human play this move. So beautiful.”14  

The breakthroughs listed above are also notable for a fourth reason—a more subtle 
one, but the one that directly inspired this study. Namely, they portend a set of deep 
conceptual and technical challenges that the Department of Defense (DoD) must face, 

now and in the foreseeable future, as it embraces AI, robot, and swarmrelated 

technologies to enhance (and weaponize) its fleet of unmanned systems with higher 
levels of autonomy. The subtlety lies in unraveling the true meaning of the 
deceptively “obvious” word, autonomy; indeed, as of this writing, there is no 

universally accepted definition. 

Autonomous weaponscolloquially speakinghave been used since World War II 

(e.g., the German Wren torpedo’s passive acoustic homing seeker effectively made it 

the world’s first autonomously guided munition).15 Human-supervised automated 
defensive systems have existed for decades, and aerial drones were first used more 
than 20 years ago (i.e., the RQ-1 Predator was used as an intelligence, surveillance, 
and reconnaissance platform in former Yugoslavia).16 But it was only after the 
September 11, 2001, terrorist attacks that the military’s burgeoning interest in, and 
increasing reliance on, unmanned vehicles started in earnest. In just 10 years, DoD’s 
inventory of unmanned aircraft grew from 163, in 2003, to close to 11,000, in 2013 
(and, in 2013, accounted for 40% of all aircraft).17 And the United States is far from 

being alone in its interest in drones: by one recent tally, at least 30 countries have 
large military drones, and the weaponized drone club has recently grown to 11 

nations, including the United States.18 

DoD procured most of its medium-sized and larger unmanned aerial vehicles (UAVs), 
the MQ-1/8/9s and RQ-4/11s, for the counterinsurgency campaigns in Iraq and 
Afghanistan, where the airspace was largely uncontested. Now the United States is 
withdrawing from those campaigns and the military is shifting its strategic focus to 
less permissive operating environments (i.e., the Asia-Pacific region) and to 
adversaries with modern air defense systems. Thus, there is a growing emphasis on 
developing new, more autonomous, systems that are better equipped to survive in 
more contested airspaces.  

                                                   
14 C. Metz, “The Sadness and Beauty of Watching Google’s AI play Go,” Wired, 11 March, 2016. 

15 J. Campbell, Naval Weapons of World War Two, Naval Institute Press, 2002. 

16 P. Springer, Military Robots and Drones: A Reference Handbook, ABC-CLIO, 2013. 

17 Unmanned Systems Integrated Roadmap: FY2013-2038, U.S. Department of Defense, 2013. 

18 World of Drones: Military, International Security Data Site, New America Foundation: 
http://securitydata.newamerica.net/world-drones.html. 
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Fundamentally, an autonomous system is a system that can independently compose 
and select among alternative courses of action to accomplish goals based on its 
knowledge and understanding of the world, itself, and the local, dynamic context. 
Unlike automated systems, autonomous systems must be able to respond to 
situations that are not pre-programmed or anticipated prior to their deployment. In 
short, autonomous systems are inherently, and irreducibly, artificially intelligent 
robots. In the remaining pages of this summary, we explicate the analytical 
implications of this assertion (leaving details and supporting evidence to the main 
narrative).  

To start, if and when autonomous systems, in the sense just described, finally arrive, 
they will offer a variety of obvious advantages to the warfighter. For example, they 
will eliminate the risk of injury and/or death to the human operator; offer freedom 
from human limits on workload, fatigue, and stress; and be able to assimilate high-
volume data and make “decisions” based on time scales that far exceed human 
ability. If robotic swarms are added into the mix, entirely new mission spaces 
potentially open up as well—e.g., wide-area, long-persistence, surveillance; 
networked, adaptive electronic jamming; and coordinated attack. There are also 
numerous advantages to using swarms rather than individual robots, including: 
efficiency (if tasks can be decomposed and performed in parallel), distributed action 
(multiple simultaneous cooperative actions can be performed in different places at 
the same time), and fault tolerance (the failure of a single robot within a group does 

not necessarily imply that a given task cannot be accomplished). 

However, the design and development of autonomous systems also entails 
significant conceptual and technical challenges, including:  

 “Devil is in the details” research hurdles: Developers of autonomous systems 
must confront many of the same fundamental problems that the academic and 
commercial AI and robotic research communities have struggled for decades 
to “solve.” To survive and successfully perform missions, autonomous systems 
must be able to sense, perceive, detect, identify, classify, plan for, decide on, 
and respond to a diverse set of threats in complex and uncertain 
environments. While aspects of all these “problems” have been solved to 
varying degrees, there is, as yet, no system that fully encompasses all of these 
features. 

 Complex and uncertain environments: Autonomous systems must be able to 

operate in complexpossibly, a priori unknownenvironments that possess a 

large number of potential states that cannot all be pre-specified or be 
exhaustively examined or tested. Systems must be able to assimilate, respond 
to, and adapt to dynamic conditions that were not considered during their 

design. This “scaling” problemi.e., being able to design systems that are 

developed and tested in static and structured environments, and then have 
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them perform as required in dynamic and unstructured environmentsis 

highly nontrivial. 

 Emergent behavior: For an autonomous system to be able to adapt to changing 

environmental conditions, it must have a built-in capacity to learn, and to do 
so without human supervision. It may be difficult to predict, and be able to 
account for a priori unanticipated, emergent behavior (a virtual certainty in 
sufficiently “complex” systems-of-systems dynamical systems). 

 Human-machine interactions/I: The operational effectiveness of autonomous 

systems will depend on the dynamic interplay between the human operator 
and the machine(s) in a given environment, and on how the system responds, 
in real time, to changing operational objectives, in concert with the human’s 
own adaptation to dynamic contexts. The innate unpredictability of the human 
component in human-machine collaborative performance only exacerbates the 
other challenges identified on this list. 

 Human-machine interactions/II: The interface between human operators and 

autonomous systems will likely include a diverse space of tools that include 
visual, aural, and tactile components. In all cases, there is the challenge of 
translating human goals into computer instructions (e.g., “solving” a long-
standing “AI problem” of natural language processing), as well as that of 
depicting the machine’s “decision space” in a form that is understandable by 
the human operator (e.g., allowing the operator to answer the question, “Why 
did the system choose to take action X?”). 

 Control: As autonomous systems increase in complexity, we can expect a 

commensurate decrease in our ability to both predict and control such 
systems—i.e., the “spectre of complacency in complexity.” As evidenced by the 
general nature of recent AI breakthroughs, there is a fundamental tradeoff: 
either the AI can achieve a given performance level (e.g., it can play the game 
Go as well as, or better than, a human), or humans can be able to understand 
how its performance is being achieved). 

Apart from these innately technical challenges to developing autonomous systems, 
there are a set of concomitant acquisition challenges, the origin of which is a recent 
shift in DoD’s innovation-related procurement practices. While the U.S. government 
has always played an important role in fostering AI research (e.g., ARPA, DARPA, NSF, 
ONR), most key innovations in AI, robotics, and autonomy are now being driven by 
the commercial sector,19 and at a pace that DoD’s relatively plodding stove-piped 

                                                   
19 The development of most of the UAVs used in Iraq and Afghanistan was driven not by DoD 
requirements, but rather by commercial research and development. Ref: “Microsoft, Google, 
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acquisition process is ill equipped to accommodate: it takes 91 months (7.6 years), 
on average, from the start of an analysis of alternatives (AoA) study to initial 

operational capability (IOC).20 Even information technology programsunder whose 

rubric most AI-derived acquisitions naturally fallhave averaged 81 months. By way 

of comparison, note that within roughly this same interval of time, the commercial AI 
research community has gone from just experimenting with (prototypes of dedicated 

hardware-assisted) deep learning techniques,21 to beating the world champion in Go 
(along with achieving many other major breakthroughs).  

Of course, DoD acquisition challenges, particularly for weapons systems that include 
a heavy coupling between hardware and software, have been known for decades.22  
However, despite numerous attempts by various stakeholders to address these 
challenges, the generic acquisition process (at least on the traditional institutional 
level) remains effectively unchanged. Whatever progress has been made in recent 
years derives more from workarounds instituted by DoD to facilitate “rapid 
acquisition” of systems,23 than from wholesale changes applied to stove-piped 
processes of the acquisition process itself. Some recent progress has been 

madee.g., the 2009/2011 National Defense Authorization Acts (NDAA/Sec 804), 

mandated a new IT acquisition process, which, in turn led to multiple Defense 
Science Board (DSB) Task Force (TF) studies of the acquisition process. Yet, a notable 
absence in any of these DSB/TF studies is any explicit mention of autonomy.  

Complicating the issue still further is a basic dichotomy between DoD’s existing 
directive on autonomy (DoD Directive 3000.09, issued Nov 2012) and current Test 
and Evaluation (T&E) and Verification and Validation (V&V) practices. Specifically, 

                                                                                                                                           
Facebook and more are investing in artificial intelligence: What is their plan and who are the 
other key players?” TechWorld, September 29, 2016.   

20 Policies and Procedures for the Acquisition of Information Technology, Department of Defense, 
Defense Science Board, Task Force Report, Office of the Under Secretary of Defense for 
Acquisition, Technology and Logistics, March 2009. 

21 The first graphics-processor-based unsupervised deep-learning techniques were introduced 
in 2009: R. Raina, A. Madhavan, and A. Ng, “Large-scale deep unsupervised learning using 
graphics processors,“ Proceedings of the 26th Annual International Conference on Machine 
Learning, ACM, 2009. 

22 J. Merritt and P. Sprey, “Negative marginal returns in weapons acquisition,” in American 
Defense Policy, Third Edition, edited by R. Head and E. Roppe, John Hopkins Univ. Press, 1973. 

23 Examples include: the U.S. Air Force Rapid Capabilities Office, the U.S. Army’s Asymmetric 
Warfare Group and Rapid Capabilities Office, DoD’s Strategic Capabilities Office, and, most 
recently, SecDef Ashton Carter’s Defense Innovation Unit Experimental (DIUx). Ref: B. 
Fitzgerald, A. Sander, J. Parziale, Future Foundry: A New Strategic Approach to Military-
Technical Advantage, Center for a New American Security, 2016. 
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Directive 3000.09 requires that weapons systems (italics added by author of this 
report):24 

 Go through rigorous hardware and software T&E/V&V, “including analysis of 
unanticipated emergent behavior resulting from the effects of complex 
operational environments on autonomous or semiautonomous systems.”   

 “Function as anticipated in realistic operational environments against adaptive 
adversaries.” 

 “Are sufficiently robust to minimize failures that could lead to unintended 
engagements.”  

Directive 3000.09 further requires that T&E/V&V must “assess system performance, 
capability, reliability, effectiveness, and suitability under realistic conditions, 
including possible adversary actions, consistent with the potential consequences of an 
unintended engagement or loss of control of the system.” 

Yet, existing T&E/V&V practices do not make accommodations for any of the 
italicized parts of these quoted requirements. Among the many reasons why 
autonomous systems are particularly difficult to test and validate are: (1) complexity 
of the state-space  (it is impossible to conduct an exhaustive search of the vast space 
of possible system “states” for autonomous systems); (2) complexity of the physical 

environment (the behavior of an autonomous system cannot be specifiedmuch less 

tested and certifiedin situ, but must be tested in concert with interaction with a 

dynamic environment, rendering the space of system inputs/outputs and 
environmental variables combinatorically intractable); (3) unpredictability (to the 

extent that autonomous systems are inherently complex adaptive systems, novel or 
unexpected behavior can be expected to arise naturally and unpredictably in certain 
dynamic situations; existing T&E/V&V practices do not have the requisite fidelity to 
deal with emergent behavior); and (4) human operator trust in the machine (existing 

T&E/VV&A practice is limited to testing systems in closed, scripted environments, 
since “trust” is not an innate trait of a system).  

Trust also entails grappling with the issue of experience and/or learning: to be more 
effective, autonomous systems may be endowed with the ability to accrue 
information and learn from experience. But such a capability cannot be certified 
monolithically, during one “check the box” period of time. Rather, it requires periodic 
retesting and recertification, the periodicity of which is necessarily a function of the 
system’s history and mission experience. Existing T&E/V&V practices are wholly 
inadequate to address these issues. 

                                                   
24 Enclosures 2 and 3 of DoD Directive 3000.09 (Autonomy in Weapon Systems, Nov 2012) 
address T&E and V&V issues, and generally review guidelines, respectively. 
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Defining autonomy 

“Autonomy” applies to a vastly greater range of processes than those that pertain to 

unmanned vehiclesas physical entitiesalone, including the myriad factors needed 

to describe human-machine interactions. It represents a range of context-dependent 
capabilities that may appear at different scales, and in varying degrees of 

sophistication, that collectively enable the coupled human-machine system to 

perform specific tasks. Autonomyby itselfdoes not reductively “fix” any existing 

problems; rather, it redefines, extends, and potentially opens up entirely new mission 
spaces. And its value can only be assessed in the context of specific mission 
requirements, the operating environment, and its coupling with human operators. 

A major impediment to the development of autonomous weapon systems is the 
current lack of a common language by which AI, robot, and other technology experts, 
systems developers, and program managers can communicate (in a manner 
consistent with autonomy’s multi-dimensional, context-dependent nature). There is 
not an even a single definition of the word “autonomy,” much less a universally 

agreed upon taxonomy that might be used as basis for forming a common language. 
Some taxonomies emphasize the details related to a system’s output functions (i.e., 
to its decision capability), while others focus on making detailed distinctions 
between input functions, such as how a system acquires information and how it 
formulates options. And, while sliding scales have been used to delineate between 
levels of “human control” that a given system might require (e.g., the “autonomy” of 
a system may be ranked from, say, 0, meaning that it is under complete control, to 
10, meaning it is fully autonomous, albeit, typically, without the term “fully” being 
well defined), the practical utility of these kinds of taxonomies is limited because 
they ignore critically important contextual factors. For this reason, a recent U.S. 
Defense Science Board report recommended doing away with defining levels of 
autonomy altogether and replacing such taxonomies with a comprehensive 
conceptual framework. However, to date, despite a handful of ongoing attempts, no 
useable framework yet exists. 

Ethical concerns  

The emerging use of autonomous weaponsand the spectre (if not yet the reality) of 

lethal autonomous weapon systems (LAWS), that can select and engage targets on 

their own25raises a host of ethical and moral questions. For example, “Will soldiers 

                                                   
25 Although there are a number of weapon systems in use today that depend on varying degrees 
of human supervision, there are none that are fully autonomous (with the only possible 
exception being the Israel Defense Forces Harpy, a “fire-and-forget” loitering munition 
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be willing to go to battle alongside robots?” “Will robots be able to distinguish 
between military and civilian targets, and be able to use force proportionately?” “Will 
an AI be able to recognize enemy signs of surrender?” “Who will be responsible for 
an unjustified robotic kill?” and “How does one codify an innately subjective body of 
ethical standards and practices?”  

Such questions have led to several international movements against “killer robots.”26 
For example, in July 2015, over 1,000 robotics and artificial intelligence researchers 
signed an open letter calling for a ban on offensive autonomous weapons (with 20K+ 
signatories as of Dec 2016).27 And, at the most recent United Nations Convention on 
Conventional Weapons, the 123 participating nations voted to convene a group of 
government experts to meet (during two sessions) in 2017 to formally address the 
LAWS issue, which could potentially lead to an international ban.28  

While the outcome of these upcoming meetings is uncertain, it is clear is that the 
political, cultural, and basic human-rights dimensions of this issue are only 
beginning to be explored. An analysis of the operational impact that any limitations 

on (or an outright ban of) the use of offensive autonomous weapons may entail for 
U.S. military forces obviously deserves attention. 

Transitioning to new autonomy-enabled mission areas 

Figure ES-1 illustrates, schematically, the key steps involved in extending the existing 
unmanned systems mission space (e.g., reconnaissance, route clearance, and search 
and rescue) to one that more fully embraces all that autonomy potentially offers (e.g., 
self-organized, and self-healing, adaptive swarms). Leaving aside details of the 
pipeline to the main text, the key (mutually entwined) steps include, starting from 
bottom of the figure and working our way to the top:  

 Step 1: Conducting basic AI research across multiple domains (the green-to-red 

overlay emphasizing that research in different AI arease.g., deep learning, 

                                                                                                                                           
designed to detect, attack and destroy radars). Autonomy policy for U.S. weapon systems is 
spelled out in DoD Directive 3000.09, which expressly prohibits use of lethal fully autonomous 
weapons, which it defines as weapon systems that, once activated, may select and engage 
targets without further intervention by a human. Ref: DoD Directive 3000.09, “Autonomy in 
Weapon Systems,” Nov 2012: http://www.dtic.mil/whs/directives/corres/pdf/ 300009p.pdf. 

26 M. Wareham and S. Goose, “The Growing International Movement Against Killer Robots,” 
Harvard International Review, 5 Jan 2017. 

27 http://futureoflife.org/open-letter-autonomous-weapons/. 

28 Final Document of the Fifth Review Conference, CCW, Dec 2016: http://www.reaching 
critical will.org/disarmament-fora/ccw/2016/revcon. 
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image recognition, and robotic swarmsnecessarily proceeds at different rates 

and exists, at any one time, at different levels of maturation).  

 Step 2: Understanding how individual AI research domains feed into the 

myriad components that make up autonomous systems, including their 
coupling with human operators (which further involves the understanding of 
how human-machine collaborative systems function in specific mission 
environments).  

 Step 3: Moving design, development, testing, and accreditation through the 

DoD acquisition process (and accommodating autonomy’s unique set of 
technical challenges while doing so).  

 Step 4: Interpreting and projecting the requisite levels of maturity of system 

capabilities that autonomous systems must possess for specific missions. The 
autonomous systems that are shown in figure ES-1 are characterized as 
functions of four broad categories of AI (i.e., sensing, thinking, acting, and 
teaming). Their projected capabilities are indicated as follows: shades of green 

indicate capabilities that are available now; shades of orange denote near-term 
capabilities; and increasingly darker shades of red indicate the far-term 
regime. This table is taken from the DoD’s Defense Science Board’s most recent 
study on autonomy,29 but is intended mostly as a notional place-holder for the 
kinds of conceptual, technical, and analytical considerations that must be 
taken into account as the raw capabilities of the autonomous systems that 
come out of the acquisition process are transformed into new and 
operationally meaningful missions and missions areas. 

 

                                                   
29 Table 1 in Summer Study on Autonomy, Department of Defense, Defense Science Board, 
Task Force Report, Office of the Under Secretary of Defense for Acquisition, Technology 
and Logistics, June 2016: https://www.hsdl.org/?view&did=79464. 
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Figure ES-1.  Key steps in transitioning to new autonomy-enabled mission areas 

 


