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Abstract 

The military is on the cusp of a major technological revolution, in which warfare is 
conducted by unmanned and increasingly autonomous weapon systems. However, 
unlike the last “sea change,” during the Cold War, when advanced technologies were 
developed primarily by the Department of Defense (DoD), the key technology 
enablers today are being developed mostly in the commercial world. This study looks 
at the state-of-the-art of AI, machine-learning, and robot technologies, and their 
potential future military implications for autonomous (and semi-autonomous) 
weapon systems. While no one can predict how AI will evolve or predict its impact on 
the development of military autonomous systems, it is possible to anticipate many of 
the conceptual, technical, and operational challenges that DoD will face as it 
increasingly turns to AI-based technologies. This study examines key issues, 
identifies analysis gaps, and provides a roadmap of opportunities and challenges. It 
concludes with a list of recommended future studies. 
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Executive Summary / White Paper 

A notable number of groundbreaking artificial intelligence (AI)-related technology 
announcements and/or demonstrations took place in 2016:1 

1. AI defeated the reigning world champion in the game of Go, a game that is so 
much more “complex” than chess that, prior to this event, most AI experts 
believed that it could not be done for another 15-20 years.2 

2. AI learnedon its ownwhere to find the information it needs to accomplish 
a specific task.3 

3. AI predicted the immediate future (by generating a short video clip) by 
examining a single photograph (and is also able to predict the future from 
studying video frames).4 

4. AI automatically inferred the rules that govern the behavior of individual 
robots within a robotic swarm simply by watching.5 

5. AI learned to navigate the London Underground by itself (by consulting its 
own acquired memories and experiences, much like a human brain).6 

6. AI speech recognition reached human parity in conversational speech.7 

                                                   
1 Most of the innovations on this list are described in the Artificial Intelligence section of the 
main narrative of this report (pp. 44-71). A few others also appear in the appendix. 

2 C. Koch, “How the Computer Beat the Go Master,” Scientific American, 19 March 2016. 

3 K. Narasimhan et al., “Improving Information Extraction by Acquiring External Evidence with 
Reinforcement Learning,” presented at EMNLP 2016, https://arxiv.org/abs/1603.07954. 

4 C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating Videos with Scene Dynamics,” 
presented at the 29th Conference on Neural Information Processing Systems, Barcelona, Spain, 
2016: http://web.mit.edu/vondrick/tinyvideo/paper.pdf. 

5 W. Li, M. Gauci, and R. Gross, “Turing learning: a metric-free approach to inferring behavior 
and its application to swarms,” Swarm Intelligence 10, no. 3, September 2016:  
http://link.springer.com/article/10.1007%2Fs11721-016-0126-1. 

6 E. Gibney, “Google's AI reasons its way around the London Underground,” Nature, Oct 2016. 

7 X. Xiong et al., “Achieving Human Parity in Conversational Speech Recognition,” arXiv, 2016: 
https://arxiv.org/abs/1610.05256. 
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7. An AI communication system invented its own encryption scheme, without 
being taught specific cryptographic algorithms (and without revealing to 
researchers how its method works).8 

8. An AI translation algorithm invented its own “interlingua” language to more 
effectively translate between any two languages (without being taught to do so 
by humans).9 

9. An AI system interacted with its environment (via virtual actuators) to learn 
and solve problems in the same way that a human child does.10 

10. An AI-based medical diagnosis system at the Houston Methodist Research 
Institute in Texas achieved 99% accuracy in reviewing millions of 

mammograms (at a rate 30 faster than humans).11 

These and other recent similar breakthroughs (e.g., IBM’s Watson’s defeat of the two 
highest ranked Jeopardy! players of all time in 2011),12 are notable for several 

reasons. First, they collectively provide evidence that we, as a species, have already 

crossed over into an era in which seeing AI outperform humansat least for specific 

tasksis almost routine (perhaps in the same way that landing on the moon was 

“almost” routine after the first few Apollo missions).13 Second, they offer a glimpse of 
how different AI is from human intelligence, and how inaccessible its “thinking” is to 
outside probes. And third, they demonstrate the power of AI to surprise us (including 
AI system developers, who nowadays are closer in spirit to “data collectors” and 
“trainers” than to traditional programmers)—i.e., AI, at its core, is fundamentally 
unpredictable. In the second game of the Go match between the AI that defeated Lee 

SeDol (an 18-time world champion in Go), the AI made a move so surprising that 

                                                   
8 M. Abadi and D. Andersen, “Learning to Protect Communications with Adversarial Neural 
Cryptography,” arXiv:1610.06918v1: https://arxiv.org/abs/1610.06918. 

9 Q. Le and M. Schuster, “A Neural Network for Machine Translation, at Production Scale,” 
Google Research Blog, 27 Sep 2016: https://research.googleblog.com/2016/09/a-neural-
network-for-machine.html. 

10 M. Denil, P. Agrawal, T. Kulkarni, et al., “Learning to perform physics experiments via 
deep reinforcement learning,” under review as a conference paper to ICLR 2017: 
https://arxiv.org/pdf/1611.01843v1.pdf. 

11 T. Patel et al., “Correlating mammographic and pathologic findings in clinical decision 
support using NLP and data mining methods,” Cancer 123, 1 Jan 2017. 

12 S. Baker, Final Jeopardy: Man vs. Machine and the Quest to Know Everything, Houghton 
Mifflin Harcourt, 2011. 

13 Unlike the Apollo program, however, AI is here to stay: Artificial Intelligence and Life in 2030: 
One Hundred Year Study on Artificial Intelligence, Report of the 2015 Study Panel, Stanford 
University, Sep 2016. 
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SeDol had to leave the room for 15 minutes to recover his composure: “It’s not a 
human move. I’ve never seen a human play this move. So beautiful.”14  

The breakthroughs listed above are also notable for a fourth reason—a more subtle 
one, but the one that directly inspired this study. Namely, they portend a set of deep 
conceptual and technical challenges that the Department of Defense (DoD) must face, 

now and in the foreseeable future, as it embraces AI, robot, and swarmrelated 

technologies to enhance (and weaponize) its fleet of unmanned systems with higher 
levels of autonomy. The subtlety lies in unraveling the true meaning of the 
deceptively “obvious” word, autonomy; indeed, as of this writing, there is no 

universally accepted definition. 

Autonomous weaponscolloquially speakinghave been used since World War II 

(e.g., the German Wren torpedo’s passive acoustic homing seeker effectively made it 

the world’s first autonomously guided munition).15 Human-supervised automated 
defensive systems have existed for decades, and aerial drones were first used more 
than 20 years ago (i.e., the RQ-1 Predator was used as an intelligence, surveillance, 
and reconnaissance platform in former Yugoslavia).16 But it was only after the 
September 11, 2001, terrorist attacks that the military’s burgeoning interest in, and 
increasing reliance on, unmanned vehicles started in earnest. In just 10 years, DoD’s 
inventory of unmanned aircraft grew from 163, in 2003, to close to 11,000, in 2013 
(and, in 2013, accounted for 40% of all aircraft).17 And the United States is far from 

being alone in its interest in drones: by one recent tally, at least 30 countries have 
large military drones, and the weaponized drone club has recently grown to 11 

nations, including the United States.18 

DoD procured most of its medium-sized and larger unmanned aerial vehicles (UAVs), 
the MQ-1/8/9s and RQ-4/11s, for the counterinsurgency campaigns in Iraq and 
Afghanistan, where the airspace was largely uncontested. Now the United States is 
withdrawing from those campaigns and the military is shifting its strategic focus to 
less permissive operating environments (i.e., the Asia-Pacific region) and to 
adversaries with modern air defense systems. Thus, there is a growing emphasis on 
developing new, more autonomous, systems that are better equipped to survive in 
more contested airspaces.  

                                                   
14 C. Metz, “The Sadness and Beauty of Watching Google’s AI play Go,” Wired, 11 March, 2016. 

15 J. Campbell, Naval Weapons of World War Two, Naval Institute Press, 2002. 

16 P. Springer, Military Robots and Drones: A Reference Handbook, ABC-CLIO, 2013. 

17 Unmanned Systems Integrated Roadmap: FY2013-2038, U.S. Department of Defense, 2013. 

18 World of Drones: Military, International Security Data Site, New America Foundation: 
http://securitydata.newamerica.net/world-drones.html. 
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Fundamentally, an autonomous system is a system that can independently compose 
and select among alternative courses of action to accomplish goals based on its 
knowledge and understanding of the world, itself, and the local, dynamic context. 
Unlike automated systems, autonomous systems must be able to respond to 
situations that are not pre-programmed or anticipated prior to their deployment. In 
short, autonomous systems are inherently, and irreducibly, artificially intelligent 
robots. In the remaining pages of this summary, we explicate the analytical 
implications of this assertion (leaving details and supporting evidence to the main 
narrative).  

To start, if and when autonomous systems, in the sense just described, finally arrive, 
they will offer a variety of obvious advantages to the warfighter. For example, they 
will eliminate the risk of injury and/or death to the human operator; offer freedom 
from human limits on workload, fatigue, and stress; and be able to assimilate high-
volume data and make “decisions” based on time scales that far exceed human 
ability. If robotic swarms are added into the mix, entirely new mission spaces 
potentially open up as well—e.g., wide-area, long-persistence, surveillance; 
networked, adaptive electronic jamming; and coordinated attack. There are also 
numerous advantages to using swarms rather than individual robots, including: 
efficiency (if tasks can be decomposed and performed in parallel), distributed action 
(multiple simultaneous cooperative actions can be performed in different places at 
the same time), and fault tolerance (the failure of a single robot within a group does 

not necessarily imply that a given task cannot be accomplished). 

However, the design and development of autonomous systems also entails 
significant conceptual and technical challenges, including:  

 “Devil is in the details” research hurdles: Developers of autonomous systems 
must confront many of the same fundamental problems that the academic and 
commercial AI and robotic research communities have struggled for decades 
to “solve.” To survive and successfully perform missions, autonomous systems 
must be able to sense, perceive, detect, identify, classify, plan for, decide on, 
and respond to a diverse set of threats in complex and uncertain 
environments. While aspects of all these “problems” have been solved to 
varying degrees, there is, as yet, no system that fully encompasses all of these 
features. 

 Complex and uncertain environments: Autonomous systems must be able to 

operate in complexpossibly, a priori unknownenvironments that possess a 

large number of potential states that cannot all be pre-specified or be 
exhaustively examined or tested. Systems must be able to assimilate, respond 
to, and adapt to dynamic conditions that were not considered during their 

design. This “scaling” problemi.e., being able to design systems that are 

developed and tested in static and structured environments, and then have 
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them perform as required in dynamic and unstructured environmentsis 

highly nontrivial. 

 Emergent behavior: For an autonomous system to be able to adapt to changing 

environmental conditions, it must have a built-in capacity to learn, and to do 
so without human supervision. It may be difficult to predict, and be able to 
account for a priori unanticipated, emergent behavior (a virtual certainty in 
sufficiently “complex” systems-of-systems dynamical systems). 

 Human-machine interactions/I: The operational effectiveness of autonomous 

systems will depend on the dynamic interplay between the human operator 
and the machine(s) in a given environment, and on how the system responds, 
in real time, to changing operational objectives, in concert with the human’s 
own adaptation to dynamic contexts. The innate unpredictability of the human 
component in human-machine collaborative performance only exacerbates the 
other challenges identified on this list. 

 Human-machine interactions/II: The interface between human operators and 

autonomous systems will likely include a diverse space of tools that include 
visual, aural, and tactile components. In all cases, there is the challenge of 
translating human goals into computer instructions (e.g., “solving” a long-
standing “AI problem” of natural language processing), as well as that of 
depicting the machine’s “decision space” in a form that is understandable by 
the human operator (e.g., allowing the operator to answer the question, “Why 
did the system choose to take action X?”). 

 Control: As autonomous systems increase in complexity, we can expect a 

commensurate decrease in our ability to both predict and control such 
systems—i.e., the “spectre of complacency in complexity.” As evidenced by the 
general nature of recent AI breakthroughs, there is a fundamental tradeoff: 
either the AI can achieve a given performance level (e.g., it can play the game 
Go as well as, or better than, a human), or humans can be able to understand 
how its performance is being achieved). 

Apart from these innately technical challenges to developing autonomous systems, 
there are a set of concomitant acquisition challenges, the origin of which is a recent 
shift in DoD’s innovation-related procurement practices. While the U.S. government 
has always played an important role in fostering AI research (e.g., ARPA, DARPA, NSF, 
ONR), most key innovations in AI, robotics, and autonomy are now being driven by 
the commercial sector,19 and at a pace that DoD’s relatively plodding stove-piped 

                                                   
19 The development of most of the UAVs used in Iraq and Afghanistan was driven not by DoD 
requirements, but rather by commercial research and development. Ref: “Microsoft, Google, 
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acquisition process is ill equipped to accommodate: it takes 91 months (7.6 years), 
on average, from the start of an analysis of alternatives (AoA) study to initial 

operational capability (IOC).20 Even information technology programsunder whose 

rubric most AI-derived acquisitions naturally fallhave averaged 81 months. By way 

of comparison, note that within roughly this same interval of time, the commercial AI 
research community has gone from just experimenting with (prototypes of dedicated 

hardware-assisted) deep learning techniques,21 to beating the world champion in Go 
(along with achieving many other major breakthroughs).  

Of course, DoD acquisition challenges, particularly for weapons systems that include 
a heavy coupling between hardware and software, have been known for decades.22  
However, despite numerous attempts by various stakeholders to address these 
challenges, the generic acquisition process (at least on the traditional institutional 
level) remains effectively unchanged. Whatever progress has been made in recent 
years derives more from workarounds instituted by DoD to facilitate “rapid 
acquisition” of systems,23 than from wholesale changes applied to stove-piped 
processes of the acquisition process itself. Some recent progress has been 

madee.g., the 2009/2011 National Defense Authorization Acts (NDAA/Sec 804), 

mandated a new IT acquisition process, which, in turn led to multiple Defense 
Science Board (DSB) Task Force (TF) studies of the acquisition process. Yet, a notable 
absence in any of these DSB/TF studies is any explicit mention of autonomy.  

Complicating the issue still further is a basic dichotomy between DoD’s existing 
directive on autonomy (DoD Directive 3000.09, issued Nov 2012) and current Test 
and Evaluation (T&E) and Verification and Validation (V&V) practices. Specifically, 

                                                                                                                                           
Facebook and more are investing in artificial intelligence: What is their plan and who are the 
other key players?” TechWorld, September 29, 2016.   

20 Policies and Procedures for the Acquisition of Information Technology, Department of Defense, 
Defense Science Board, Task Force Report, Office of the Under Secretary of Defense for 
Acquisition, Technology and Logistics, March 2009. 

21 The first graphics-processor-based unsupervised deep-learning techniques were introduced 
in 2009: R. Raina, A. Madhavan, and A. Ng, “Large-scale deep unsupervised learning using 
graphics processors,“ Proceedings of the 26th Annual International Conference on Machine 
Learning, ACM, 2009. 

22 J. Merritt and P. Sprey, “Negative marginal returns in weapons acquisition,” in American 
Defense Policy, Third Edition, edited by R. Head and E. Roppe, John Hopkins Univ. Press, 1973. 

23 Examples include: the U.S. Air Force Rapid Capabilities Office, the U.S. Army’s Asymmetric 
Warfare Group and Rapid Capabilities Office, DoD’s Strategic Capabilities Office, and, most 
recently, SecDef Ashton Carter’s Defense Innovation Unit Experimental (DIUx). Ref: B. 
Fitzgerald, A. Sander, J. Parziale, Future Foundry: A New Strategic Approach to Military-
Technical Advantage, Center for a New American Security, 2016. 
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Directive 3000.09 requires that weapons systems (italics added by author of this 
report):24 

 Go through rigorous hardware and software T&E/V&V, “including analysis of 
unanticipated emergent behavior resulting from the effects of complex 
operational environments on autonomous or semiautonomous systems.”   

 “Function as anticipated in realistic operational environments against adaptive 
adversaries.” 

 “Are sufficiently robust to minimize failures that could lead to unintended 
engagements.”  

Directive 3000.09 further requires that T&E/V&V must “assess system performance, 
capability, reliability, effectiveness, and suitability under realistic conditions, 
including possible adversary actions, consistent with the potential consequences of an 
unintended engagement or loss of control of the system.” 

Yet, existing T&E/V&V practices do not make accommodations for any of the 
italicized parts of these quoted requirements. Among the many reasons why 
autonomous systems are particularly difficult to test and validate are: (1) complexity 
of the state-space  (it is impossible to conduct an exhaustive search of the vast space 
of possible system “states” for autonomous systems); (2) complexity of the physical 

environment (the behavior of an autonomous system cannot be specifiedmuch less 

tested and certifiedin situ, but must be tested in concert with interaction with a 

dynamic environment, rendering the space of system inputs/outputs and 
environmental variables combinatorically intractable); (3) unpredictability (to the 

extent that autonomous systems are inherently complex adaptive systems, novel or 
unexpected behavior can be expected to arise naturally and unpredictably in certain 
dynamic situations; existing T&E/V&V practices do not have the requisite fidelity to 
deal with emergent behavior); and (4) human operator trust in the machine (existing 

T&E/VV&A practice is limited to testing systems in closed, scripted environments, 
since “trust” is not an innate trait of a system).  

Trust also entails grappling with the issue of experience and/or learning: to be more 
effective, autonomous systems may be endowed with the ability to accrue 
information and learn from experience. But such a capability cannot be certified 
monolithically, during one “check the box” period of time. Rather, it requires periodic 
retesting and recertification, the periodicity of which is necessarily a function of the 
system’s history and mission experience. Existing T&E/V&V practices are wholly 
inadequate to address these issues. 

                                                   
24 Enclosures 2 and 3 of DoD Directive 3000.09 (Autonomy in Weapon Systems, Nov 2012) 
address T&E and V&V issues, and generally review guidelines, respectively. 
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Defining autonomy 

“Autonomy” applies to a vastly greater range of processes than those that pertain to 

unmanned vehiclesas physical entitiesalone, including the myriad factors needed 

to describe human-machine interactions. It represents a range of context-dependent 
capabilities that may appear at different scales, and in varying degrees of 

sophistication, that collectively enable the coupled human-machine system to 

perform specific tasks. Autonomyby itselfdoes not reductively “fix” any existing 

problems; rather, it redefines, extends, and potentially opens up entirely new mission 
spaces. And its value can only be assessed in the context of specific mission 
requirements, the operating environment, and its coupling with human operators. 

A major impediment to the development of autonomous weapon systems is the 
current lack of a common language by which AI, robot, and other technology experts, 
systems developers, and program managers can communicate (in a manner 
consistent with autonomy’s multi-dimensional, context-dependent nature). There is 
not an even a single definition of the word “autonomy,” much less a universally 

agreed upon taxonomy that might be used as basis for forming a common language. 
Some taxonomies emphasize the details related to a system’s output functions (i.e., 
to its decision capability), while others focus on making detailed distinctions 
between input functions, such as how a system acquires information and how it 
formulates options. And, while sliding scales have been used to delineate between 
levels of “human control” that a given system might require (e.g., the “autonomy” of 
a system may be ranked from, say, 0, meaning that it is under complete control, to 
10, meaning it is fully autonomous, albeit, typically, without the term “fully” being 
well defined), the practical utility of these kinds of taxonomies is limited because 
they ignore critically important contextual factors. For this reason, a recent U.S. 
Defense Science Board report recommended doing away with defining levels of 
autonomy altogether and replacing such taxonomies with a comprehensive 
conceptual framework. However, to date, despite a handful of ongoing attempts, no 
useable framework yet exists. 

Ethical concerns  

The emerging use of autonomous weaponsand the spectre (if not yet the reality) of 

lethal autonomous weapon systems (LAWS), that can select and engage targets on 

their own25raises a host of ethical and moral questions. For example, “Will soldiers 

                                                   
25 Although there are a number of weapon systems in use today that depend on varying degrees 
of human supervision, there are none that are fully autonomous (with the only possible 
exception being the Israel Defense Forces Harpy, a “fire-and-forget” loitering munition 
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be willing to go to battle alongside robots?” “Will robots be able to distinguish 
between military and civilian targets, and be able to use force proportionately?” “Will 
an AI be able to recognize enemy signs of surrender?” “Who will be responsible for 
an unjustified robotic kill?” and “How does one codify an innately subjective body of 
ethical standards and practices?”  

Such questions have led to several international movements against “killer robots.”26 
For example, in July 2015, over 1,000 robotics and artificial intelligence researchers 
signed an open letter calling for a ban on offensive autonomous weapons (with 20K+ 
signatories as of Dec 2016).27 And, at the most recent United Nations Convention on 
Conventional Weapons, the 123 participating nations voted to convene a group of 
government experts to meet (during two sessions) in 2017 to formally address the 
LAWS issue, which could potentially lead to an international ban.28  

While the outcome of these upcoming meetings is uncertain, it is clear is that the 
political, cultural, and basic human-rights dimensions of this issue are only 
beginning to be explored. An analysis of the operational impact that any limitations 

on (or an outright ban of) the use of offensive autonomous weapons may entail for 
U.S. military forces obviously deserves attention. 

Transitioning to new autonomy-enabled mission areas 

Figure ES-1 illustrates, schematically, the key steps involved in extending the existing 
unmanned systems mission space (e.g., reconnaissance, route clearance, and search 
and rescue) to one that more fully embraces all that autonomy potentially offers (e.g., 
self-organized, and self-healing, adaptive swarms). Leaving aside details of the 
pipeline to the main text, the key (mutually entwined) steps include, starting from 
bottom of the figure and working our way to the top:  

 Step 1: Conducting basic AI research across multiple domains (the green-to-red 

overlay emphasizing that research in different AI arease.g., deep learning, 

                                                                                                                                           
designed to detect, attack and destroy radars). Autonomy policy for U.S. weapon systems is 
spelled out in DoD Directive 3000.09, which expressly prohibits use of lethal fully autonomous 
weapons, which it defines as weapon systems that, once activated, may select and engage 
targets without further intervention by a human. Ref: DoD Directive 3000.09, “Autonomy in 
Weapon Systems,” Nov 2012: http://www.dtic.mil/whs/directives/corres/pdf/ 300009p.pdf. 

26 M. Wareham and S. Goose, “The Growing International Movement Against Killer Robots,” 
Harvard International Review, 5 Jan 2017. 

27 http://futureoflife.org/open-letter-autonomous-weapons/. 

28 Final Document of the Fifth Review Conference, CCW, Dec 2016: http://www.reaching 
critical will.org/disarmament-fora/ccw/2016/revcon. 
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image recognition, and robotic swarmsnecessarily proceeds at different rates 

and exists, at any one time, at different levels of maturation).  

 Step 2: Understanding how individual AI research domains feed into the 

myriad components that make up autonomous systems, including their 
coupling with human operators (which further involves the understanding of 
how human-machine collaborative systems function in specific mission 
environments).  

 Step 3: Moving design, development, testing, and accreditation through the 

DoD acquisition process (and accommodating autonomy’s unique set of 
technical challenges while doing so).  

 Step 4: Interpreting and projecting the requisite levels of maturity of system 

capabilities that autonomous systems must possess for specific missions. The 
autonomous systems that are shown in figure ES-1 are characterized as 
functions of four broad categories of AI (i.e., sensing, thinking, acting, and 
teaming). Their projected capabilities are indicated as follows: shades of green 

indicate capabilities that are available now; shades of orange denote near-term 
capabilities; and increasingly darker shades of red indicate the far-term 
regime. This table is taken from the DoD’s Defense Science Board’s most recent 
study on autonomy,29 but is intended mostly as a notional place-holder for the 
kinds of conceptual, technical, and analytical considerations that must be 
taken into account as the raw capabilities of the autonomous systems that 
come out of the acquisition process are transformed into new and 
operationally meaningful missions and missions areas. 

 

                                                   
29 Table 1 in Summer Study on Autonomy, Department of Defense, Defense Science Board, 
Task Force Report, Office of the Under Secretary of Defense for Acquisition, Technology 
and Logistics, June 2016: https://www.hsdl.org/?view&did=79464. 



 

 

 

 xiii  
 

Figure ES-1.  Key steps in transitioning to new autonomy-enabled mission areas 
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Gestalt of main findings 

The military is on the cusp of a major technological revolution as it enters the 
Robotic Age,30 in which warfare is conducted by unmanned and increasingly 

autonomous weapon systems, operating across all domains (air, sea, undersea, land, 
space, and cyber), and across the full spectrum of military operations. The question 
is not whether the future of warfare will be filled with autonomous, AI-driven robots, 
but when and in what form. However, unlike the last “sea change” during the Cold 

War (i.e., the so-called “2nd Offset”),31 when advanced technologies such as precision-
strike weapons, stealth aircraft, smart weapons and sensors, and GPS were developed 
primarily by DoD-sponsored research and development programs, a successful 
transition into the Robotic Age (spurred on by DoD’s recent “Third Offset Strategy” 
innovation initiative)32 will depend critically on how well DoD is able to embrace 
technologies and innovations that are now being developed mostly in the commercial 
world. And, while the human warfighter is not going away anytime soon, if ever (even 
as the depth and breadth of autonomy steadily expand), human operators will not 
suddenly lose control of existing unmanned systems. A telltale sign that DoD has 
made a “no looking back” cross-over into the Robotic Age will be when human 
operators can no longer fully understand, or predict, how autonomous systems 

behave—i.e., when, for the first time, a human operator is as stunned by some 
weapon system’s action as 18-time world Go champion Lee SeDol was by a single 
move of the AI that defeated him. 

In preparation for DoD’s cross-over into the Robotic Age, whenever it arrives, this 
study has identified four key technical gaps in developing AI-based autonomous 
systems, wherein opportunities for future analytical studies naturally arise (see 
figure ES-2). 

These gaps are:   

 Gap 1: A fundamental mismatcheven dissonancebetween the accelerating 

pace (and manner of development and evolution) of technology innovation in 
commercial and academic research communities, and the timescales and 
assumptions underlying DoD’s existing acquisition process.  

                                                   
30 Robert O. Work and Shawn Brimley, 20YY: Preparing for War in the Robotic Age, Center 
for a New American Security, Jan 2014. 

31 J. McGrath, “Twenty-First Century Information Warfare and the Third Offset Strategy,” 
Joint Forces Quarterly, National Defense University, Issue 82, 3rd Quarter 2016. 

32 C. Hagel, Transcript of Keynote speech delivered at Reagan National Defense Forum Keynote, 
Ronald Reagan Presidential Library, Simi Valley, CA, Nov. 15, 2014. 
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Figure ES-2.  Key gaps in transitioning to new autonomy-enabled mission areas 

 

 Gap 2: An underappreciation of the unpredictable nature of autonomous 

systems, particularly when operating in dynamic environment, and in concert 
with other autonomous systems. Existing T&E/V&V practices accommodate 
neither the basic properties of autonomous systems, as expected by AI and 
indicated by decades of deep fundamental research into the behavior of 
complex adaptive systems, nor the requirements they must meet, as weapon 
systems (as spelled out by DoD Directive 3000.09). 

 Gap 3: A lack of a universally agreed upon conceptual framework for 

autonomy that can be used both to anchor theoretical discussions and to serve 
as a frame-of-reference for understanding how theory, design, implementation, 
testing, and operations are all interrelated. A similar deficiency exists for 
understanding the role that trust plays in shaping a human operator’s 
interaction with an autonomous system. The Defense Science Board’s most 
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recent study on autonomy33 warns that “inappropriate calibration” of trust 
during “design, development, or operations will lead to misapplication” of 
autonomous systems, but offers only a tepid definition of trust, and little 
guidance on how to apply it. 

 Gap 4: DoD’s current acquisition process does not allow for a timely 

introduction of “mission-ready” AI/autonomy, and there is a general 
disconnect between system design and the development of concepts of 
operations (CONOPS). Unmanned systems are typically integrated into 
operations from a manned-centric CONOPS point of view, which is 

unnecessarily self-limiting by implicitly respecting human performance 
constraints. 

Recommended studies 

While not even AI experts can predict how AI will evolve in even the nearterm future 

(much less project its possible course over 10 or more years,34 or predict AI’s impact 
on the development of military autonomous systems), it is still possible to anticipate 
many of the key conceptual, technical, and operational challenges that DoD will face 
in the coming years as it increasingly turns to and more deeply embraces AI-based 
technologies, and fully enters the “Robotic Age.” From an operational analysis 
standpoint, these challenges can also be used to help shape future studies: 

Recommendation 1:  Help establish dialog between commercial research and 

development and DoD. 

Institutions specializing in operational analysis are well 
suited to act as “go betweens” linking the academic and 
commercial research communities with military culture / 

operational needs. Assuming that Secretary of Defense 

                                                   
33 Summer Study on Autonomy, Department of Defense, Defense Science Board, Task Force 
Report, Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, 
June 2016: https://www.hsdl.org/?view&did=79464. 

34 S. Armstrong, K. Sotala, and S. hÉigeartaigh, “The errors, insights and lessons of famous 
AI predictions – and what they mean for the future,” Journal of Experimental & Theoretical 
Artificial Intelligence 26, no. 3, 2014;  D. Fagella, “Artificial Intelligence Risk – What Researchers 
Think is Worth Worrying About,” Tech Emergence, 20 March 2016: 
http://techemergence.com/artificial-intelligence-risk/. For the most recent survey of expert 
opinion see: V. Muller and N. Bostrom, “Future Progress in Artificial Intelligence: A Survey of 
Expert Opinion,” in Fundamental Issues of Artificial Intelligence, edited by V. Muller, Springer-
Verlag, 2016.  
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Ashton Carter’s Defense Innovation Unit-Experimental (DIUx) 
program survives into the next administration,35 operationally 
informed and technically knowledgeable analysts can help 
stakeholders better “understand” each other. Cross-
fertilization with the Naval Postgraduate School (NPS) may 
also pay dividends.36 

Recommendation 2:  Develop an operationally meaningful conceptual 

framework for autonomy.  

For example, build on lessons learned from the National 
Institute of Standards and Technology’s (NIST’s) stalled 
evolution of its ALFUS (Autonomy Levels for Unmanned 
Systems) framework, and develop the skeleton of an idea 
proposed by DoD’s Defense Science Board’s 2012 report on 
autonomy.37 

Recommendation 3:  Develop measures of effectiveness (MOEs) and measures of 

performance (MoP) for autonomous systems.  

Develop a methodology by which the effectiveness of 
autonomous systems can be measured at all levels (e.g., 
developers, program managers, decision-makers, and 
warfighters) and across all required functions, missions, and 
tasks (e.g., coordination, mission tasking, training, 
survivability, situation awareness, and workload). 

Recommendation 4:  Use nontraditional modeling and simulation (M&S) 

techniques to help mitigate AI/autonomy-related 

dimensions of uncertainty.  

As DoD moves into the Robotic Age, M&S is moving away 
from “simulations as distillations” of real systems (for which 
M&S has traditionally been used to develop models in order 
to gain insights into the real system), to “simulation-based 
rules and algorithms as descriptions” of real (i.e., engineered) 

                                                   
35 DIUx has been established to help facilitate the discovery and development of capabilities 
and technologies outside DoD’s normal acquisition pipeline. Ref: https://www.diux.mil/. 

36 For example: NPS’s Consortium for Robotics and Unmanned Systems Education and 
Research (CRUSER: https://my.nps.edu/web/cruser), and Autonomous Systems Track 
(http://my.nps.edu/web/ast). 

37 The Role of Autonomy in DoD Systems, DoD Defense Science Board, Task Force Report, 
Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, July 2012. 
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robots and behaviors. It is here, at the cusp between exploring 
behaviors and prescribing rules that generate them (e.g., 
engineering desired swarm behaviors), that M&S can help 
mitigate some of the challenges and uncertainties of 
developing autonomous systems and robotic swarms. For 
example, while “swarm engineering” methods exist to 
facilitate the unique design requirements of robotic swarms, 
no general method exists that maps individual rules to 
(desired) group behavior.38  

Multi-agent based modeling techniques39 are particularly well 
suited for developing these rules, and, more generally, for 
studying the kinds of self-organized emergent behaviors 
expected to arise in coupled autonomous systems (e.g., “How 
sensitive is an autonomous system’s behavior to changes in 
its physical environment?”, “What new command and control 
architectures will be needed for robotic swarms?”, and “How 
will the control and behavior of a swarm scale with its size 
and mission complexity?”).  

Recommendation 5:  Apply wargaming techniques to help develop new CONOPS.   

Wargaming can be used to help identify and develop new 
CONOPS, apply lessons-learned from the experience of using 
deployed systems, explore options to counter uses of 
autonomy by potential adversaries, and assist in training (e.g., 
by exploring trust issues in human-machine collaboration). 
Wargames can also stimulate and nurture a more unified 
approach to understanding autonomous system performance 
and behavior, provided that they are conducted with the 
support and participation from across all military services 
and domains.  

                                                   
38 I. Navarro and F. Matia, “An Introduction to Swarm Robotics,” International Scholarly 
Research Notes, Vol. 2013, 2013:  https://www.hindawi.com/ journals/isrn/2013/608164/. 

39 A. Ilachinski, Artificial War: Multiagent-Based Simulation of Combat, World Scientific, 2004. 
See also: A. Ilachinski, “Modelling insurgent and terrorist networks as self-organized complex 
adaptive systems,” International Journal of Parallel, Emergent and Distributed Systems 27, 
2012; A. Ilachinski, AOEWSim: An Agent Based Model for Simulation Interactions Between Off-
Board EW Systems and Anti-Ship Missiles, CNA, DWP-2013-U-004757, 2013; A. Ilachinski and M. 
Shepko, FAC/FIAC Simulation (FFSim): User’s Guide, CNA, Annotated Briefing, 2015. 
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Recommendation 6:  Develop new T&E/V&V standards and practices 

appropriate for the unique challenges of accrediting 

autonomous systems.   

For example, help ameliorate basic gaps in testing in terms of 
accommodating complexity, uncertainty, and subjective 
decision environments, by appealing to and exploiting lessons 
learned from the development and accreditation practices 
established by the complex system theory and multiagent-
based modeling research communities. 

Recommendation 7:  Explore basic human-machine collaboration and interaction 

issues.   

As autonomy increases, human operators will be concerned 
less with the manual control of a vehicle, and more with 
controlling swarms and directing the overall mission: “What 
are the operator’s informational needs (and workload 
limitations) for controlling multiple autonomous vehicles?” 
“How do humans keep pace with an accelerating pace of 
autonomy-driven operations?” “What kinds of command-and-
control relationships are best for human-machine 
collaboration?” “How are human and autonomous-system 
decision-making practices optimally integrated?” and “What 
data practices are key to developing shared situation 
awareness?” 

Recommendation 8:  Explore the challenges of force-integration of increasingly 

autonomous systems.   

Essentially all force-integration issues are, as yet, 
undetermined. They must consider not just “low hanging 
fruit” extensions of existing CONOPS, in which the human 
component is simply replaced with unmanned systems and 
“operational value” of human performance is scaled to 
accommodate “better” performance (e.g., endurance, 
survivability), but brainstorm heretofore nonexistent tactics, 
operations, and missions that fully embrace existing and 
anticipated future autonomous capabilities. What is the 
tradeoff between large numbers of simple, low-cost (i.e., 
“disposable”) vehicles and small numbers of complex (multi-
functional) ones? 

The operationalization of robotic swarms, in particular, 
represents a heretofore largely untapped dimension of the 
mission space, and will require the development of new 
CONOPS. The swarm may be used as a radically new form of 
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precision coordinated “en masse” guided munition; as a self-
healing area surveillance network (which includes collecting 
and assimilating data on an adversary’s Internet-of-Things 
(IoT);40 or as an adaptive distributed electronic jammer.  

Recommendation 9:  Explore the cyber implications of autonomous systems.    

Explore what new features increased AI-driven autonomy 
brings to the general risk assessment of increasingly 
autonomous unmanned systems. On one hand, autonomy 
may potentially reduce a force’s overall vulnerability to 
jamming or cyber hacking. For example, communications loss 
over a jammed data link may be compensated for by the 
ability of autonomous vehicles to continue performing their 
mission). On the other hand, autonomy itself may also be 
more, not less, vulnerable to a cyber intrusion. For example, 

an adversary may gain “control,” or otherwise deliberately 
“perturb” the behavior of an autonomous system; it may also 
be more difficult to detect embedded malware. In the latter 
context, consider some future variants of incidents such as 
the Iranian capture of an RQ-170 Sentinel in 2011,41 and the 

“keylogging” virus that infected the UAV-control-computers at 
the Creech Air Force Base in Nevada.42 

Recommendation 10:  Explore operational implications of ethical concerns over 

the use of lethal autonomous weapon.    

Analyze issues of accountability, legality, and liability in 
arguments put forth by various “Ban LAWS” movements. 
Examine the possible constraints on missions (along with 
other associated impediments to the design and development 
of autonomous systems) that may result from an 
international ban (or set of limits) imposed on the 
development or deployment of LAWS, such as might come out 
of the United-Nations-sponsored government experts’ 
negotiations scheduled to take place sometime in 2017. 

                                                   
40 G. Seffers, “Defense Department Awakens to Internet of Things,” Signal, 1 Jan 2015: 
http://www.afcea.org/content/?q=defense-department-awakens-internet-things. 

41 The Iranian government announced that the RQ-170 was captured by its cyber warfare unit: 
“Iran shows film of captured US drone,” BBC News, 8 Dec 2011: http://www.bbc.com/news/ 
world-middle-east-16098562. 

42 N. Shachtman, “Exclusive: Computer virus hits U.S. drone fleet,” Wired, 7 Oct 2011. 


