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FOREWARD

In 1989, I joined the Cost Analysis and Research Division at the Institute for 
Defense Analyses (IDA). I spent a very fulfilling 10 years at IDA before moving on to my 
current position as Director of the Cost and Acquisition Program at the CNA Corporation 
(the parent organization for the Center for Naval Analyses).

While at IDA, I keenly observed the practice of cost analysis among my 
colleagues at IDA, as well as at various offices within the Department of Defense and 
among the contractors who supported them. I was fascinated by statistical techniques, 
such as lot-midpoint iteration, that were being widely used throughout the military cost- 
analysis community. Given my own background in econometrics, operations research, 
and statistics, I sought the theoretical justification for these statistical techniques. Much to 
my chagrin, I could not find anybody who had asked   much less answered   
fundamental questions about the mathematical and statistical properties of lot-midpoint 
iteration: existence of a solution, uniqueness of the solution, convergence to that solution, 
and unbiasedness or consistency of the statistical estimators.

It turned out that I was not completely alone in my quest. I experienced something 
of an epiphany when I encountered David Lee's monograph, The Cost Analyst's 
Companion, which was published by the Logistics Management Institute (LMI) in 1997. 
Lee addressed many fundamental questions concerning the nature of learning curves, the 
differences between alternative formulations of the learning curve, and construction of 
cost-estimating relationships (CERs) using principles from physics and engineering. Lee 
dealt quite deftly with the mathematical underpinnings of learning curves and CERs. Lee 
also touched on the statistical calibration of these models. Although I have great respect 
for Lee's work, I must say that I found his discussion of the statistical properties of these 
models far less complete and less satisfying than his discussion of their mathematical 
properties.

So, late in 1998,1 sat down to write David Lee a letter and open up a dialogue on 
improving the state of statistical practice in military cost analysis. I soon found that my 
"letter" was chock-full of equations and beginning to look more like a research paper or a 
journal article. I never did mail the letter, instead redoubling my effort toward writing a 
research paper for publication in one of the professional journals. By the middle of 1999, 
I had drafted a 40-page paper on statistical estimation of learning curves and CERs.

Then I experienced a second epiphany   I met Anduin Touw. IDA hired Anduin, 
a promising young research analyst with a graduate degree in statistics from UCLA and 
prior work experience at Hughes Space and Communications Corporation. I introduced 
myself to Anduin, and asked her to peer-review my 40-page paper. Anduin's immediate 
reaction to my paper was, "If you can't prove all of these results from theory, why not 
investigate them using Monte Carlo analysis?" Having been hit between the eyes with the 
obvious, I invited Anduin to actually perform the Monte Carlo analysis, and join me as a 
co-author on what was now looking more and more like a book. Stephen Balut, Director 
of EDA's Cost Analysis and Research Division, generously arranged for financial support, 
and off we went.



Many friends and colleagues read portions of this work or otherwise educated me 
at various points along the way: Robert Book, Stephen Book, Jino Choi, Henry Eskew, 
Bruce Harmon, David Hunter, Ted Jaditz, and Philip Lurie. Two colleagues reviewed an 
early, near-complete draft of this book: Vadim Kutsyy, who had recently completed a 
Ph.D. in Statistics from the University of Michigan; and Robert Trost, Professor of 
Economics (and senior econometrician) at George Washington University. Linda Garlet 
provided editorial assistance on the complete draft that we first submitted for publication.

Anduin and I presented our preliminary findings during two seminars at George 
Mason University. We extend our thanks to participants in the Statistics Seminar 
(organized by James Gentle), as well as the Operations Research Seminar (particularly 
Andrew Loerch and Roman Polyak).

As previously mentioned, financial support was provided by my former Division 
Director at IDA, Stephen Balut, who also rekindled my long-standing interest in 
operations research. Financial support was sustained by my current Division Director at 
the CNA Corporation, Samuel Kleinman, along with the CNA Corporation's Senior 
Vice-President and Director of Research, David Kelsey.

The idea of publishing the manuscript in the INFORMS Topics in Operations 
Research series was first broached by Thomas Frazier of IDA, who was then the series 
editor. During the lengthy process of completing the manuscript, the editor's job rotated 
to Professor Keith Womer of the University of Mississippi, himself one of the leaders in 
the field of cost analysis. Keith shares my interest in the nexus of econometrics, 
operations research, and statistics; his review comments and shepherding of the project 
have been invaluable.

The views that Anduin and I express in this book are solely our own; they do not 
represent official positions of the Institute for Defense Analyses, the CNA Corporation, 
the Department of the Navy, the Department of Defense, Hughes Space and 
Communications Corporation, or Boeing Corporation. Indeed, we persist in some of our 
views over the objections of a few of our aforementioned colleagues.

Finally, I must thank a pair of feline companions, first Snowy and now Murphy, 
for keeping my lap warm during many laborious hours at the computer.

M.S.G.
Alexandria, Virginia 
March 2003
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For me this project began as a result of my sometimes beneficial and sometimes 
tragic habit of leaping into projects before I fully know the scope or even whether I am 
welcome. Luckily for me, I found a supportive leader, and although the project grew 
beyond our initial expectations, it has been well worth the effort. I believe that it has been 
a great example of why statisticians should venture out to explore fields in which 
statistics and mathematical models are used, but statisticians are not commonplace. And 
of why statisticians, not just statistical software, are needed on projects.

I would like to thank Matt for the opportunity to work on such an interesting and 
fundamental project in cost analysis. I also thank my husband, Brian Jackson, for his 
support and understanding during my foray into this field. I will always be in debt to 
Dr. Tony Lin for his advice and insight on this project, on Monte Carlo analysis, and on 
statistics in general. I would also like to express my appreciation to Dr. Lynne Butler, 
who guided me into this career, and to my parents, who have always encouraged me to 
seek out unusual perspectives on and applications of mathematics.

A.E.T.
El Segundo, California
March 2003

111





TABLE OF CONTENTS

List of Tables .................................................................................................................... vii

List of Figures.................................................................................................................. viii

1. Introduction ..................................................................................................................1

1.1 Data on production lots .......................................................................................2

1.2 A learning-curve model.......................................................................................6

1.3 Estimation of the continuous learning-curve model............................................8

1.4 What's wrong with lot-midpoint iteration?.......................................................11

1.5 Multiplicative regression models ......................................................................13

1.6 Rate effects in learning-curve models ...............................................................15

1.7 Cost-estimating relationships ............................................................................21

1.8 Estimation of multiplicative regression models ................................................23

1.9 Summary of comparisons among estimation methods......................................25

2. Learning curve models ...............................................................................................29

2.1 Two learning-curve models...............................................................................29

2.2 Recurring, fixed, and variable costs ..................................................................30

2.3 Equivalence between the two learning-curve models .......................................32

2.4 Cumulative data versus data on individual production lots ..............................35

2.5 Lot midpoints ....................................................................................................38

2.6 Error distributions for learning curves and CERs .............................................40

2.7 Error distributions for multiplicative learning curves .......................................46

2.8 Non-linear least squares ....................................................................................49

2.9 Lot-midpoint iteration .......................................................................................51

2.10 Retransformation bias........................................................................................54

3. Alternative estimation methods..................................................................................59

3.1 Definitions and assumptions .............................................................................59

3.2 Minimum percentage error................................................................................60

3.3 Iteratively reweighted least squares...................................................................63

3.4 Quasi-likelihood estimation ..............................................................................65

3.5 Comparison of the six estimation methods .......................................................69

3.6 Correction for serial correlation ........................................................................71



4. Application of the estimation methods to Lee's data.................................................77

4.1 Non-linear least squares ....................................................................................77

4.2 Lot-midpoint iteration .......................................................................................84

4.3 Other estimation methods..................................................................................85

4.4 Correction for serial correlation ........................................................................91

5. Simulation experiments..............................................................................................93

5.1 Basic methodology ............................................................................................93

5.2 Simulation experiment 1: multiplicative, normal errors,
learning slope = 80% (baseline).......................................................................96

5.3 Simulation experiment 2: multiplicative, normal errors,
learning slope = 90% .....................................................................................105

5.4 Simulation experiment 3: multiplicative, normal errors,
learning slope = 80%, lot size = 10................................................................114

5.5 Simulation experiment 4: multiplicative, normal errors,
learning slope = 80%, sigma = 0.3.................................................................123

5.6 Simulation experiment 5: multiplicative, uniform-distributed errors,
learning slope = 80% .....................................................................................133

5.7 Simulation experiment 6: multiplicative, t-distributed errors,
learning slope = 80% .....................................................................................140

5.8 Simulation experiment 7: multiplicative, normal errors with first-order
serial correlation, learning slope = 80%.........................................................151

5.9 Conclusions from the simulation experiments................................................159

A. Appendix: Convergence Theory for Lot-Midpoint Iteration...................................165

References........................................................................................................................ 177

Author Index.................................................................................................................... 181

Subject Index ...................................................................................................................185

VI



LIST OF TABLES

Table 1.1 Data for a Tactical Missile Program ...............................................................4

Table 2.1 Work Breakdown Structure for an Unmanned Space Vehicle......................44

Table 3.1 Comparison of Six Estimation Methods for Learning-Curve Models..........70

Table 4.1 Alternative Learning-Curve Estimates using Lee's Data for a
Tactical Missile Program..............................................................................79

Table 4.2 Parameter Estimates from Lot-Midpoint NLS..............................................80

Table 4.3 Terms that Vary Across the Observations ....................................................81

Table 4.4 Parameter Estimates from Lot-Midpoint NLS, Sub-Sample of
Seven Lots.....................................................................................................83

Table 4.5 Weights for NGLS Estimation......................................................................92

Table 4.6 Comparison of NLS and NGLS Estimates ...................................................92

Table 5.1 Data with Outlier from Simulation .............................................................147

Table 5.2 Percentage Errors for Data with Outliers.................................................... 148

Table 5.3 Data with Smaller Outlier from Simulation................................................ 150

vn



	LIST OF FIGURES

Figure 1.1 Unit Costs within the First Lot........................................................................3

Figure 1.2 Distinction between Fiscal-Year Costs and Lot Costs....................................5

Figure 1.3 Learning Curve Fit to Tactical Missile Data...................................................5

Figure 1.4 Production Program with Oscillating Production Rate................................. 17

Figure 1.5 Production Program with Steadily Declining Production Rate.....................18

Figure 1.6 Multi-Year Production with Oscillating Production Rate ............................18

Figure 1.7 Multi-Year Production with Steadily Declining Production Rate ................19

Figure 1.8 F-15E Production Program: Annual Units Authorized................................20

Figure 1.9 F-15E Production Program: Annual Units In-Process .................................20

Figure 1.10 Distinction between Learning Curve and Cost-Estimating Relationship .....22

Figure 2.1 Illustration of Various Cost Categories.........................................................31

Figure 2.2 Proper Interpretation of First-Unit Cost........................................................34

Figure 2.3 Discrete and Continuous Versions of Uniform Probability Density.............35

Figure 2.4 Cumulative and Lot Average Costs for Tactical Missile Data .....................37

Figure 2.5 Illustration of Lot-Midpoint Calculation.......................................................40

Figure 2.6 CER with Additive, Normal Errors ..............................................................41

Figure 2.7 CER with Multiplicative, Normal Errors......................................................41

Figure 2.8 CER with Multiplicative, Log-Normal Errors ..............................................41

Figure 2.9 Normal Approximation to the Error Distribution,
 Standard Deviation = 0.15 ............................................................................48

Figure 2.10 Skewness and Kurtosis of Log-Normal Distribution....................................49

Figure 4.1 Comparison of Intercepts and Slopes for Various Estimation Methods .......78

Figure 4.2 Learning Curve Fit to Tactical Missile Data.................................................82

Figure 4.3 Prediction Interval for Eighth Lot from Sub-Sample of Seven Lots.............84

Figure 4.4 Two Measures of Fit, Hypothetical Data......................................................87

Figure 4.5 Two Measures of Fit, Young's Data.............................................................89

Figure 4.6 Two Measures of Fit, Lee's Data..................................................................89

Figure 5.1 Simulation Experiment 1, Error in Slope Coefficient...................................98

Figure 5.2 Simulation Experiment 1, Error in Intercept.................................................99

Figure 5.3 Simulation Experiment 1, Error in Predicting the Cost of Unit 50.............100

vm



Figure 5.4 Simulation Experiment 1, Error in Predicting the Cost of Unit 100...........101

Figure 5.5 Simulation Experiment 1, Error in Predicting the Cost of Unit 1,000........102

Figure 5.6 Simulation Experiment 1, Comparing Predictions at Different
 Cumulative Quantities ................................................................................103

Figure 5.7 Effects of Number of Lots Observed on Extrapolated Errors.....................104

Figure 5.8 Simulation Experiment 2, Error in Slope Coefficient.................................107

Figure 5.9 Simulation Experiment 2, Error in Intercept...............................................108

Figure 5.10 Simulation Experiment 2, Error in Predicting the Cost of Unit 50.............109

Figure 5.11 Simulation Experiment 2, Error in Predicting the Cost of Unit 100...........110

Figure 5.12 Simulation Experiment 2, Error in Predicting the Cost of Unit 1,000........Ill

Figure 5.13 Effect of Slope on Estimated Cost of Unit 1,000........................................ 112

Figure 5.14 Effect of Slope on Percentage Error at Unit 1,000...................................... 113

Figure 5.15 Simulation Experiment 3, Error in Slope Coefficient.................................115

Figure 5.16 Simulation Experiment 3, Error in Intercept...............................................116

Figure 5.17 Simulation Experiment 3, Error in Predicting the Cost of Unit 50.............117

Figure 5.18 Simulation Experiment 3, Error in Predicting the Cost of Unit 100...........118

Figure 5.19 Simulation Experiment 3, Error in Predicting the Cost of Unit 1,000........119

Figure 5.20 Effect of Lot Size on Prediction Errors for T\ ............................................120

Figure 5.21 Effect of Lot Size on Estimated Cost of Unit 50 ........................................121

Figure 5.22 Effect of Lot Size on Estimated Cost of Unit 1,000 ...................................122

Figure 5.23 Comparison of Two Normal Distributions .................................................123

Figure 5.24 Simulation Experiment 4, Error in Slope Coefficient.................................125

Figure 5.25 Simulation Experiment 4, Error in Intercept...............................................126

Figure 5.26 Simulation Experiment 4, Error in Predicting the Cost of Unit 50.............127

Figure 5.27 Simulation Experiment 4, Error in Predicting the Cost of Unit 100...........128

Figure 5.28 Simulation Experiment 4, Error in Predicting the Cost of Unit 1,000........129

Figure 5.29 MPE Sensitivity to Standard Deviation in T\ Total Error........................... 130

Figure 5.30 MPE Sensitivity to Standard Deviation in T\ Error Components...............131

Figure 5.31 MPE Sensitivity to Standard Deviation in Total Error at Unit 1,000 .........132

Figure 5.32 Comparison of Normal and Uniform Distributions....................................134

Figure 5.33 Simulation Experiment 5, Error in Slope Coefficient.................................135

Figure 5.34 Simulation Experiment 5, Error in Intercept...............................................136

Figure 5.35 Simulation Experiment 5, Error in Predicting the Cost of Unit 50.............137

IX



Figure 5.36 Simulation Experiment 5, Error in Predicting the Cost of Unit 100...........138

Figure 5.37 Simulation Experiment 5, Error in Predicting the Cost of Unit 1,000........139

Figure 5.38 Comparison of Normal and f-distribution..................................................141

Figure 5.39 Simulation Experiment 6, Error in Slope Coefficient.................................142

Figure 5.40 Simulation Experiment 6, Error in Intercept...............................................143

Figure 5.41 Simulation Experiment 6, Error in Predicting the Cost of Unit 50............. 144

Figure 5.42 Simulation Experiment 6, Error in Predicting the Cost of Unit 100...........145

Figure 5.43 Simulation Experiment 6, Error in Predicting the Cost of Unit 1,000........146

Figure 5.44 Influence of Outliers on Estimated Learning Curve ...................................148

Figure 5.45 Minimum Squared Percentage Error as a Function of T\ ...........................149

Figure 5.46 Influence of Smaller Outliers on Estimated Learning Curve...................... 150

Figure 5.47 Simulation Experiment 7, Error in Slope Coefficient................................. 153

Figure 5.48 Simulation Experiment 7, Error in Intercept............................................... 154

Figure 5.49 Simulation Experiment 7, Error in Predicting the Cost of Unit 50............. 155

Figure 5.50 Simulation Experiment 7, Error in Predicting the Cost of Unit 100........... 156

Figure 5.51 Simulation Experiment 7, Error in Predicting the Cost of Unit 1,000........ 157

Figure 5.52 Sensitivity of Lot-Midpoint Iteration to Serial Correlation ........................158

Figure 5.53 Robustness of IRLS ....................................................................................161

Figure 5.54 Robustness of NLS .....................................................................................162

Figure 5.55 Robustness of Lot Midpoint Iteration .........................................................163

Figure 5.56 Robustness of MPE.....................................................................................164

Figure A.I Fixed Points of Cubic and Trigonometric Functions..................................168

Figure A.2 Convergence of Iteration on Trigonometric Function................................. 168

Figure A.3 Gradient Values Along the Unit Circle....................................................... 174

Figure A.4 Example of Divergent Iteration...................................................................175

Figure A.5 Example of Convergent Iteration................................................................175



1. INTRODUCTION

In this chapter, we first discuss statistical methods for estimating "cost progress" 

or "learning." We use these two terms interchangeably to describe a reduction in unit 

production cost as more items have been cumulatively produced over the course of a 

manufacturing program. Some older works defined the term "learning" in a much 

narrower sense, to encompass only the reduction in manufacturing labor hours as workers 

learn to perform repetitive tasks faster or with fewer errors. Most modern authors have 

expanded the concept of "learning" to include redesign of the production process itself, 

perhaps changing the tasks that workers perform or complementing those workers with 

improved automation. In addition, as a production program unfolds, manufacturers may 

find cheaper suppliers, or enter into long-term contracts under which they enjoy quantity 

discounts from suppliers. We retain the older term "learning" without much concern for 

whether the source of the unit cost reduction is confined to production workers 

performing repetitive tasks, or extends to some other economic or technological factors. 

We also use the term "learning curve" to describe the mathematical relationship between 

unit production cost and the cumulative quantity produced. 1

Next, we turn our attention from the learning curve to the cost-estimating 

relationship (CER), a regression equation to predict the development or production cost 

of a system based on performance and technical characteristics such as weight, speed, 

and composite materials content. We define a class of statistical models known as 

multiplicative regression models. Many CERs, as well as a particular representation of 

the learning curve, fall into this class of models. We discuss two specialized statistical 

techniques for calibrating learning curves. We also discuss several general-purpose 

statistical techniques that apply to all multiplicative regression models, including CERs 

as well as learning curves.

We attempt to keep the level of mathematics to a minimum throughout this 

introductory chapter. Only a few of the equations we display should appear difficult to 

most readers, and these few we have simply copied into the current chapter without a full

' The various definitions of "learning" are surveyed in Yelle (1979) and Dutton, Thomas, and Butler 
(1984). The seminal papers are Asher (1956) and Conway and Schultz (1959).
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derivation. In subsequent chapters, we provide the derivations of the few difficult 

equations. Our intention is for the reader to grasp the major content of our work from the 
current chapter, and defer the more difficult mathematics until later.

1.1 Data on production lots

Large hardware items are often purchased not as individual units, but rather as 
lots. For example, the U.S. Navy might sign a contract to purchase 1,200 tactical missiles, 
to be delivered 100 per month over a period of one year. Or, the U.S. Air Force might 

sign a contract to purchase 36 fighter aircraft to be delivered 3 per month over a period of 
one year. Further, a production run often extends over several consecutive years. So, 
expanding on the second example, the U.S. Air Force might purchase 12 aircraft during 
the first year, 24 aircraft during the second year, 36 aircraft per year during several years 

of peak production, and finally 12 aircraft during the final year of production. In each of 
these cases, the units comprising a single year's purchase are considered as one lot.

Two of the fundamental defining features of a lot are the number of units that 
comprise the lot and the total price of the lot. A perhaps surprising aspect of large 
hardware purchases is that individual units within each lot are not separately priced. This 
point may, at first, seem trivial or even wrong. If the initial lot consisting of 12 units of 

some hardware item costs a total of $18.75 million, isn't the average cost simply 
$18.75 -12 or $1.56 million per unit?

The average cost per unit can always be computed by simple division, ̂ or a fixed 

number of units. That is not to say, however, that all of the units in the lot are equally 
costly. If the buyer were to renegotiate the number of units in the lot (the "lot size"), the 
seller would likely adjust the total lot cost in a non-proportional manner; i.e., adjust the 
average cost. Figure 1.1 illustrates the situation. The 12 units within the lot exhibit a trend 

of decreasing unit cost due to learning. Although the average cost of all 12 units is indeed 
$1.56 million, the average cost of only the first 8 units is higher   $1.64 million. Thus, a 

renegotiation that reduced the lot size from 12 units to only 8 units would yield an 
increase in the average cost.

The challenge for the data analyst is to deduce the trend in learning, given only 
data on lot size and total lot cost, but not the cost of individual units. One possibility 
would be to ask the seller for alternative price quotes corresponding to various lot sizes. 
Abstracting from profit margins that drive a wedge between cost and price, one could



attempt to estimate the learning curve from the knowledge that an 8-unit lot costs $1.64 

million per unit, whereas a 12-unit lot costs only $1.56 million per unit.
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Figure 1.1. Unit Costs within the First Lot

This approach is generally unsatisfactory because the historical data do not 

always contain price quotes corresponding to alternative lot sizes. Instead, the buyer may 

ask the seller for a single price quote corresponding to a single delivery schedule. In 

effect, there would be only one data point, precluding estimation of the learning curve. In 

addition, even when multiple price quotes are available, they are only hypothetical and do 

not represent the actual or historical costs of production. Finally, multiple price quotes 

would confound pure learning with the so-called rate effect that arises from bunching 

various numbers of units in a single year; we discuss the rate effect in a later section.

A better approach uses only the actual data from production programs, as opposed 

to hypothetical price quotes. The key is simply to compare the average costs of 

successive lots from the same production program. For the remainder of this monograph, 

we use as our primary example the time-series data originally reported by Lee (1997) on 

lot sizes and lot costs for a tactical missile program. We reproduce those data here as 

Table 1.1.

The second and third columns of Table 1.1 give the unit numbers for each lot in 

the production sequence. For example, the initial lot runs from unit #1 to unit #218, and 

contains 218 units; the second lot runs from unit #219 to unit #1,158, and contains 940 

units; and so on. The incremental lot cost is the cost of a particular lot, not the cumulative



cost of the entire production program. Finally, the lot average cost is computed as the 

ratio of the incremental lot cost and the lot size. Interestingly, unlike in the notional data 

shown previously in Figure 1.1, most of the learning in the actual data for the tactical 

missile program occurs between the first and third lots. Moreover, lot average cost 

actually increases slightly from lot #4 to lot #5 and again from lot #6 to lot #7. Later in 

this chapter, and again in Chapter 4, we discuss the fit of the smooth learning curve to 

these data.

Table 1.1. Data for a Tactical Missile Program

Lot number
1
2
3
4
5
6
7
8

Lot start
1

219
1,159
3,201
5,901
7,592

10,012
11,669

Lot end
218

1,158
3,200
5,900
7,591

10,011
11,668
14,436

Lot size
218
940

2,042
2,700
1,691
2,420
1,657
2,768

Incremental 
lot cost ($M)

102.765
212.158
321.819
333.720
212.558
227.238
157.912
171.339

Lot average 
cost ($M)

0.471
0.226
0.158
0.124
0.126
0.094
0.095
0.062

Source: Lee (1997), p. 50. Although he leaves the matter ambiguous, we presume that the final 
two columns are measured in millions of dollars (e.g., by the eighth lot, the average cost of a 
missile has fallen to $62,000 in some base year's dollars).

Unlike tactical missiles, military aircraft typically follow a 3-year production 

cycle. As illustrated in Figure 1.2, a contract that delivers aircraft within a particular 

fiscal year may involve costs during the two previous fiscal years as well. Conversely, the 

costs incurred in a particular fiscal year may be attributable to as many as three distinct 

aircraft lots. When dealing with multi-year production cycles, we interpret the 

incremental lot cost as the sum across fiscal years of all the costs attributable to a 

particular lot. This interpretation necessarily involves an allocation of plant-wide 

overhead costs among the various lots in progress during a particular fiscal year (as well 

as overhead allocations to other systems   presumably other aircraft models   being 

produced concurrently in the same plant). In Figure 1.2, we would horizontally (rather 

than vertically) sum the costs attributable to a particular lot.2

Balut, Gulledge, and Womer (1989) thoroughly discuss the costs associated with multi-year 
production, including the allocation of overhead costs across concurrent programs. Womer (1984) 
describes the biases from ignoring multi-period production (actually, using monthly rather than annual 
data)
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Much of this monograph is devoted to estimating the trend in learning from data 

on lot sizes and lot costs. One of the statistical methods we develop, when applied to 

Lee's data, results in the learning curve previewed here as Figure 1.3. The height of each 

data point represents the average cost of the lot. The horizontal coordinates are the "lot 

midpoints," a concept we discuss in the next section. The figure shows the fitted learning 

curve, as well as the  2 standard deviation ("sigma") confidence band around the 

learning curve. The formula for the confidence band is not widely known and is seldom 

used by cost analysts. We develop this formula in Chapter 2.
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Quantity

Figure 1.3. Learning Curve Fit to Tactical Missile Data
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A few cautions are in order before proceeding further. In defense procurement, 

the actual execution of a production program almost always deviates from the initial 

delivery schedule. Increases in total quantity (or accelerated delivery of a fixed total 

quantity) could result in retooling, capacity expansion, and overtime labor costs, possibly 

offset by reduced overhead burdening. Decreases in total quantity could result in penalty 

clauses, severance and shutdown costs, and increased overhead burdening. In addition, 

technical upgrades (e.g., enhanced aircraft radars) during the course of a production 

program may make it difficult to compare the later units with the earlier units, unless 

some adjustment is made. We ignore these complications and assume that, 

notwithstanding any trend in lot average costs, the items produced are all observationally 

equivalent from the final customer's (e.g., the aircraft squadron's) perspective. Stated 
more directly, our notion of learning is the manufacturer's ability to produce successive, 

observationally equivalent units at declining unit cost. We refer the reader to the 

published literature for a discussion of adjustments for quantity deviations, technical 

upgrades, and so on.3

1.2 A learning-curve model
Let Q denote the sequence number of a particular unit in the production run. The 

learning curve is most often specified so that the cost of unit Q — the marginal cost   is 

a power function of Q:

MC(Q) = T,Qb (1.1)

for Q > 0, where T\ > 0 and b are parameters to be estimated.

The "learning slope" is defined as the ratio of marginal costs between unit 2Q and 

unit Q:

p = MC(20/MC(0 = 2b . (1.2)

Marginal cost is presumed to decline with increasing quantity. However, as we argue in 
Chapter 2, it is implausible that marginal cost would decline by as much as 50% when 

quantity doubles. The plausible range of l/2 < p < 1 for the learning slope translates into a 
corresponding range -1 < b < 0. For example, with p - 0.9 or a 90% learning slope

3 A good recent example of this literature is Harmon, Touw, and Woolsey (2000).



(which equates to b = -0.152), the second unit costs only 90% as much as the first unit; 

the fourth unit costs 90% as much as the second unit, or 81% as much as the first unit; 

and so on.

If we take the logarithms on both sides of equation (1.1), we appear to have a 

model that can be estimated using ordinary least squares (OLS):

ln[MC(0] = In?; +bx]nQ, (1.3)

where "hi" denotes the natural logarithm. The difficulty, however, is that we are given 

only data on lot size and total lot cost, not the cost of individual units. Thus, the left-hand 
side of equation (1.3) cannot be computed for the individual units Q = 1,2,3,....

Instead, the most common solution is to find a "typical unit" within each lot, use 

the sequence number of that unit in place of Q on the right-hand side of equation (1.3), 
and use the average cost of the entire lot in place of MC(Q) on the left-hand side. The

lot average cost is computed simply as the ratio of total lot cost and lot size, both of 

which are observable. The "typical unit" is traditionally called the "lot midpoint." The 

regression analysis is then conducted on the lot midpoints (one per lot) rather than on the 
individual units. Letting Qt denote the midpoint of the i'h lot and LAC, the lot average

cost, OLS is actually applied to the following model:

\n(LAC,) = In 7^ + bx\nQt (b), (1.4)

for lots / = !,...,«. We explicitly write the lot midpoint as Qt (b), a function of the 

exponent b. We do so because, as we will see in a moment, the lot midpoint cannot be 

computed without knowledge (or at least an estimate) of the exponent b (or the 

corresponding learning slope).

The following simple example illustrates the calculation of lot midpoints.4 
Consider a production process with b = -0.152 (or p = 0.9) and 7^ = 2.0. Suppose the 
initial lot consists of two units. The first unit costs 7j = $2.00, and the second unit costs 

2.0 x 2~0152 = $1.80 (with a 90% learning slope, the second unit costs only 90% as much 

as the first unit). The average cost of the entire lot is $1.90, the average of $2.00 and

4 This example is adapted from Eskew (2000). This is not exactly the conventional lot-midpoint 
calculation, but it serves to illustrate the concept using a minimum of mathematics. We report the 
conventional lot-midpoint calculation later in this chapter, and more fully derive and critique it in 
Chapter 2.



$1.80. The lot midpoint is defined as the (generally non-integer) quantity whose marginal 

cost (left-hand side of the following equation) is equal to the lot average cost (right-hand 

side):

2.0x0- 152 = $1.90. (1.5)

The solution to this equation is £>, =1.40. Thus, in the regression analysis on the lot 

midpoints, the midpoint for the first lot would be "unit" 1.40. The midpoints of the later 

lots would be computed in a similar fashion. 5

Note, however, the circularity in this procedure. We had to assume a 90% 

learning slope in order to compute the lot midpoint. But if we already knew the learning 

slope, we would not have to proceed with the regression analysis. On the other hand, if 

we did not already know the learning slope (or the corresponding exponent; in this case, 

b - -0.152), how would we apply equation (1.5) to compute the lot midpoints?

One solution is to iterate: start with an initial guess of the learning slope, and then 

alternate between the two steps of estimating the regression exponent in equation (1.4) 

and updating the lot midpoints in equation (1.5). The iteration ends when (and if) two 

successive iterations yield the same value for the regression exponent, within a pre- 

specified numerical tolerance. We refer to this procedure as lot-midpoint iteration.

1.3 Estimation of the continuous learning-curve model

In Chapter 2, we review the theory of continuous learning curves, which leads to 

the following expression for the lot average cost:

LAC, = TC> " rC'-' -      ̂       x[(Q+0.5) 1+* - (Q 1+ 0.5) 1+*1 . (1.6) 
Q-Q-, 0+6)x(Q-e_,) L^' ^'-' J

In this notation, the fh lot runs through unit Qt . Similarly, the preceding lot (/' -1) ran 

through unit £> _, . Thus, the fh lot begins with unit Q._, + 1 (the unit after the one that 

completed the preceding lot) and runs through unit Qt . 6 The variable TCt is the

The preceding calculations are based on a discrete learning curve. In Chapter 2, we develop the more 
common, continuous approximation to the learning curve, hi contrast to the midpoint of Q =1.40 we 

just computed for the initial lot, the continuous approximation yields a slightly smaller midpoint of 
9=1-36.

For example, in the data of Table 1.1, the second lot contains units Q, +1 = 219 through Q2 = 1,158.



cumulative total cost of the production program through the / lot, so that TCi - 
represents the incremental cost of the fh lot. Finally, Ql .-£>,_, represents the lot size, and 

lot average cost is computed as the ratio of incremental lot cost and lot size. 

The midpoint of the fh lot, Q,(b), is defined as follows:

(1.7)

for -1 < b < 0. A comparison of equations (1.6) and (1.7) shows that the marginal cost of 
the lot midpoint is equal to the lot average cost, LACi = T\ x[Q(&)] . Taking logarithms 

we recover equation (1.4), In {LA C, ) = In T} + bxlnQ^b).

Iterative estimation of equation (1.4), or lot-midpoint iteration, has been the norm 

in cost analysis for nearly half a century, since the days of Asher (1956). This practice 

was necessitated by the lack of either computer hardware or software capable of 

estimating non-linear least squares (NLS), as opposed to OLS regression. The definition 

of lot midpoint, along with the logarithmic transformation, resulted in equation (1.4) 

which looks tantalizingly close to OLS regression. In fact, given the technology of the 

day, equation (1.4) could be estimated only by alternating between the two steps of OLS 

regression and updating the lot midpoints.

We consider it extremely unlikely that a modern statistician, confronted with this 

problem, would advocate lot-midpoint iteration. If one insisted on retaining the artifice of 

lot midpoints, then equation (1.4) could be estimated in a single step using NLS. The 

right-hand side of equation (1.4) is a non- linear function of the exponent b, which pre- 

multiplies the lot midpoint and, from equation (1.7), is also embedded within the 

definition of the lot midpoint. Despite the two roles that b plays on the right-hand side, an 

estimate of b is still readily available. Simply choose b to minimize the sum-of-squared 

errors between the (non-linear) right-hand predictor and the actual values of the 

logarithmic lot average cost:

(1.8)



where n is the number of lots in the data sample and Qi (b) is the lot midpoint as given 

previously in equation (1.7). 7

Statistical software to minimize expression (1.8) is widely available. The 
statistical properties of this problem, such as regression standard errors, confidence 

intervals, and significance tests, are well known. The convergence properties of various 

algorithms (such as Gauss-Newton) for locating the minimum are equally well known. 8 
To clarify our earlier statement, the minimization algorithms require only a "single step" 

in the sense that the user need only specify the right-hand predictor (the right-hand side 
of equation (1.4)) once, as a parametric function of the unknown values T\ and b. This 

situation contrasts with lot-midpoint iteration, during which the user must manually 

update all n lot midpoints from equation (1.7) at every iteration.

As yet another alternative, one could jettison entirely the artifice of lot midpoints, 

and simply treat equation (1.6) as a non- linear predictor of the lot average cost (not its 
logarithm). An estimate of b is available by minimizing the sum-of-squared errors 
between the right-hand predictor and the actual values of the lot average cost:

x\(Q+Q5) l+b - (Q ,+0^) 1+6 l .(1.9) l J

It turns out, from the definition of lot midpoints, that expression (1.9) is 

equivalent to:

(i.io)

Thus, in one sense, expression (1.8) represents NLS applied to lot-midpoint data after a 

logarithmic transformation, whereas expression (1.10) merely omits the logarithmic 

transformation. However, we can equally well arrive at expression (1.9) without ever 

considering or even being aware of the notion of lot midpoints. We postulate that our

7 Lee (1997, p. 56, equation 79) contemplates exactly this minimization problem. However, rather than 
advocating direct (albeit non-linear) minimization via NLS, Lee veers into a discussion of lot-midpoint 
iteration.

8 Two large treatises, concentrating on the statistical properties of NLS, appeared in the late 1980s: 
Gallant (1987) and Seber and Wild (1989). The algorithmic convergence properties of NLS are 
discussed in Dennis and Schnabel (1996), a reprint of an earlier monograph first published in 1983. An 
even earlier book by Bard (1974) quite thoroughly addressed both the statistical and algorithmic 
convergence properties of NLS.
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modern statistician, upon viewing the model for lot average cost in expression (1.6), 

would immediately jump to expression (1.9) and apply NLS. The right-hand predictor, as 

we show in Chapter 2, is just the area under the continuous approximation to the learning 

curve, divided by the size of the ith lot. The notion of lot midpoints is completely 

superfluous to this development. Our statistician might gravitate toward expression (1.8) 

only if the error terms appeared ill-behaved, and a logarithmic transformation was 

applied in an attempt to restore a normal error distribution or to stabilize the variance. 

However, we demonstrate several other estimation methods in Chapter 3 that can be used 

to restore normality or stabilize the variance, again without the artifice of lot midpoints.

1.4 What's wrong with lot-midpoint iteration?
Although NLS estimation of expression (1.9) may seem compelling, what harm is 

done by continuing to apply lot-midpoint iteration, as remains the norm in cost analysis? 

The harm is that neither the mathematical nor the statistical properties of lot-midpoint 

estimation are known. Indeed, a major motivation of the current research was to ascertain 

these previously unexplored properties.

In Chapter 2 we attempt to answer the following seven questions regarding lot- 

midpoint estimation:

1. Is lot-midpoint iteration equivalent to (i.e., does it yield the same point 
estimates as) NLS?

2. Is there a distributional assumption under which lot-midpoint iteration is 
equivalent to maximum-likelihood estimation (MLE9)?

3. Does lot-midpoint iteration maximize or minimize any continuously 
differentiate function of the parameters T\ and b (if not a sum-of-squares 
or a likelihood function, perhaps some other function)?

4. Is lot-midpoint iteration guaranteed to converge, or might the iteration 
continue forever?

5. If lot-midpoint iteration does converge, is the solution unique; or might the 
iteration converge to two (or more) distinct solutions depending upon the 
starting values?

MLE is probably the most widely used estimation technique in all of statistics. For example, under the 
appropriate distributional assumptions, the use of sample moments (means, variances, and so on) to 
estimate their population counterparts is equivalent to MLE. Similarly, least-squares regression 
methods are often equivalent to MLE. In Chapter 3, we discuss MLE in the context of learning curves 
and CERs.
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6. If a particular lot-midpoint iteration has two distinct solutions, on what basis 
do we choose one over the other?

7. If lot-midpoint iteration does converge, how accurate are the standard errors 
from the final regression step?

We consider it quite remarkable that cost analysts have blithely applied lot- 

midpoint iteration for nearly half a century without the answers to or, to our knowledge, 

even having asked these questions. Moreover, both the mathematical and statistical 

properties of NLS have been well established and disseminated at least since the 

publication of Bard (1974). Computer hardware and software capable of estimating NLS 

may have been scarce back in 1974, but they have been widely available and reliable for 

easily the past 15 years and arguably the past 20 years.

We found it surprisingly difficult to answer the seven questions regarding lot- 

midpoint iteration. However, we were able to establish the following theoretical 

properties:

  Lot-midpoint iteration is not equivalent to either NLS or MLE.

  Lot-midpoint iteration does not maximize or minimize any continuously 
differentiate function of the parameters T\ and b.

• There is no universal guarantee that a solution pair T\ and b exists to balance 
equation (1.4); that a solution, if it exists, is unique; or that a solution can be 
approximated by a finite number of steps of lot-midpoint iteration. The 
standard sufficient conditions that guarantee existence, uniqueness, and 
convergence may or may not hold for the lot-midpoint problem.

  Lot-midpoint iteration may still converge, despite the failure of the standard 
sufficient conditions, because these conditions are not actually necessary.

  In a maximization problem, we can always compare the value of the objective 
function at two distinct local maxima, disposing of the smaller value because 
it cannot be the global maximum. But because lot-midpoint iteration does not 
maximize any continuously differentiable objective function, we have no basis 
to choose between two distinct solutions.

Our theoretical analysis of lot-midpoint iteration does not provide a compelling 

motivation to use that technique. Although we were unable to develop any theoretical 

guarantee that lot-midpoint iteration converges, our Monte Carlo analysis in Chapter 5 

suggests that it does converge. Nor have we encountered multiple solutions in practice, at 

least when using reasonable starting values. However, we are still reluctant to endorse an 

estimation technique whose theoretical properties remain largely unknown.
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1.5 Multiplicative regression models
We are generally accustomed to regression models in which the stochastic error 

term is additive to the model prediction:

y, = /(* /?) + K,, (i-ii)

where yi is the observed response variable, */ is an observed vector of k predictor 

variables, J3 is a vector of m coefficients to be estimated, and «/ is the unobserved error 

term for the fh observation. The regression model is linear (as distinct from additive) in 
the special case where f(xi ,f3}-^xIJ f3J . The error terms are often assumed to be

statistically independent with zero mean and finite variance, and are often further 

assumed to be normally distributed. However, none of these properties (including 

linearity) are essential to the definition of an additive regression model.

Even assuming that /(*.,/?) is the correct model, we face two types of errors in 

attempting to predict the value of yi for a new observation outside the original estimation 

sample (e.g., the cost of a new weapon system). First, we have only an estimate of /3 and 

not its true value. Second, the actual value of yi will deviate from the model prediction 
/(*,,/?) in light of the error term, M/. Because the error term is additive to the model

prediction, we may state roughly that the predictions of the additive regression model are 

accurate within   x units (e.g., dollars).

By contrast, a multiplicative regression model has the form:

y, = f(x,,P)xu,, (1-12)

where now HI has mean 1.0. Once again, the assumptions of linearity, finite variance, and 

normal distribution are common, but not essential to the definition of a multiplicative 

regression model. 10 Because the error term is multiplicative to the model prediction, we 

may state roughly that the predictions of multiplicative regression model are accurate

10 Lee (1997, p. 55-56) assumes that the error term U{ is normally distributed. A more common 

distributional assumption for the multiplicative regression model replaces the factor u\ with exp(v ),

where v, is normally distributed. We contrast these two assumptions in Chapter 2. There we 
demonstrate that the two assumptions are nearly equivalent when the variance of the random error term 
is small. However, Lee's assumption is, strictly speaking, incompatible with certain estimation 
methods that are available under the alternative assumption.
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within ±x%. For example, a random draw of ut =1.30 implies that yt = 1.30x/(jc( ,/?).

The actual response variable is 30% larger than the model prediction; equivalently, the 
model underpredicts the actual response by 23% [/(*,,/?) = 0.77 x yt ]. When comparing

the model prediction to the actual response, it may seem more natural to treat the actual 

response as "truth" and, therefore, the base of the percentage difference. However, we 

shall more often treat the model prediction as the base of the percentage difference, viz.,

>>,-/(* /?) = [1 - 30 x /(* /?)]-/(* /?) = Q3Q 

/(* /?) f(xtt p)

We follow this approach because two of the estimation methods that we explore   

maximum likelihood and minimum percentage error   involve (at least approximately) 

minimizing the sum over all the observations of the squares of the percentage differences 

as defined in expression (1.13).

We have described three possible regression models for estimating the trend in 

learning: lot-midpoint iteration in equation (1.4), NLS applied to lot-midpoint data after 

a logarithmic transformation in expression (1.8), and NLS applied to lot-midpoint data 

without the logarithmic transformation in expression (1.10). In none of these instances 

have we specified the form in which the stochastic error enters the model. In principle, 

one could append additive, multiplicative, or even some other type of error term to any of 

the three regression models, yielding a multitude of possibilities.

An appealing specification would be to append a multiplicative error term to the 

predictor of lot average cost:

LAC, = T} x[Qi (b)] b xu, . (1.14)

Taking logarithms, we can transform this multiplicative model into an additive model for 

the logarithm of lot average cost:

]n(LAC,) = In(7i) + ft In [0,0)1 + ln(«,) , (1-15)

where ln(«.) represents the additive error term.

The logarithmic transformation is tempting because, holding 0(6) constant 

during the regression step of lot-midpoint iteration, equation (1.1 5) is linear-in- 

parameters and thereby amenable to OLS. In order that the usual confidence intervals and

14



significance tests for OLS be exact in small samples, we require the additional 
assumption that the transformed error term, ln(w.), is normally distributed. This will be

the case only if the original error term, «( , is log-normally distributed. Data analysts are

often too quick to transform equation (1.14) into equation (1.15), obtaining a linear-in- 
parameters model but not checking whether the transformed error term ln(w.) is indeed

normally distributed. Only through serendipity does a single transformation both linearize 

a model and restore a normal error distribution. We note, however, that even if the 

transformed error term is non-normal, the usual confidence intervals and significance 

tests for OLS may still be valid in large samples.''

1.6 Rate effects in learning-curve models
Learning curves are sometimes augmented to include the rate of production in the 

current period in addition to the cumulative number of units produced (as typically 

measured by the unit number of the lot midpoint). The theory is that, learning 

notwithstanding, increases in the current rate of production could entail overtime labor 

costs, might drive up the short-run price of materials, or might increase the failure rate of 

manufacturing equipment.

In the multiplicative representation of lot average cost, the augmented learning- 

curve model would appear as follows:

LAC, = T, x [Q(£,)]*' x Rate,* 2 x «/   0-16)

Difficulties arise in attempting to measure the production rate. When using annual 

data aggregated to the entire system level (as in the U.S. Department of Defense's

Selected Acquisition Reports (DoD SARs)), practitioners often equate production rate 
with the current lot size, Rate, =Qt - £?,_,. For example, in the tactical missile data of

Table 1.1, the column labeled "Lot size" might be used as a proxy for production rate.

In practice, the introduction of production rate has met with mixed success; see 

the discussion in Chapter 3 of Lee (1997). Many have argued that attempts to include the

Schmidt (1976, pp. 55 64) showed that the OLS confidence intervals and significance tests are valid 
asymptotically if the error terms are independently and identically distributed, with finite variance 
(constant across all of the observations), and if certain other technical conditions hold; he does not 
require a normal distribution. White (1980) extended this result by deriving adjusted standard errors 
that yield asymptotic confidence intervals and significance tests under non-constant variance or 
heteroscedasticity.

15



production rate are doomed to failure because the current lot size is mechanically 

positively correlated (collinear) with cumulative quantity. For example, Large et al. 

(1974) state:

In general, however, we must conclude that for predicting the overall 
effect of production rate on aircraft cost, generalized estimating equations 
[i.e., including current lot size] based on statistical analyses of our sample 
of military aircraft would be too unreliable to be useful.

Although we are not necessarily advocates of including the current lot size in the 

model, and although it may fail due to collinearity in particular instances, it is not 
mechanically correlated with cumulative quantity. Those who claim mechanical 

correlation are confusing the level of a time series with its rate of change. While the two 

concepts are clearly mathematically related, they are not linearly related, and correlation 

is a measure of linear association.

This confusion is compounded by the common practice of equating the current lot 

size with the theoretical production rate. Recalling Figure 1.2, when dealing with multi- 

year production cycles, several lots may be in progress concurrently at the same plant. 

The question arises of what exactly we are attempting to measure with production rate. If 

we believe that costs are driven by all activity in a plant, then we would vertically sum 

the number of units across all lots in progress during each fiscal year. In Figure 1.2, we 

would measure production rate in fiscal year 2000 as the sum of the quantities ordered (in 

DoD parlance, "authorized") in fiscal years 1998 (these units would be in their third and 

final year of production by 2000), 1999 (units in their second year of production), and 

2000 (units in their initial year of production).

On the other hand, during the notional 3-year production cycle for military 

aircraft, a large portion of the elapsed time involves manufacturing sub-systems at 

subcontractors' plants. Final assembly at the prime contractor's plant may all occur 

during the final year of the production cycle. Activities that precede final assembly may 

be incidental to the prime contractor's plant, and might not drive overtime labor costs or 

failure rates of manufacturing equipment (at least, not at the prime contractor's plant, 

though possibly at the subcontractors' plants). By this argument, the prime contractor's 

production rate is perhaps better measured by the number of units in final assembly. The 

current lot size provides a serviceable approximation to this concept, although it too is 

somewhat flawed due to time lags. For example, an aircraft that completes final assembly 

and is delivered in the first month of DoD's fiscal year (October) would certainly have 

begun final assembly during the previous fiscal year.
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We have developed a series of six charts, with these two objectives:

  Illustrate the complications in measuring production rate using aggregate 
annual data, and

  Debunk the assertion that production rate (however measured) and 
cumulative quantity are mechanically correlated.

To address the correlation issue in the simplest possible context, consider a 

production situation in which final assembly of each unit takes place within a single 

month. (One example might be assembly of full-up artillery rounds from existing 

components already in the inventory.) Thus, we temporarily avoid the problems of multi- 

year production and time lags across fiscal years. We can then safely equate production 

rate with the current lot size, because plant activity during each month involves only units 

that will be delivered during that month; by extension, plant activity during any fiscal 

year corresponds to that year's lot size. With these simplifying assumptions, we can 

concentrate on the correlation between production rate and cumulative quantity.

Figure 1.4 illustrates a production program with an oscillating production rate. 

The oscillating production rate is essentially uncorrelated with the steady increase in 

cumulative quantity; the correlation equals only 0.038. Figure 1.5 illustrates a production 

program with a steadily declining production rate. In this case the correlation is strongly 

negative, -0.969, contrary to the presumed positive mechanical correlation.
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Figure 1.4. Production Program with Oscillating Production Rate
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= -0.969

Annual units 
Cumulative units

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1.5. Production Program with Steadily Declining Production Rate

The situation is somewhat more complex if we reintroduce multi-year production, 

but the conclusion regarding the correlation remains essentially intact. We modify 

Figure 1.4 to reflect an assumed 3-year production cycle. The horizontal axis in 

Figure 1.6 now measures not the lot number, but rather the contract year. Thus, plant 

activity during the first contract year involves only the 10 units that are authorized and 

for which production begins that year. Plant activity during the second contract year 

involves those same 10 units, now in their second year of production, plus 20 new units. 

Plant activity during the third contract year involves all 40 units that were authorized 

during that year and the preceding two years. From that point forward, units in-process 

are measured over a three-year moving time window.
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Figure 1.6. Multi-Year Production with Oscillating Production Rate
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Apart from the ramping up and down at the two extremes, units in-process follow 

an oscillating pattern. Whereas the correlation in Figure 1.4 was 0.038, the correlation in 

Figure 1.6 is -0.022. In both instances, the alleged mechanical correlation between 

production rate and cumulative quantity is negligible.

We next modify Figure 1.5 to reflect a 3-year production cycle. In Figure 1.7 we 

again observe a ramping-up phenomenon, with 15 units in-process during the first 

contract year, followed by 29 units in-process during the second contract year, and 42 

units during the third contract year. The ramping-up serves to dampen the negative 

correlation somewhat; the correlation is -0.742 in Figure 1.7 versus -0.969 in Figure 1.5. 

Nonetheless, even a correlation of -0.742 contradicts the assertion of a positive 

mechanical correlation.
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Figure 1.7. Multi-Year Production with Steadily Declining Production Rate

Finally, in case our examples appear contrived, Figure 1.8 displays the actual 

production program for the U.S. Air Force F 15E fighter. The figure covers the entire 

production program, for which production lots were authorized (with some breaks) 

between fiscal years 1986 through 2001. Figure 1.9 displays the units in-process, again 

assuming a 3-year production cycle. With this assumption, the final units will be 

delivered in fiscal year 2003. The correlation in Figure 1.9 equals -0.592, moderate in 

magnitude and opposite from the presumed positive direction.
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We conclude that, although production rate and cumulative quantity may be 

correlated, precluding estimation of their separate effects, they need not be correlated. If 

production rate effects are thought to be important, it is worth the effort to attempt to 

include production rate in the learning-curve model. Moreover, even if collinearity 

proves to be a problem in a particular instance, there are statistical techniques that may 

overcome this problem and still allow estimation of the separate learning and rate 

effects. 12

12 See Judge, Griffiths, Hill, Lutkepohl, and Lee (1985), particularly their discussion of ridge regression.
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1.7 Cost-estimating relationships
The learning curve is one of the two most pervasive models in cost analysis. The 

other is the cost-estimating relationship, a regression equation to predict the development 

or production cost of a system based on performance and technical characteristics such as 

weight, speed, and composite materials content.

A typical CER for production cost might take the form of the following 

non-linear, multiplicative regression model:

Unit cost = b0 x Weight x Speed*2 x ̂ «  fr«*»«> x W; ? ( i . 1 7)

where the dummy variable "Remanufactured" equals 1.0 for remanufactured production 

items and 0.0 for those newly manufactured. Note that a dummy variable results in a 

proportional scale factor, rather than an additive factor as would be the case in a linear 

regression model. 13 If, for example, the coefficient 63 in equation (1.17) were estimated 

as 0.9, we would infer that a remanufactured production item costs only 90% as much as 

a newly-manufactured item. Although the particular dummy variable for remanufacturing 

might not appear in most cost analyses, other dummy variables could reflect technical or 

programmatic characteristics such as multi-year contracting or follow-on systems 

(e.g., the U.S. Navy's F/A-18C/D fighter/attack aircraft is a follow-on to the earlier 

F/A-1 8 A/B series).

The learning curve and the CER are two different "slices" of the same underlying 

data. Figure 1.10 shows hypothetical data from four different systems. The data from any 

one system indicate a trend in learning as we move horizontally from left to right. The 

data can also be compared vertically to study the differences in cost between systems. 

The latter comparison makes sense only if the systems under comparison are similar 

enough that the cost differences can reasonably be explained using regression variables 

such as weight, speed, and so on. For example, it is quite common and sensible to 

compare the costs of various fighter aircraft models. However, it would be folly to use 

weight and speed in an attempt to understand why an aircraft carrier costs more than an 

F/A-18C/D.

'3 The relevant property here is non-linearity (the manner is which the dummy variable enters the 
regression prediction), not additive versus multiplicative regression models (the manner in which the 
error term is appended to the regression prediction).
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Figure 1.10. Distinction between Learning Curve 
and Cost-Estimating Relationship

Even when comparing like systems to estimate a CER, it is important to 

normalize the cumulative quantity in order to separate learning effects from true cost 

differences between systems. In Figure 1.10, System #1 has higher unit cost than 

System #4 at any common value of cumulative quantity. However, a crude comparison 

that did not normalize for quantity might grossly exaggerate the cost difference. At the 

10th unit, System #1 costs 77 percent more than System #4 (point B versus point A). But 

if we compared the 4th unit of System #1 to the 10th unit of System #4 (point C versus 

point A), we would report a 159-percent cost difference. The latter difference is 

misleading because System #4 has benefited from much more learning before reaching 

the 10th unit.

In practice, CERs are estimated at a common quantity that lies well within the 

range of data for all the systems under comparison. Moreover, the cost of the initial 

production lot is often contaminated by non-recurring costs for items that the customer 

purchases in addition to completed production units: specialized tooling, test equipment, 

ground support equipment, and so on. Therefore, it is generally preferable to choose a 

common quantity that lies beyond the initial production lot. A typical point of 

comparison might be the 100th unit for aircraft systems, but the 1,000th unit for missile 

systems.
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1.8 Estimation of multiplicative regression models
The CER in equation (1.17) is a multiplicative regression model, as is the 

learning-curve model for lot average cost in equation (1.16). Lot-midpoint iteration is a 

specialized technique for estimating power-function learning curves, with no counterpart 

for estimating CERs. However, there are several general-purpose estimation techniques 

that apply to all multiplicative regression models, including CERs as well as learning 

curves.

Both lot-midpoint iteration and lot-midpoint NLS (i.e., explicit minimization of 

expression (1.8)) are attempts to minimize the sum-of-squared errors in predicting the 

logarithm of lot average cost. Recently, Book and Young (1995, 1997) and Lee (1997) 

have proposed an alternative estimation method for multiplicative regression models. 

Their method minimizes the sum-of-squared percentage errors in predicting the level (not 

logarithm) of lot average cost. Accordingly, their method is known as Minimum 

Percentage Error (MPE). We show in Chapter 4 that the logarithmic and percentage 

fitting criteria are equivalent up to a first-order Taylor series approximation, but differ in 

the higher-order terms. Thus, the two fitting criteria generally lead to distinct estimates of 

the regression parameters.' 4

The choice of estimation method should be guided by the statistical properties of 

the resulting estimators, not the intuitive appeal of the fitting criterion being optimized. 

First, we seek an estimation method that requires minimal distributional assumptions. For 

example, we would almost certainly be willing to assume that the error term u-{ in 

equation (1.12) has finite variance. However, we might not be nearly as willing to assume 

that the error term is normally distributed.

Another desirable property is that the estimator be unbiased. To understand this 

concept, suppose we repeated the estimation process on many different random samples 

(of the same, finite size) drawn from the same underlying population. We would want the 

average of the parameter estimates from these samples to equal the true (unknown) 

parameter value. We could tolerate (indeed, we would expect) an estimation error in any 

single sample, but we would want this error to equal zero on average. The difference 

between the average of the parameter estimates and the true parameter value is known as 

the bias. An unbiased estimator has zero bias.

14 Young (1999) also investigated the distinction between these two fitting criteria. As we argue in 
Chapter 4, however, his analysis was somewhat incomplete.
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Some estimators are known to be biased, but the bias vanishes in large samples. 

This leads to the concept of consistent estimators. Suppose we select a small interval 

around the true parameter value, and we also specify a probability just short of 1.0. If an 

estimator is consistent, then we can find a sample size large enough so that the parameter 

estimate from the sample falls within the small interval with probability at least as large as 

the probability we pre-specified. Intuitively, a consistent estimator "approaches" the true 

parameter value in large samples. It can be shown that a biased estimator is consistent if 

both the bias and the standard error of the estimator approach zero in large samples. 15

Two other desirable properties of an estimator concern its sampling distribution. 

First, there should be a formula available to compute the standard errors of the estimates 

and, more generally, their entire covariance matrix. 16 It is preferable to have an "exact" 

formula (i.e., one that is accurate even in small samples). If an exact formula is not 

available, we must sometimes settle for an asymptotic formula whose accuracy is, strictly 

speaking, guaranteed only in large samples. The use of asymptotic standard errors is 

somewhat problematic in cost analysis, because the sample sizes are often so small as to 

diminish the applicability of asymptotic properties. For certain estimation methods, 

however, there is no alternative because the exact standard errors are not known (e.g., this 

is the case for NLS).

Finally, in addition to having their standard errors, we require the sampling 

distribution of the estimates. It is convenient to divide a single coefficient by its standard 

error and label the result a "/-ratio" or "/-statistic." However, the mere computation of 

the "/-ratio" does not guarantee that its percentile points can be read off a published table 

of the /-distribution. Thus, to conduct statistical inference (e.g., to compute confidence 

intervals or significance tests), we need to know the sampling distribution of the 

estimates. Again, it is preferable to know the exact sampling distribution, but we must 

sometimes settle for the asymptotic sampling distribution.

Conversely, however, it is possible to construct a consistent estimator that has neither finite mean nor 
finite variance in large samples. The archetypical example was provided by Sewell (1969), 
and reproduced in the econometrics textbooks of Dhrymes (1974, pp. 87-89) and Johnston (1972, 
pp. 270-273).

The diagonal terms in the covariance matrix are the variances of the estimates (i.e., the squares of their 
respective standard errors). The off-diagonal terms are the covariances among the estimates.
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Several other estimation methods, common in the statistical literature but 

unknown to most cost analysts, possess desirable statistical properties. For example, we 

show in Chapter 3 that the quasi-likelihood function for a multiplicative regression model 
is defined as follows:

y, + In (/(* /?)) (1.18)

where A denotes the variance of w(- in equation (1.12). It turns out that by maximizing the 

quasi-likelihood function with respect to ft, the resulting estimator of ft is consistent. 

Moreover, the covariance matrix of this estimator follows a known formula, and the 

estimator is asymptotically normally distributed even though the regression error itself 
(ui) need not be normally distributed.

When advocating quasi-likelihood estimation at professional conferences, we 

have been asked the question, "Why would you want to maximize such a non-intuitive 
function as q(ft, A) ?" First, to reiterate our opinion, the choice of estimation method

should be guided by the statistical properties of the resulting estimators, not the intuitive 

appeal of the fitting criterion being optimized. Second, we show in Chapter 3 that quasi- 
likelihood estimation of multiplicative regression models is equivalent to the better- 

known technique of iteratively reweighted least squares (IRLS). Indeed, the quasi- 
likelihood expression (1.18) provides the function that is implicitly being maximized 

when IRLS is performed.

1.9 Summary of comparisons among estimation methods

In the remainder of this monograph, we compare a total of six estimation 

methods:

  Lot-midpoint NLS,

  Lot-midpoint iteration,

  Minimum percentage error (MPE),

  Maximum likelihood,

  Iteratively reweighted least squares (IRLS), and

  Maximum quasi-likelihood.
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The first two methods involve lot midpoints, thus these methods have little 

application outside the narrow realm of learning-curve models. However, the remaining 

four methods apply to the much broader class of multiplicative regression models, 

including multiplicative CERs as well as learning-curve models. We compare all six 

estimation methods with respect to all of the statistical properties described above.

Although the statistical properties of some of these methods can be derived 

theoretically, little could be proved theoretically about the others. To compare the 

statistical properties of all the methods, we conducted a series of Monte Carlo 

experiments. We generated data on lot average cost using known error structures and 

parameters values. Because the parameters values were known, we could directly 

compare the estimates produced by the different methods to the "truth." When assessing 

possibly biased estimators, we considered not only the variance of the estimates around 

the average estimate at any sample size, but also the bias in the estimate (i.e., the 

difference between the average estimate at any sample size and the true parameter value). 

We could also assess the rate at which the various estimates approach the true parameter 

values (i.e., the required sample size). In addition, in most cases, even if a formula for the 

covariance matrix is available, the matrix produced is only an asymptotic covariance 

matrix. The Monte Carlo experiments allowed us to compare the variances over a 

spectrum of sample sizes, ranging from very small (unfortunately, the typical situation in 

cost analysis) up to asymptotically large.

Most estimation methods are developed under a particular set of assumptions. 

Estimation methods are called robust if they continue to produce good estimates even 

when those assumptions are violated. None of the methods we compared rely on any 

particular assumption about the true learning slope, the number of units in a lot, or the 

standard deviation of the error term. However, it is still of interest to inquire whether the 

methods perform as well under a range of values for these parameters. Some of the 

methods rely on a particular distributional assumption, such as normally distributed 

errors. Thus, it is also of interest to inquire about the performance of the methods under 

alternative (non-normal) error distributions.

IRLS and lot-midpoint NLS produced unbiased estimates under all of the 

simulation excursions. The performance of these two methods was essentially unaffected 

by the substitution of either uniform or ^-distributed errors for the normal errors found in 

the baseline experiment. Naturally, however, the parameter estimates became less precise 

during the excursion for which we doubled the standard deviation of the error terms.
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The estimates produced by lot-midpoint iteration and lot-midpoint NLS are 

numerically distinct. However, with just one exception, the numerical differences 

between the two sets of parameter estimates (e.g., between the estimated learning slopes) 

were essentially negligible. Consequently, both of these methods produced unbiased 

estimates even for small numbers of lots. The one exception is that the parameter 

estimates from lot-midpoint iteration (though not lot-midpoint NLS) became much less 

precise under first-order serial correlation. The introduction of serial correlation led to a 

drop in precision nearly equal to that engendered by doubling the standard deviation of 

the error terms (but without serial correlation). None of the other estimation methods 

exhibited any sensitivity to serial correlation.

Notwithstanding this case, the performance of lot-midpoint iteration was much 

better than we had expected. Prior to the simulation experiments, there was no theoretical 

basis for lot-midpoint iteration and little was known about the behavior of its estimates. 

We show in Chapter 2 that lot-midpoint iteration does not minimize any continuously 

differentiable function. In a sense, that finding further undermines the theoretical basis 

for the method. Its apparently satisfactory performance characteristics, at least in the 

absence of serial correlation, remain a theoretical mystery.

The MPE estimates of T\ were biased high, even in large samples, under every 

one of the simulation excursions. Similarly, the MPE predictions of lot average cost were 

also biased high. Moreover, the biases increased both when we doubled the standard 

deviation of the normal errors, and (unique to this method) when we substituted 

/-distributed errors for the normal errors. The latter result illustrates that the performance 

of MPE degrades when there are more outlier observations (in statistical parlance, the 

error distribution has "thicker tails") than would be expected under a normal error 

distribution. Because of these biases and sensitivities, we recommend against the use of 

MPE.

In light of the latter result, as well as the sensitivity of lot-midpoint iteration to 

serial correlation, we recommend either IRLS or lot-midpoint NLS as the estimation 

methods of choice. We sketched the concept of lot-midpoint NLS previously in this 

chapter (expression (1.8)); we give more details, including formulas for the standard 

errors of the parameter estimates, in Chapter 2. We give a full exposition of IRLS, 

including formulas for the standard errors, in Chapter 3. NLS is already available as an 

option in most statistical software packages. IRLS is becoming increasingly available as a 

built-in feature in many statistical packages, and the equivalent method of quasi- 

likelihood can be programmed quite easily using any computational software or even a
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simple spreadsheet. There is no longer any excuse for cost analysts to use methods that 

produce inconsistent parameter estimates.
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2. LEARNING CURVE MODELS

In this chapter, we first demonstrate the equivalence, under reasonable conditions, 

of two learning-curve models that are widely thought to be distinct. We then develop the 

concept of lot midpoint, which is often used as a single measure of cumulative quantity 

for production lots that span a range of units. We compare two methods for estimating 

learning-curve models using lot midpoints: non-linear least squares and lot-midpoint 

iteration. Among the issues that arise in this comparison are cumulative data versus data 

on individual production lots, admissible error distributions, computation of standard 

errors, and retransformation bias.

2.1 Two learning-curve models
Lee (1997, p. 11) distinguishes two learning-curve models: the Crawford model 

and the Wright model. The Crawford model expresses the marginal cost of unit Q as a 

power function:

MC(Q) = T,Qb (2.1)

for Q > 0, where T\ > 0 and b are parameters to be estimated. Under this model, the ratio 

of marginal costs for any two units depends only on their relative (not absolute) position 

in the production sequence:

MC(<f>xQ)/MC(Q) = (/>", (2.2)

which is independent of Q.

In particular, the "learning slope" is defined as the ratio of marginal costs when

p = MC(2Q)/MC(Q) = 2». (2.3)

Lee (1997, p. 41) argues that the plausible range for the learning slope is l/2 < p< 1 or, 

correspondingly, -1 < b < 0. (We confirm Lee's argument in due course.)
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By contrast, the Wright model expresses the cumulative average cost of the first Q 
units as a power function:

A1 Q" (2.4)

for Q > 0, where A\ > 0 and J3 are parameters to be estimated. Note that Lee actually uses 

the same symbol for the exponents in equations (2.1) and (2.4). However, we use two 

different symbols to maintain, temporarily, Lee's apparent distinction between the two 

learning-curve models.

Lee treats the production quantities as discrete units, and uses arithmetic 

summation to compute the incremental cost of a lot or the cumulative cost of an entire 

production run. On the other hand, most cost analysts treat the production quantities as a 

continuum, and use integral calculus to approximate the incremental or cumulative cost. 

We mostly follow the continuous approach, while recognizing the ramifications of 

choosing one approach or the other.

2.2 Recurring, fixed, and variable costs
Whether using the discrete approach or the continuous approach, it is imperative 

to first define the universe of costs being modeled. One important distinction is between 

non-recurring costs and recurring costs. Non-recurring costs are paid only once, usually 

at the beginning of the production run. These costs are associated with such activities as 

designing the production process, recruiting the initial work crew, and purchasing or 

building specialized facilities and tooling. Recurring costs are paid in connection with 

each successive lot and in varying amounts, depending on the lot size and the cumulative 

amount of learning.

In studies of the learning curve, the response variable is often taken to be direct 
labor hours. One rationale behind this choice is an attempt to remove one-time activities 

that are not subject to learning. However, the focus on direct labor hours assumes that the 

industrial engineers who design the production process, and the personnel specialists who 

recruit the initial work crew, charge their time indirectly (i.e., charge to a corporate or 

plant-wide overhead account, rather than to a particular production program). In practice, 

the cost of the initial production lot is often contaminated because some of these 

non-recurring labor costs are charged directly to the production program. The large 

decline in average cost from the initial lot to the next few lots reflects, in part, the
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payment of non-recurring costs in the initial lot. The degree of learning would be 

overstated if the entire decline were attributed to learning.

An extreme example of this effect is the case of naval ship construction. There, 

the "lead ship" (first unit) of a class is burdened with the full design costs of the class 

plus certain other non-recurring costs. For that reason, analysts virtually never include the 

lead ship in the database from which learning curves are estimated. Similar reasoning 

might motivate either exclusion of the first production lot, or use of a dummy variable to 

identify that lot, in the analysis of systems other than ships.

The cost analyst's distinction between non-recurring and recurring costs is 

somewhat different from the micro-economist's distinction between fixed and variable 

costs. The micro-economist defines fixed costs as costs that are independent of the 

number of units produced during a given time period (typically one year). More 

emphatically, fixed costs are paid even if zero units are actually produced during the time 

period. 17 Fixed costs might include rental or mortgage payments on land, buildings, and 

equipment that are not easily disposed of during a single time period.

The fundamental distinction is that the micro-economist's fixed costs are paid 

repeatedly in every time period, independent of the number of units produced during that 

period (including possibly zero units), as long as the firm maintains the product line. 

Thus, the cost analyst's recurring costs might well include some costs that the micro- 

economist would consider as fixed (e.g., the annual rental or mortgage payments), as well 

as other costs that the micro-economist would consider as variable. These cost categories 

are illustrated in Figure 2.1.

Non-recurring

Recurring

Fixed

Design production process 
Recruit initial work crew

Variable

Rental or mortgage payments
- land
- buildings
- equipment

Production labor 
Materials
- aluminum
- cables & wires

Figure 2.1. Illustration of Various Cost Categories

17 See, for example, Henderson and Quandt (1980, chapter 4) or Varian (1992, chapter 5).
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2.3 Equivalence between the two learning-curve models

We now return to the Crawford and Wright learning-curve models. We 

demonstrate that the two models are equivalent if:

  We use integral calculus to continuously approximate the incremental and 
cumulative costs; and

  Either non-recurring costs are equal to zero, or we are modeling only the 
recurring costs.

We begin with the Crawford model. The cumulative average cost of the first 

Q units is obtained by dividing the cumulative total cost by the cumulative number of 

units:

AC(Q) =  
Q o

j_e x
l + b Q

(2.5)

where the constant of integration, NRC, may be interpreted as the non-recurring cost paid 

prior to the "zero " cumulative unit. If NRC = 0, the cumulative average cost reduces to:

= [Tl /(l+b)]xQb . (2.6)

Conversely, starting with the Wright model, the cumulative total cost is obtained 

by multiplying the cumulative average cost and the cumulative quantity:

TC(Q) = AC(Q)xQ = (2.7)

and the marginal cost is the derivative of total cost with respect to cumulative quantity:

MC(0 =
dQ

(2.8)

Now compare equations (2.1) and (2.8) for marginal cost, and equations (2.4) and 

(2.6) for cumulative average cost. The two learning-curve models are rendered equivalent 
by setting b = J3 and T{ - A} x (1 +b). Thus, Lee was correct to use the same symbol for 

the exponents in equations (2.1) and (2.4). However, his use of two different symbols for 
the intercepts (T\ and A\) gives the impression that the two learning-curve models are 

distinct. Under the assumption of zero non-recurring costs, and using the continuous
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approximation, the two models are actually equivalent. 18 If non-recurring costs are 

positive and are included in the model, it is more appropriate to use equation (2.5) from 

the Crawford model. The corresponding expression for cumulative average cost from the 

Wright model in equation (2.4) is incomplete because the term NRC (non-recurring cost) 

is absent.

To be precise, although the two learning-curve models are mathematically 
equivalent under the stated assumptions, their statistical properties may be different in 

small samples. For example, depending on the precise method of estimation employed, 
there is no guarantee that the ratio of the estimates of T\ and (1 + 6) from equation (2.6)

will exactly equal the estimate of A\ from equation (2.4). However, this equality will hold 

if the sample sizes are large enough and if consistent estimators are employed.

We can also see why Lee argues for the restriction -1 < b < 0 or Yz < p < 1. The 

cumulative average cost in equation (2.5) involves the following definite integral:
Q
\T} z b dz. In the borderline case of b = -1, the anti-derivative of z" 1 is the natural

0

logarithm. The definite integral requires evaluation of the anti-derivative at the lower 
limit, 7^ x lim[ln(z)], which diverges. When b< -1, we encounter instead the expression

z—^"

[r,/(l + Z>)] xlimz*+1 , which diverges because the exponent is negative, b + \<0. The

power-function model simply makes no sense absent the constraint -1 < b < 0. Learning 

slopes smaller than 0.5, although theoretically possible, cannot be accommodated by this 

particular functional form.

An apparent discrepancy arises in evaluating the cost of the first unit produced 

(colloquially called the 'Ti-cost"). Ignoring any non-recurring costs, the cumulative 

average cost and the marginal cost should be equal at the first unit. However, our 
equation (2.1) evaluates as MC(1) = 7J, but equation (2.6) evaluates instead as 

AC(l) — 7] / (1 +b). To resolve this discrepancy, recall that we are applying a continuous 

approximation to the learning-curve model. The incremental cost of a "lot" consisting of 

1.0 units is given by the integral under the (Crawford) marginal cost curve,

18 Lee (1997, pp. 41-42) did not use continuous approximation. He correctly demonstrated that, when 
output is measured in discrete units, the two learning-curve models are equivalent only asymptotically. 
However, contrary to our analysis, other authors such as Loerch (1999) have treated the two models as 
distinct even when using the continuous approximation. Importantly, these and other authors who have 
argued for a distinction between the two learning-curve models did not do so on the basis of non 
recurring costs; they implicitly assumed that non-recurring costs were equal to zero.
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1

\T} zh dz=T[ /(l + b), which indeed equals AC(l). Simply evaluating the marginal cost
o

curve at the argument 1.0 is inexact because only the integral under the marginal cost 

curve is meaningful, not the curve's height.

Figure 2.2 illustrates this principle for a production process with b = -0.152 
(implying, from equation (2.3), a 90% learning slope) and 7^ = 2.0. The height of the 

average cost curve at the argument 1.0 is 2.359. The height of the marginal cost curve is 

2.000, but this value is not meaningful. Instead, the integral under the marginal cost 

curve (the shaded area in Figure 2.2) is meaningful and is equal to the earlier value 2.359. 

Strictly speaking, it is incorrect to interpret the parameter T\ as the cost of the first unit.

1.5 • 

1.0- 

0.5 - 

0.0

• Height = 2.000 

Area = 2.359

234 567 
Quantity

10

Figure 2.2. Proper Interpretation of First-Unit Cost

To better understand this principle, it may help to contemplate the analogous 

distinction between discrete and continuous probability density. When asked to interpret 

the height of a continuous probability density, even analysts with moderate amounts of 

statistical training might reply, "The height is just the probability [of occurrence for the 

event in question]." However, consider a continuous uniform density defined over the 
interval [0.0,0.5]. The height of this density function must be 2.0 over the interval, to

ensure that the entire probability (i.e., the area of the entire rectangle, both shaded and 

unshaded) in Figure 2.3 equals 1.0. Because probability is bounded above by 1.0, clearly 

the height of the density function here is not interpretable as a probability. Instead,
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probability can be computed only as the area under a continuous density function. For 
example, the probability in the sub-interval [0.0,0.2] is given by the shaded area, or 0.4.

Probability = 0.4

0.1 0.1 0.1 0.1 0.1 0.1

0.0
0.00 0.10 0.20 0.30 0.40 0.50

Figure 2.3. Discrete and Continuous Versions 
of Uniform Probability Density

The hypothetical analyst's reply, "The height is just the probability ...," is based 

on a discrete (vs. continuous) approach to the problem. For example, a discrete uniform 
density could be defined over the 10 points 0.025,0.075,0.125,..., 0.475 lying within the 
interval [0.0,0.5]. In that case, the heights of 0.1 at each picket are indeed interpretable 

as probabilities; further, the probability of occurrence in a subinterval may be computed 

by arithmetically summing those heights. But when using the continuous approach, only 
the areas (i.e., the integrals) are meaningful, not the heights. Similarly, in our learning- 

curve model, only the area under the marginal cost curve is meaningful, not its height.

2.4 Cumulative data versus data on individual production lots

Given that the two learning-curve models are equivalent, which one should be 
used in estimation? One argument is that it makes no difference; use the Crawford model 
when the data are presented in terms of unit cost, and use the Wright model when the data 
are presented in terms of cumulative average cost. However, statistical estimation of a 

regression model, and estimation of an exact functional transformation of that model, do 
not necessarily yield identical parameter estimates (e.g., learning slopes), because the 
error terms have different properties after transformation.
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First, we establish that it is always possible to transform one type of cost data to 

the other. It is obvious that a series of lot quantities and lot average costs can be

transformed into a series of cumulative average costs. Conversely, suppose the analyst is 
presented with the cumulative quantities of k production lots, Q],---,Qk , where

0 < Qi < G> <   <&» and the corresponding series of cumulative average costs, 

AC(Q{ ),..., AC(Qk ) . We can recover both the incremental cost of the i'h lot:

Tq - 7CM = AC, x Q - AC,_ } x g_, , (2.9) 

and the lot average cost (LAC) of the fh lot:

(2a -a., a -a.,
for / = !,...,& (with the convention that Q^ = 0).

The data analyst might be tempted to work with the cumulative average costs 

because they are smoother than the lot average costs. In Figure 1.3 we plotted Lee's 

tactical missile data from Table 1.1. The height of each point in that figure represents the 

observed lot average cost. The horizontal coordinate represents the lot midpoint at 

convergence of the lot-midpoint NLS method. In Figure 2.4 we plot both the lot average 

costs and the cumulative average costs. The latter are plotted not at the lot midpoints, but 
rather at the lot endpoints, AC(Qi ) = A\Qf . Comparing the two series, the cumulative

average costs are much smoother because the effect of an apparent outlying lot (e.g., the 

fifth or eight lot) is averaged with all of the preceding lots.

The difference in fit is also reflected in the R-squared statistics. The logarithmic 

regression of lot average costs (equation 1 .4) has a respectable R-squared of 0.951. 

Alternatively, we may take logarithms in equation 2.4 to obtain a regression of 
cumulative average costs, ln[JC(£?,)] = ]nA { + /?xln£?,. The latter regression has a

nearly perfect R-squared of 0.9986.

Although the R-squared statistics seem to favor using cumulative average costs, a 

deeper analysis of the statistical issues actually implies a preference for using lot average 

costs (i.e., the Crawford model rather than the Wright model). A series of cumulative 

average costs is almost certain to be serially correlated. For example, if the 4th lot is 

particularly expensive, the cumulative average cost of the first 4 lots will tend to lie 

above the regression curve. Unless the 5th lot is sufficiently cheap and contains
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sufficiently many units, the cumulative average cost of the first 5 lots will also lie above 

the regression curve. Indeed, the anomaly in the cost of the 4th lot will likely persist in 
the cumulative average cost of several subsequent lots. OLS regression estimation is 

inefficient (i.e., yields larger than the minimum possible standard errors) when applied to 

serially correlated data. A common remedy for serial correlation is to difference the 

data  essentially the procedure indicated in equation (2.9), which returns us to the 
Crawford model. 19

Cumulative average cost 
- Lot average cost

2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 
Quantity

Figure 2.4. Cumulative and Lot Average Costs for Tactical Missile Data

Estimation using cumulative average costs may also lead to problems of 

non-constant variance or heteroscedasticity, again causing inefficiency in OLS 

estimation. The series on lot average costs and the series on cumulative average costs 
cannot both have constant variance   if one has constant variance, the other cannot. The 

lot average costs are more likely to have constant variance, in which case the cumulative 
average costs will tend to have decreasing variance as more lots are included in the 
cumulative average. To see this point, write the cumulative average cost as follows:

See Womer and Patterson (1983) for a more thorough discussion of serial correlation in estimating 
models of incremental lot cost. Well aware that the series on lot average costs and the series on 
cumulative average costs cannot both be serially uncorrelated, they stated on p. 266, "Serial correlation 
of the residuals from one of the specifications is therefore expected."
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j = TCJ /QJ = 2i LACl x(Ql -Q_l )/QJ . (2.11)
/=i

It is immediately obvious that even if the series LAC(Ql ),..., LAC(Qk ) is serially 

uncorrelated, the series AC(Q} ),...,AC(Qk ) will be serially correlated (e.g., the 

expansions for ACj and ACJ+l share the first j terms in common.) Turning to 

heteroscedasticity, if the series LAC(Q} ),..., LAC(Qk ) is serially uncorrelated with 

constant variance cr2 , the variance of AC turns out to be:j

Var(ACj) = C? - (l^/Q^X 0 x(Q+1 -Q) , (2.12)
/=!

which tends to decrease as more lots are cumulated. For example, if every lot contains the 
same number of units, Qt - Q^} = q , the variance of cumulative average cost reduces to 

the familiar formula for the variance of a (non- weighted) average:

Var(ACj) = (J2 /./ = Var(LAG)/j . (2.13)

Again, statistical considerations tend to favor estimation using lot average costs, not 

cumulative average costs.20

2.5 Lot midpoints
Some ai 

marginal costs:

Some authors represent the incremental cost of the fh lot as the sum of the discrete

TC,-TC,_} = £ MC(j) = T} x £ / , (2.14)

where the i'h lot begins at unit Q_, + 1 (the unit after the one that completed the preceding 

lot) and ends at unit Qr However, this representation is inconvenient because it is not 
differentiable in the number of units, Qt . Instead, the incremental lot cost is generally

approximated by the integral under the marginal cost curve. Moreover, a continuity 

correction is generally applied that extends the range of integration by 0.5 units to the left

20 This result is probably what Loerch (1999, p. 259) had in mind when he stated, "The cumulative 
average theory is used when the production environment is unstable, or when there is substantial 
variation in the costs of consecutive units. In a more stable environment, the unit [Crawford] theory 
variant is used."
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of Q_, +1, or the point [(Q_, +1) -0.5] = g._, + 0.5; and by 0.5 units to the right of Qt , or 

the point Qt +0.5. The continuity correction of  0.5 ensures that the range of integration 

equals the lot size, (Q( + 05)-(Q_, +05) = Q ~Qt-\\ absent the correction, the range of 

integration would fall short of the lot size by 1.0.

Performing the integration, the incremental lot cost is approximated by:

a+0.5 
TC, - 7CM « \T,zb dz=-±-x[(Q + 05) 1+i - (0_, + 0.5) 1+fc ], (2.15)

with corresponding lot average cost:21

TC — TC TLAC, = —^——=^- «     -1———— x[(Q+0.5) 1+6 - (Q ,+05) 1+* . (2.16)
' Q -Q_ n^h\vtn -n \ i^' ' ^'^ ' J v '

The midpoint of the fh lot, Q(6), is defined as the quantity whose marginal cost is 

o the lot average cost. S 

solving yields the lot midpoint:

equal to the lot average cost. Setting the marginal cost T} x \Qt (b)] equal to LACt and

Q,(b) = (2.17)

for -1 < b < 0. Note the functional dependence of the lot midpoint on the unknown 

coefficient, b.

The lot midpoint is illustrated in Figure 2.5 for an initial lot consisting of 20 units 
with learning slope />=0.9. The existence of (£>_,+0.5) < Q(b) < (Q+Q5) is

guaranteed because the integrand in equation (2.14) is continuous.22 Thus, there always 
exists Qt (b) such that TCt - TCt_\ may be written as the integrand at Ql (b) multiplied 

by the range of integration, (0 + 05) - (Q._j + 05) = 0-0M . That is, 

TC, - rC,_, = Tt x[£>(&)] b x(Q,~ £?,_!), or LAC, equals the marginal cost at unit Q(b).

21 The continuity correction of  0.5 is explored by Camm, Evans and Womer (1987). They conclude that 
the correction, while not exactly reproducing the discrete sum, provides a close approximation. The 
exact correction always differs from  0.5, but cannot be determined in advance without knowledge of 
the learning coefficient, b. Lee (1997, pp. 35 41) also investigates the accuracy of the continuity 
correction, but the additional terms that he suggests (based on the Euler-Maclaurin summation 
formula) are cumbersome in practice.

22 This result is the mean value theorem for integrals; see Taylor and Mann (1972, p. 47).

39



1.75 -

1.50 -

S 1.25

§ 1.00 - 
u

0.75 -

0.50 -

0.25 -

Lot average cost = $1.46

Lot midpoint = 7.86

— Marginal cost curve
- - - - Lot average cost

6 8 10 12 14 16 18 20

Quantity

Figure 2.5. Illustration of Lot-Midpoint Calculation

At b = 0, there is no learning; thus, any point in the interval serves as a lot 

midpoint. As £-»-! the anti-derivative in equation (2. 14) approaches a logarithmic 
function, and Q(b) approaches the polar form (Q, -0M )/ ln[(0, +0.5)/(0M 

which also can be shown to lie in the interval [(Q_, + 0.5), (Ql + 0.5)] .

2.6 Error distributions for learning curves and CERs

The error distributions for both learning curves and CERs may take a variety of 

forms. Figures 2.6 through 2.8 illustrate three possibilities. Figure 2.6 depicts a CER in 

which the error terms are:

  Symmetric (in fact, normally distributed), and

  Constant variance for all values of the cost driver (in this case, weight). 

A mathematical expression of this CER might be:

Unit cost = b0 + b} x Weight + ut ,

where «/ is normally distributed with mean zero.

(2.18)
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Figure 2.8. CER with Multiplicative, Log-Normal Errors
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Figures 2.7 and 2.8 illustrate two different multiplicative regression models. 

Figure 2.7 depicts a CER in which the error terms are:

  Symmetric (again, normally distributed), but

  Standard deviation proportional to the value of the cost driver. 

A mathematical expression of this CER might be:

Unit cost - (b0 + b, x Weight) x u, , (2.19)

where Uj is now normally distributed with mean 1.0. We will refer to this assumption 

hereafter as the "multiplicative normal assumption."

Finally, Figure 2.8 depicts a CER in which the error terms are:

  Skewed to the right (in fact, log-normally distributed), and

  Standard deviation proportional to the value of the cost driver. 

A mathematical expression of this CER might be:

Unit cost = (b0 + b{ x Weight) x e 1 , (2.20)

where v, is zero-mean normally distributed and e' is, therefore, log-normally distributed. 

This assumption (hereafter, the "log-normal assumption") was made in the seminal 

papers on log-linear regression by Goldberger (1968), Heien (1968), and Bradu and 

Mundlak (1970), among others.

The three candidate distributions differ in two major respects:

  Additive versus multiplicative errors, and

  Symmetric versus right-skewed errors.

Figures 2.7 and 2.8, representing multiplicative regression models, allow for 

non-constant variance or heteroscedasticity. This property is probably more compelling 

for CERs than for learning curves. A single CER might be estimated over a wide range of 

systems that vary greatly in weight, speed, and most importantly, unit cost. The error 

variance is often larger for the heavier, faster, and more expensive systems, so that 

heteroscedasticity becomes an important property to accommodate. By contrast, the 

sequential unit costs for a single system, modeled with a learning curve, seldom vary by 

an order of magnitude. Thus, heteroscedasticity is a less important property for learning
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curves than for CERs. In the case of CERs, the remaining issue is whether the errors are 

symmetric (Figure 2.7) or skewed (Figure 2.8). Skewness reflects the common 

observation that, at least for military weapon systems, large over-runs are more common 

than large under-runs of the same absolute (i.e., dollar) magnitude.23

Although both heteroscedasticity and skewness have been observed in cost data 

for weapon systems, it is also tempting to argue, in light of the Central Limit Theorem 

(CLT), that the error distribution must be additive and symmetric normal. The cost of a 

weapon system may always be expressed additively as the sum of the costs of its sub 

systems; in turn, as the grand sum of the costs of their sub-sub-systems, etc. This 

hierarchical linear structure, known as a work breakdown structure (WBS), is illustrated 

in Table 2.1 for an unmanned space vehicle. The entry in the "Index" column indicates 

the position of each element down to the third level of indenture in the WBS.

The elementary textbook version of CLT states that a sum of independent, 

identically-distributed (iid) random variables approaches a normal distribution as the 

number of terms tends to infinity. A more sophisticated version of CLT allows for non- 

identical distributions, as long as each term in the sum has finite variance, and each term 

contributes at most a negligible fraction to the overall variance of the sum (the latter 

known as the non-domination condition; see Feller (1971, p. 262) or Rao (1973, p. 128)). 

Note, however, that even the more sophisticated version of CLT apparently requires 

independence among all the random variables.

23 Under the log-normal assumption, errors of (e.g.) +0.4 (or greater) and -0.4 (or greater) are equally 
likely in predicting the natural logarithm of cost. A logarithmic error of+0.4 implies that cost exceeds 
the model prediction by about 50 percent [{exp(+0.4)}-1.0 = 0.492]. However, an equally likely 
logarithmic error of  0.4 implies a cost under-run of only about 33 percent. Thus, the errors in 
predicting dollar costs are skewed to the right.
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Table 2.1 Work Breakdown Structure for an Unmanned Space Vehicle

Index
1. 
1.1 
1.2
1.3 

1.3.1
1.3.2 
1.4 
1.4.1
1.4.2 
1.4.3

1.5

1.5.1
1.5.2
1.5.3 
1.5.4 
1.5.5 
1.5.6
1.5.7
1.6

2. 

2.1
2.2
2.3 
2.4 
2.5 
2.6
2.7
3.

4.
4.1
4.2 
4.3

Level 1 Level 2
Spacecraft 

Structure, Interstage / Adapter 
Thermal Control
Attitude Determination 

Control System

Electrical Power Supply

Telemetry, Tracking & 
Command

Propulsion - Apogee Kick 
Motor

Communications 
Payload 

Transmitter
Receiver / Exciter
Transponder 
Digital Electronics 
Analog Electronics 
Antennas
RF Distribution

Integration, Assembly 
& System Test (IA&T)
Program Level 

Program Management 
Systems Engineering 
Data

Level 3

Attitude Determination
Reaction Control System 

Power Generation
Power Storage 
Power Conditioning & 

Distribution

Transmitter
Receiver / Exciter
Transponder 
Digital Electronics 
Analog Electronics 
Antennas
RF Distribution
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If correlations are present, it may be possible to circumvent the independence 

condition by combining the random variables into aggregates that absorb the correlations, 
such that there are no correlations among the aggregates. Then we would attempt to apply 

CLT to the aggregates. In the example of the unmanned space vehicle, we might have the 

following correlation sub-matrix for the IA&T sub-system (first column) and the three 

sub-sub-systems under Program Level (second through fourth columns):

'1.0 0.0 0.0 0.0 "

0.0 1.0 0.871 0.517
(2.21) 

0.0 0.871 1.0 0.871
x O.O 0.517 0.871 1.0 ,

The three sub-sub-systems must be combined in order to absorb the correlations 

among them. The resulting aggregate, Program Level costs, is uncorrelated with IA&T 

costs (because each of the sub-sub-systems under Program Level is uncorrelated with 

IA&T). However, we have reduced the number of distinct terms from 4 down to 2 in the 

(partial) sum defining total system cost.

When working with uncorrelated aggregates, two questions remain:

  (i) Are there enough uncorrelated aggregates to approximate the infinite 
number of terms that CLT requires?

  (ii) Do the aggregates satisfy the non-domination condition?

Proceeding in the other direction, simply subdividing the system under study into 

sub-systems, sub-sub-systems, etc. will increase the number of terms in the sum defining 

total system cost. Unfortunately, however, it will also almost inevitably increase the 

correlations among the terms. For example, consider subdividing an aircraft's wings 

(typically a single cost term) into distinct left and right wings. Because the left and right 

wings are manufactured (often by a subcontractor) as a single package, they will have 

identical costs and thus a correlation of 1.0. Continuing, one could further subdivide the 
surface of a single wing into a large number of square-inch sub-surfaces. However, the 
costs of adjacent sub-surfaces will again be highly (though perhaps not perfectly) 
correlated. We see that attempts to increase the number of terms through subdivision will 
violate the assumption of independence among the terms. The total cost of the aircraft's 
wings may not be amenable to subdivision, but could still be uncorrelated with the costs 
of the aircraft's other major sub-systems. But then, we again face the two issues of 
number of terms and non-domination.

45



The theoretical hypotheses of the CLT may not hold for military weapon systems 

and, as we have already pointed out, both heteroscedasticity and skewness have been 

observed in cost data for many such systems. Thus, the CLT's conclusion of additive, 

normal errors is far from inevitable.

2.7 Error distributions for multiplicative learning curves

Although additive normal errors are not inevitable, they may nonetheless be the 

correct specification for many learning curves. As we argued in Chapter 1, a modern 

statistician might construct an additive regression model from the learning curve's 

prediction of lot average cost:

LACi =           xf(Q. +0.5)1+fc - (0,. ,+0.5)1+*l + u, , (2.22)(i+*)x(a-fi-i)
and apply NLS to minimize the regression sum-of- squares:

x\(Qi +05) l+b - (Q, ^<

In the remainder of this section, however, we will investigate instead the two 

multiplicative regression models (depicted in Figures 2.7 and 2.8). We do so because 

the two estimation techniques that we wish to discuss for the duration of this chapter   

lot-midpoint iteration and lot-midpoint NLS   both (at least implicitly) assume that the 

error terms are additive on the logarithmic scale, thus multiplicative on the original 

(dollar) scale. In addition, multiplicative regression models accommodate 

heteroscedasticity which, although less compelling for learning curves than for CERs, is 

still sometimes observed.

The two multiplicative CERs from the previous section can be adapted as learning 

curves. Under the multiplicative normal assumption we have the following model for lot 

average cost:

LAC, = T,x[Qi (b)] b xu, , (2.24)

where M, is normally distributed with mean 1.0 and constant variance for all lots 
/ = !,...,«. This model was proposed by Lee (1997, pp. 55-56). A logarithmic

transformation yields:
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ln(LAC,) = ln(r,) + bln[Q,(b)] + ln(w,) . (2.25)

Alternatively, under the log-normal normal assumption we have instead the 

following model:

LAC, = 7;x[Q(6)]*xev', (2.26)

where v/ is normally distributed with mean 0.0 and constant variance for all lots 

/ = !,...,«. In this case, ev ' is log-normally distributed and a logarithmic transformation

yields:

]n(LAC,) = In(T^) + b]n[Q,(b)] + v, . (2.27)

Both equation (2.25) and equation (2.27) suggest the use of regression analysis to 

estimate the parameters T\ and p.

Lee appeals to a first-order Taylor series approximation, specifically 
In («,) = In [1 + (W; -!)]««, -1, to argue that the error term in the logarithmic

equation (2.25) is approximately zero-mean normally distributed. However, if w, is 
normally distributed with mean 1 .0, then the event ul < 0 occurs with positive

probability, yet leaves ln(M,) undefined. Strictly speaking, although equation (2.24) is

certainly an admissible representation of the lot-midpoint model, one should avoid the 

logarithmic transformation to equation (2.25) because the error term is not well-defined. 

This argument appears to further suggest that, under Lee's multiplicative normal 

assumption, one should avoid estimation methods that operate on the logarithmic data 

(e.g., lot-midpoint iteration or non-linear least squares applied to equation (2.25)).

This advice is a bit too severe. One should, of course, avoid any attempts to take 

logarithms of measured predictor variables (x,-) that can range over non-positive values. 

However, statistical software can certainly execute lot-midpoint iteration or NLS 

independent of the analyst's technical assumptions on the error term. Speaking 

anthropomorphically, when executing one of these estimation methods, the computer 

does not "know" that there is a minor technical problem with the definition of the error 

term; the computer cannot distinguish between the representations (2.25) and (2.27). We 

conclude that all of the same estimation methods may, at least in a mechanical sense, be 

applied under either representation of the lot-midpoint model   even though methods 

that require the logarithmic transformation are, strictly speaking, incompatible with Lee's 

multiplicative normal assumption. Of course, there is no such difficulty with estimation
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methods that avoid the logarithmic transformation and operate on equation (2.24) directly 

(e.g., NLS applied to equation (2.24)).

Further, when the variance of the error term is small, the multiplicative-normal 

and log-normal distributional assumptions are nearly equivalent in a numerical sense. The 

solid curve in Figure 2.9 is a normal distribution with mean 1.0 and standard deviation 

0.15. As we show in Chapter 4, the latter value is the standard error (at convergence) of 

the lot-midpoint iteration applied to the data of Table 1.1; moreover, a 15-percent relative 

error is fairly typical for learning curves. The dashed curve in Figure 2.9 is a log-normal 

distribution calibrated to have the same mean of 1.0 and standard deviation of 0.15. 

Although slightly skewed, it seems appropriate to describe the latter distribution as 

approximately normal. In particular, the skewness and kurtosis of 0.45 and 3.37 are close 

to the theoretical normal values of 0.0 and 3.0.

3.0 n

0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.3 1.4 1.5

Figure 2.9. Normal Approximation to the Error Distribution, 
Standard Deviation = 0.15

In addition, as Figure 2.10 indicates, the skewness and kurtosis of the log-normal 

approach the normal values even more closely as the standard deviation shrinks (the 

normal kurtosis of 3.0 is shown as a benchmark).24 We conclude that the multiplicative 

normal assumption and the log-normal assumption are nearly equivalent when the 

variance of the error term is small.

The approximation of a log-normal distribution by a normal distribution, when the variance is small, 
is sketched in Johnson and Kotz (1970, Volume I, Chapter 14, pp. 117-118).
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2.8 Non-linear least squares (NLS)

Equations (2.25) and (2.27) are not immediately amenable to linear least squares, 
because Q(6) is functionally dependent on b. At least two approaches are available to 

resolve this non-linearity. First, because both equations have an additive, homoscedastic 

(constant variance) error structure, they are amenable to non-linear least squares. That is, 

we may choose the parameters T\ and b to minimize the regression sum-of-squares:

(2.28)

The log-normal assumption exactly describes equation (2.27) and, as we have 

argued, approximately describes equation (2.25). Under this assumption, the NLS 

estimator is consistent and asymptotically normally distributed, and its asymptotic 

covariance matrix may be developed as follows.25 For the general non-linear regression 
model, yt — f(xt ,P), let /denote the nxm Jacobian matrix of the predictor function 
/(*,,/?) with respect to the m parameters ft:

25 See Bard (1974, pp. 176-179) or Seber and Wild (1989, pp. 21-25). Donaldson and Schnabel (1987) 
demonstrate the superiority of this form of the covariance matrix over two asymptotically equivalent 
alternatives.
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(2.29) 

with rows Jl ,...,Jn . The mxm asymptotic covariance matrix is given by:

Var(p) = (fx^'j)' 1 , (2.30)

where the dispersion o2 is estimated by the minimized regression sum-of-squares, 
expression (2.28), divided by the degrees-of-freedom, n-m. Equivalently, the

asymptotic covariance matrix may be written as:

Var(p) = <J*x 5X4] , (2.31)

where each term [ J,7JJ is itself an mxm outer product matrix.

Note that, in the case of lot-midpoint estimation, the predictor function 
/(*,,/?) = ln(7J) + b\n[Qi (b')'\ is highly non-linear in light of the definition of the lot

midpoint (equation (2.17)). The Jacobian matrix of this function is particularly difficult to 

compute analytically. However, software packages that compute NLS estimates also 

provide the asymptotic covariance matrix. They generally approximate the Jacobian 

matrix by numerical differentiation.

As a special case, a Wald test may be used to test a single coefficient against zero, 
using the result ^/[Var^ (/?)]' /2 -> JV(0,1). It may seem tempting to use the

/-distribution for testing in finite samples, because the / test is exact in linear models 

(i.e., those estimated using OLS) and because the /-distribution tends toward normality in
y\

large samples. However, the properties required to construct the exact /-test (i.e., /3 
normally distributed, a2 proportional to a %2 random variable, and <r 2 independent of

y\

/?) are guaranteed to hold only asymptotically in non- linear regression models. Although

the true, finite-sample distribution of the "/-statistic" tends toward normality, as does the 

/-distribution, the finite-sample distribution is not necessarily a /-distribution. Some have 

argued that the /-distribution is no more accurate than simply applying the asymptotic 

normal distribution in finite samples.26 However, Gallant (1987, pp. 24-25) offers limited 

Monte Carlo evidence in favor of using the /-distribution.

26 See Dhrymes (1974, pp. 166-167) or Schmidt (1976, pp. 60-61).
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Alternatively, under the log-normal assumption, we can also apply likelihood 

ratio tests. Let SSEr denote the sum-of-squares in expression (2.28) under r independent 

linear restrictions, and let SSE" denote the unrestricted sum-of-squares. Then the 
likelihood-ratio statistic -2xln(Lr/L") = nx\n(SSEr/SSE") has an asymptotic %*
distribution.27

Hypothesis tests based on the asymptotic covariance matrix (i.e., Wald tests) and 

those based on the likelihood-ratio statistic are asymptotically equivalent. The two 

methods differ only in the required computation. The asymptotic covariance matrix 

requires the matrix calculation indicated in equation (2.30) or (2.31). However, the 

regression model need only be estimated once. By contrast, likelihood ratio testing avoids 

the matrix calculation, but requires estimation of the unrestricted model as well as 

separate estimation of each restricted model under test.

2.9 Lot-midpoint iteration
Lot-midpoint iteration is an alternative approach to resolving the non-linearity in 

Qi(b). Begin with an initial estimate of b, denoted 6 (0) . Fix b=b (0) in the definition of the 

lot midpoint, Q(6 <0) ), and minimize the regression sum-of-squares (expression (2.28)) 

with respect to b as the regression coefficient only. The minimum occurs at a new 
estimate, b w '. Now fix b-b w in the definition of the lot midpoint Q(6 (1) ) and again 

minimize with respect to b as the regression coefficient only. In general, estimate the 

following sequence of regressions:

\n(LAC,) = ln(7;) + b(p+" \n[Q,(b(p) )] + v, , (2.32)

for p = 0, 1, 2, . . . . Finally, the lot-midpoint estimator is defined as the limit of the 

sequence:

b, = lim b (p) , (2.33) P  »«>

when the limit exists. In practice, the lot-midpoint estimator is taken where the sequence 

converges within a pre-specified numerical tolerance.28

27 See Goldfeld and Quandt (1972, p. 74) or Seber and Wild (1989, p. 230).

28 Although lot-midpoint iteration is ubiquitous in cost analysis, we do not know its exact origins. 
However, Womer and Patterson (1983) attribute it to RAND Corporation (1971).
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Cost analysts have been using lot-midpoint iteration for nearly half a century 

without questioning the theoretical basis for this method. We asked the following seven 

questions regarding lot-midpoint estimation:

1. Is lot-midpoint iteration equivalent to (i.e., does it yield the same point 
estimates as) non-linear least squares?

2. Is there a distributional assumption under which lot-midpoint iteration is 
equivalent to maximum-likelihood estimation?

3. Does lot-midpoint iteration maximize or minimize any continuously 
differentiable function of the parameters T\ and b (if not a sum-of-squares 
or a likelihood function, perhaps some other function)?

4. Is lot-midpoint iteration guaranteed to converge, or might the iteration 
continue forever?

5. If lot-midpoint iteration does converge, is the solution unique; or might the 
iteration converge to two (or more) distinct solutions depending upon the 
starting values?

6. If a particular lot-midpoint iteration has two distinct solutions, on what basis 
do we choose one over the other?

7. If lot-midpoint iteration does converge, how accurate are the standard errors 
from the final regression step?

We were able to answer some, but not all of these questions, using theoretical 

analysis. That analysis, involving rather advanced mathematics, is presented in its 

entirety in the Appendix and merely summarized here. We also learned more about lot- 

midpoint iteration from the Monte Carlo analysis reported in Chapter 5.

We demonstrate in the Appendix that lot-midpoint iteration is not equivalent to 

either NLS or MLE. In fact, lot-midpoint iteration does not maximize or minimize any 
continuously differentiable function of the parameters T\ and b.

The issues of existence, uniqueness, and convergence to a solution would 

typically be addressed by the theory of contraction mappings. To understand that theory, 
consider the elementary case of the geometric sequence b,b2 ,b3 ,.... That sequence 

converges to zero if b < 1. For example, if b = 1/2 we have the convergent sequence

1/2,(1/2) ,(l/2) ,...; or if b = -l/2 we again have a convergent sequence 

-1/2, (-1/2)2 , (-1/2)3 ,... = -1/2,1/4, -1/8,.... Conversely, the geometric sequence 

diverges to infinity if \b\>\. For example, if 6 = 2 we have the divergent sequence
2 22 23
z,,z, ,^- ,... .
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This elementary theory can be generalized to a non-linear, multivariate situation 

such as lot-midpoint iteration. As we develop in the Appendix, there is a Jacobian matrix 

associated with lot-midpoint iteration, and we may compute the eigenvalues of that 

matrix. By Ostrowski's theorem, if the eigenvalues are all less than 1.0 in absolute value 

throughout a region of parameter space (or, equivalently, if the maximum absolute 

eigenvalue is less than 1.0 throughout the region), then quite remarkably:

  there exists a pair of values T\ and b in the region that balance 
equation (2.32);

  the pair T\ and b is unique in the region; and

  iteration, starting from any point in the region, generates a sequence that 
converges to the unique root.

On the other hand, if the maximum absolute eigenvalue exceeds 1.0, there is no 

universal guarantee that a solution pair T\ and b exists to balance equation (2.32); that a 

solution, if it exists, is unique; or that a solution can be approximated by a finite number 

of steps of lot-midpoint iteration.

In the lot-midpoint problem, the maximum absolute eigenvalue may lie on either 

side of 1.0. As we will see in Chapter 4, the maximum absolute eigenvalue exceeds 1.0 

for Lee's tactical missile data. Lot-midpoint iteration may still converge (and, indeed, it 

does converge when applied to Lee's data), because the eigenvalue condition is sufficient 
but not necessary. That is, an iterative scheme must converge if the eigenvalue condition 

is satisfied; it may still converge even if the eigenvalue condition is violated. Again, there 

is no universal guarantee   existence, uniqueness, and convergence of lot-midpoint 

iteration may vary from one data set to another.

The theoretical possibility of multiple solutions is particularly disquieting in light 

of the failure of lot-midpoint iteration to maximize any continuously differentiable 

objective function. In a maximization problem, we can always compare the value of the 

objective function at two distinct local maxima, disposing of the smaller value because it 

cannot be the global maximum. But because lot-midpoint iteration does not maximize 

any such objective function, if two distinct solutions are located we have no basis to 

choose between them.

Finally, we briefly turn to the statistical (as opposed to mathematical) properties 

of lot-midpoint iteration. Under the log-normal assumption, the regression standard 

errors, confidence intervals, and significance tests are apparently available from
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conventional OLS regression theory applied to equation (2.32) at convergence. However, 
the lot-midpoint variable Q (Z>) is unknown even at convergence, and is replaced with the 
estimate Q (Z>,). The conventional approach does not recognize this additional

uncertainty, thereby leading to an underestimate of the standard error of b.

More ominously, Schmidt (1976, pp. 93-96) reports that even if the 

correct standard errors were known, the "/-statistics" would not necessarily follow a

/-distribution. This difficulty arises because the errors in the final lot midpoints propagate 
into the estimated slope parameter (&,) such that the latter is no longer normally

distributed. In addition, the usual theoretical guarantees of consistent OLS estimates no 

longer apply. The lot-midpoint estimates may still be consistent, but that determination 

would require either a special theoretical investigation or an exhaustive Monte Carlo 

analysis.

In fact, our Monte Carlo results presented in Chapter 5 suggest that lot-midpoint 

iteration is consistent. However, those results also show that among all the estimation 

methods we consider, only lot-midpoint iteration is sensitive to serial correlation in the 

error terms. Serial correlation is ubiquitous in cost analysis although, as we argued in 

Section 2.4, serial correlation can often be reduced by transforming the data series from 

cumulative average cost to lot average cost prior to estimation. Nonetheless, both the lack 

of a theoretical foundation and the sensitivity to serial correlation conspire to render lot- 

midpoint iteration an unattractive statistical procedure.

2.10 Retransformation bias

The issue of retransformation bias arises regardless of whether the lot model is 

estimated by NLS or by lot-midpoint iteration. Either approach yields estimates of the 

parameters in equation (2.26). But with v, normally distributed in equation (2.27), e"' is 

log-normally distributed in equation (2.26). Letting <r denote the standard error of the 

logarithmic lot-midpoint regression, the mean of e l is consistently estimated by 
exp(cr2 /2) > 1. Unless this factor is accommodated, the predictions of lot average cost

from equation (2.26) will be systematically too low. One way to accommodate the log-
f*.

normal mean is to replace the estimated intercept 7J for that equation with 

7)xexp(<72 /2).

This correction factor is commonly used, and is advocated in a well-known paper 

by Miller (1984) among others. However, alternative retransformation factors are 

available that do not rely as heavily on distributional assumptions. The following method
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relies only on the logarithmic nature of the transformation, without reference to the 

distributional assumption at all. 29 Suppose a random variable X has known mean ju and 
standard deviation a. Consider an exact transformation Y=f(X). We can expand Y 
around fj. in a second-order Taylor series approximation:

Y = f(X) » /(//) + (JT-//)x/'(//) + v ^ J ^ . (2.34)
J \ S J \l^ / \ I S J \l / A \ /

Taking the expectation of both sides of equation (2.34) yields:

E(Y) « /(//) + ^M . (2.35)

In our situation, we have estimated the mean (// = 0) and the standard deviation (d) 
of vi in equation (2.27). Our objective is to estimate the mean of ev ' in equation (2.26). The 

transformation Y = f(X) is now the exponential function. Specializing equation (2.35) to 

the exponential function (and recalling that // = 0) yields:

(2.36)

which is itself a first-order approximation to the log-normal correction factor, 
exp(<72 /2). Along similar lines, all of the other correction factors in Miller (1984)

(e.g., roots and powers) can be reproduced using only the form of the transformation, 

without reference to the distributional assumption.

The use of correction factors may affect not only the intercept T\, but also its 

standard error. Two different cases must be distinguished. Using lot-midpoint NLS, we 

can parameterize the model to estimate T\ directly rather than its logarithm. Using lot- 
midpoint iteration, however, we estimate the intercept as ln(7J). The statistical software

generally provides a standard error for this quantity, but not for T\ itself. Moreover, we 
are ultimately interested in the standard error of 7J x exp (a 2 1 2). The composite effect of

the anti-logarithmic transformation and the log-normal correction factor will now be 

calculated.

29 See Seiler (1987) or Lurie, Goldberg, and Robinson (1993, p. 6).
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Before proceeding, we must collect a few results on non-linear regression. 30 We 
have an estimate of a = ln(7^) from lot-midpoint iteration, its sampling variance 
Fn = Var(a) , and the residual variance a2 . The residual variance itself has asymptotic 
sampling variance Var(cr2 )   » 2cr4/n , where n is the sample size; moreover, a and a2 
are asymptotically independent. Thus, the asymptotic covariance matrix of the two 
parameters is given by:

,y}^" (2.37) 
^ 0 2<r In)

We are interested in computing the asymptotic variance of 
r* = 7;xexp(cr2 /2) = exp[fl + (cr2 /2)]. The gradient of T* with respect to the two

parameters is:

vr* = . 2 = , . (2-38)2

The asymptotic variance of the transformed intercept follows from a first-order 

Taylor series approximation:

4
T r / rr-»* \ /T7 T1* \ f /~1 / A ^ 2 \ \~~7 T1* I T7"Var(T ) ->  (Vr ) Cov(a,a ) Vr = F,]} 2n

x (r*)2 . (2.39)

Of course, remember that the entire formula may represent an underestimate because the 
sampling variance from lot-midpoint iteration Vn is itself underestimated.

Duan (1983, p. 608) extends this result to compute the asymptotic variance of the 

prediction of lot average cost for any observation, again assuming estimation by (in our 

terminology) lot-midpoint iteration and use of the log-normal correction factor.31 Our
n. *. —

prediction is LA Ct = exp [a + b In Qt + (a 1 2)], and its asymptotic variance is given by:

30 These results are found in Seber and Wild (1989), sections 2.1.2, 2.2.1, and 5.1; or Gallant (1987), 
pp. 47 and 260-261.

3 ' The details of Duan's derivation are found in Appendix B to Duan, Manning, Morris, and Newhouse 
(1982).
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r 4 i
Var(LAC,) -> w,.V wf +   x (L4C) 2 , (2.40) 

L 2"J

where w, = (1, ln£M and Fis the 2x2 covariance matrix of (a, b) at convergence.32

Using the same methods as Duan, we can compute the asymptotic variance of the 

prediction assuming estimation by lot-midpoint NLS (parameterized in terms of T\ 
directly) and use of the log-normal correction factor. In this case our prediction is 
LAC, = exp [\nT1 +b\nQi + (a2 1 2)], and its asymptotic variance is given by:

C74
Var(LACi ) -» \a2 x w,( f J]' w? + — x (LAC,) , (2.41)L 2«J

where we redefine w, = (l/7J, hiQj.

We close this chapter with a reminder that the sample sizes in cost analysis are 

often quite small, making the usefulness of asymptotic properties somewhat problematic. 

Unfortunately, when working with highly non-linear combinations of random variables, 

asymptotic properties are often the only analytical tools we have available for statistical 

inference. More empirically based methods such as bootstrapping, though not 

traditionally applied in cost analysis, are also worthy of consideration.33

32 Our prediction is consistent, but may be biased in small samples. Eskew and Lawler (1993, 1994) 
propose an alternative prediction, which they argue has a smaller bias:

LAC/ =exp[a + b\nQi +(6-2 /2)-(wi V\v^ /2)]. They also cite Bradu and Mundlak (1970) for an

unbiased prediction. However, the latter involves a cumbersome, infinite series expansion that must be 
truncated for practical application.

33 See, for example, Efron and Tibshirani (1993) or Davison and Hinkley (1997).
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3. ALTERNATIVE ESTIMATION METHODS

We discuss four estimation methods in this chapter. We frame much of the 

discussion in terms of a particular distributional assumption, namely multiplicative 

normal errors. Some distributional assumption (though not necessarily this one) is 

required for one of the estimation methods, maximum likelihood. The other three 

methods are minimum percentage error, iteratively reweighted least squares, and 

maximum quasi-likelihood. We conclude the chapter with a comparison of the four 

estimation methods, extending the comparison to include the two estimation methods 

(lot-midpoint NLS and lot-midpoint iteration) that apply to learning curves but not to 

CERs.

3.1 Definitions and assumptions

A multiplicative regression model has the form:

y, = /(x,,£)x«,, (3.1)

where y, is the observed response variable, JQ is an observed vector of k predictor

variables, ft is a vector of m coefficients to be estimated, and «/ is the unobserved error 
term for the ith observation. At this juncture, we assume only that the error terms {u,}

have finite variance, are statistically independent of each other, and statistically 
independent of the predictor variables {x,}. However, we make no particular

distributional assumption on the {ut }.

In this model, we note that yt has mean:

E(yJ = f(xl ,0)xE(ul ), (3.2) 

which equals /(*.,/?) if w, has mean 1.0. Also,>>/ has variance:

Var(y,} = [/(*,,jfl)]2 x F(w,). (3.3)

59



This chapter differs from the previous one in that the predictor function /(*,,/?)

may take on a wider variety of forms. Recall that, in the discussion of lot-midpoint 
estimation, the predictor function was /(*,,/?) = In(7,) + b In [Qt (b)]. As we noted in

Section 2.9, that formulation is somewhat problematic because the lot-midpoint variable 
Qt (b) is unknown   and has an unknown random distribution   even at convergence.

In the current chapter, we return to the multiplicative regression model of 
equation (3.1). In the learning-curve context, /(*,,/?) would equal expression (1.6) for

lot-average cost, repeated here for convenience:

/(*,/?) = LAC =     ^    x|~(a + 0.5)14* - (ft .+0.5)1+*1 . (3.4)
•J ^> l~ * J I s-t i\ / s"* f-L -^ \ V-*—-/ ' \JZ*>i—l J -• '

Thus, we are directly estimating the parameters T\ and ft in the non-linear model for lot- 

average cost obtained by integrating under the (Crawford) marginal cost curve. We are 

eschewing the device of lot midpoints and the logarithmic transformation (i.e.,

equations (2.24) and (2.25)). Moreover, unlike the lot midpoints, the predictor variables 
in equation (3.4) (i.e., the lot endpoints Qi and £)M ) ^e known and non-random.

In the CER context, /(*,,/?) would simply be the CER itself, e.g., 

equation (1.17), repeated here for convenience:

f(xt ,0) = Unit cost = b0 x Weight*1 x Speed*2 . (3.5)

Hence, the methods of this chapter apply equally to both of the primary models used in 

cost analysis.

3.2 Minimum percentage error
Lee (1997, pp. 47^9) investigated estimation of equation (3.1) when the error 

terms HI are statistically independent, and normally (not log-normally) distributed with 

mean 1.0 and variance 9. The likelihood function for this model may be written as:

20 % /(* /?)
(3.6)
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The log-likelihood function is equal to:

n " (3 - 7) 
- -ln(0) - y\nf(x,B).

2 V / ^^i J V / ~ /^ J 
i=\

Ignoring 9 for the moment, one is tempted to estimate the parameter vector /? by 

minimizing the sum-of-squares that appears in the numerator of equation (3.6), 

or equivalently, by minimizing the same sum-of-squares that appears as the first term on 

the final line of equation (3.7). Lee (1997, p. 48) explicitly advocates this approach, 

asserting that, "the exponential in the numerator of [equation (3.6)] is much more 

sensitive to variations in [/3\ than is the denominator." This approach is also 

recommended by Book and Young (1995, 1997), who label it the Minimum Percentage 

Error (MPE) procedure. The resulting estimator, which we denote pi, is characterized by:

(3.8)

The MPE estimator is different from the maximum-likelihood estimator because, 

as noted by Lee, the former ignores the variation of the denominator of equation (3. 6) 

(or, equivalently, the final term in equation (3.7)) with respect to ft. This general 

approach, maximizing an approximate or truncated form of the likelihood function, is 

known as pseudo-likelihood estimation. This approach might be rigorously justified if the 

approximation error or the truncated terms were shown to vanish as the sample size 

increased. Absent such justification, there is no general guarantee that a pseudo- 

likelihood estimator behaves like the MLE. Instead, the properties of a pseudo-likelihood 

estimator must be established on a case-by-case basis.

Another way to view this problem is to examine the concentrated log-likelihood 

function.34 First, maximize the log-likelihood function with respect to 0by setting to zero 

the derivative with respect to that parameter; then substitute the resulting estimate of 6 
back into the log-likelihood function to obtain a function of f} alone. The first step yields 
the MLE of # conditional on ft (which we denote #2 ):

34 See Seber and Wild (1989, pp. 37-42).
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0 •
and the second step yields the concentrated log-likelihood function:

n n
2 2

(3.10)

where e is the base of the natural logarithms. Once again, the MPE estimator considers 

only the variation in the middle term with respect to /3, but ignores the variation in the 

final term. By contrast, the full MLE of ft maximizes the entire expression (3.10) with 

respect to ft.

The choice between the MPE estimator fa and the full MLE of ft should hinge on 

the relative statistical properties of the two estimators. The MPE estimator is intuitively 

appealing because the regression model (3.1) is heteroscedastic: from equation (3.3), the 
standard deviation ofyt is proportional to f(xi ,^). The MPE estimator minimizes the 

weighted sum-of-squares, correcting for heteroscedasticity by giving relatively more 

weight to the less variable observations. Put differently, the MPE estimator minimizes the 

sum-of-squares of relative (i.e., percentage) prediction errors.

Intuition notwithstanding, the MPE estimator is unsatisfactory because it is 

inconsistent: the estimator is biased, and the bias remains even as the sample size grows 

infinitely large.35 To understand the bias, consider again equation (3.8). The optimization

that defines MPE has two avenues for minimizing the sum-of-squares. First, accurate and 
unbiased predictions will bring the /(*,,/?) in line with the yn thereby minimizing the

numerator of equation (3.8). However, simply inflating the predictions f(xt ,/3) in the

denominator will tend to deflate the percentage errors, albeit at the expense of worsening 
the fit in the numerator. The net result of these two effects is that the predictions /(*,,/?)

tend to be somewhat inflated, leading to biased parameter estimates. In particular, when 
modeling lot-average cost as /(*,,/?) = Tl x[Qi (b)] b , the T\ parameter tends to be biased

upward. As we demonstrate in the Monte Carlo results in Chapter 5, the bias in T\ tends

35 See Seber and Wild (1989, pp. 88-89), especially the discussion immediately following their 
equation 2.183.
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to increase with the variance 6. The logic behind this result is explored later in this 

chapter, during the discussion of iteratively reweighted least squares.36

The co variance matrix of the MLE is estimated by the negative inverse Hessian of 

the log-likelihood function. This matrix is not always available in closed-form, but 

numerical approximation is generally feasible. However, the covariance matrix of the 

MPE estimator has never been derived.

The MLE may be computed by numerically maximizing equation (3.7) with 

respect to ft and 9. An alternative is to numerically maximize the concentrated log- 

likelihood function, equation (3.10), with respect to ft; then compute the MLE of 9 from 

equation (3.9). The latter method presents a slightly lower-dimensional maximization 
problem, because the estimate of 9 conditional on ft (i.e., 02 ) is known in closed form.

Under the current assumption of multiplicative normal errors, the likelihood-ratio 

statistic differs from the expression given earlier in the case of log-normal errors, which 
was nx\n(SSEr/SSE"). Let 92 and 9" denote the restricted and unrestricted variance

estimates, and let f" and f" denote the corresponding model predictions for 

observations /=!,...,«. Then under the multiplicative normal assumption, the

likelihood-ratio statistic is given by: -2x\n(Lr/£) = nx\n(0^/02 ) + 2x£ln(/'//") 
/=!

This statistic has an asymptotic %* distribution. 37

3.3 Iteratively reweighted least squares
IRLS differs from the MPE estimator in a subtle but important way. Begin with 

an initial estimate of ft, denoted /?(0) . In the minimand in expression (3.8), fix ft-ft(0) in

the denominator, and minimize with respect to ft in the numerator only. The minimum 
occurs at a new estimate, ftw . Now fix ft=ftm in the denominator, and again minimize

36 One might speculate whether the bias in MPE would vanish if /(*,,/?) were replaced by yt in the

denominator of equation (3.8); i.e., if the objective function were / ̂ \(yf - f(xt ,/3~)\l y~\ . We 

leave this question open for future researchers.

37 The likelihood-ratio statistic must be non-negative. Suppose we apply MPE first, treat the resulting 
estimates of ]3 as fixed values, and test the MLEs against these fixed values. The first term in the 
likelihood-ratio statistic will be negative, because MPE explicitly minimizes 9. However, the entire 
statistic will still be non-negative, because the second term (which measures the superior fit of the 
MLE under the model assumptions) always dominates.
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with respect to ft in the numerator only. In general, compute the following sequence of 

estimators:

f x2 
,_ ^ " I 11 _ /Yv ft\ I

(3.11)

for p = 0,1, 2,... . Finally, the IRLS estimator is defined as the limit of the sequence:

A = \imj3(p) , (3.12)
p—>oo

when the limit exists. In practice, the IRLS estimator is taken where the sequence 

converges within a pre-specified numerical tolerance.

It is best not to regard IRLS as yet another pseudo-likelihood estimator. Rather, 

IRLS is a classical technique that can be motivated in many different ways without 

reference to any likelihood function. In contrast to likelihood methods, IRLS does not 

require any parametric distributional assumption (e.g., normality or log-normality).

IRLS is numerically distinct from MPE estimation. Although IRLS may appear to 

minimize expression (3.8), the gradient of expression (3.8) with respect to ft is generally 

non-zero at the IRLS solution. We will demonstrate this point later by numerical 

example.

IRLS yields consistent estimates of regression model (3.1) under quite general 

conditions: the only essential distributional assumption is finite variance. Moreover, the 

covariance matrix of the estimator follows a known formula, and the estimator is 

asymptotically normally distributed even though the regression error itself (u[ or v,-) need 

not be normal. 38

IRLS has periodically been rediscovered; for example, Book and Lao (1996) and 

Book and Young (1997) label it the Minimum Unbiased Percentage Error (MUPE) 

procedure.39 We saw that the MPE estimator is inconsistent, and the MLE is consistent if

38 Specifically, Seber and Wild (1989, pp. 88-89) report that the asymptotic sampling distribution of the 
IRLS estimator is normal with mean equal to the true (unknown) parameter vector.

39 Some references from the 1970s are: Bradley (1973), Jennrich and Moore (1975), and Charnes, Frome 
and Yu (1976). Another resurgence of interest occurred during the 1980s: Jorgensen (1983, 1984) and 
Green (1984). Incidentally, Seber and Wild's (1989) analysis serves to definitize Book and Young's 
(1997, p. 13) empirical observation that the bias in IRLS/MUPE is "apparently asymptotically zero" 
for non-linear regression functions.
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the distributional assumption is valid. Remarkably, the IRLS estimator is consistent 

without any distributional assumption except finite variance (though it may be biased in 

small samples, so the "U" in the MUPE terminology is misleading). Despite the desirable 

property of consistency, Book and Lao (1996, p. 10) criticize the IRLS estimator because 

it is, "not clear that MUPE [i.e., IRLS] is optimal with respect to any relevant criterion." 

Again, Book and Young (1997, p. 13) describe IRLS as, "converging to a parameter 

vector. . .that may or may not be optimal with respect to some appropriate criterion." 

In the next section, we exhibit the criterion under which IRLS is optimal, and argue for 

its relevance.

3.4 Quasi-likelihood estimation

Quasi-likelihood is a remarkable statistical concept that yields estimators sharing 

many of the desirable properties of MLEs, but without the need for precise distributional 

assumptions.40 In the case of independent observations (our maintained assumption 

throughout this entire work), quasi-likelihood estimation requires only:

  a mapping from the predictor variables to the mean of the response variable; and

  a functional relationship between the variance (assumed finite) of the response 
variable and the mean, up to a scaling constant (i.e., V(yt } = X x g[E(yi )] < QO ).

The function g[ ] must be continuous, but not necessarily monotonic.

Returning to equation (3. 2), and assuming that E(ut ) = 1.0, the first requirement

is satisfied by the equation E(yi ) = f(xl ,fi). Assuming that V(uf ) is constant for all 
observations (/' = 1, ...,«), the second requirement is satisfied as well; setting A = V(u,"), 
equation (3.3) becomes V(yi ) = AxLE(>>.)j2 .

Letting //. =E(yt ) = /(*.,/?), the contribution of the fh observation to the log- 

quasi-likelihood function is the solution to the differential equation:

In our example of a multiplicative regression model, we have g(jui ) = ju^, so that the 

differential equation becomes:

40 See McCullagh and Nelder (1989, chapter 9), or Seber and Wild (1989, pp. 42-A8).
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7,(//,A) _ yj-fij _ y, _ 1 
d//,. Ax//, 2 Ax//, 2 Ax//, '

(3.14)

with solution:

tt ln(//y )
Ax//; /I

(3.15)

The sample log-quasi-likelihood function is given by the sum over all the 

observations:

9(AA) = -|X[0'//A) + lnO'< )]
^ 1=1

1 ^
(3.16)

The maximum quasi-likelihood estimator of /? is the value that minimizes the 

summation in equation (3.16). The resulting estimator, which we denote fy, is 

characterized by:

argmin]T y, (3.17)

Finally, quasi-likelihood estimation of fy is separable from estimation of A. The 

latter parameter is conventionally estimated by the generalized Pearson statistic:

A =4

or in our multiplicative example:

-X
n — m

(3.18)

n2

(3.19)

We now respond to Book and Lao's criticism and demonstrate that the IRLS 

estimator maximizes the quasi-likelihood. To characterize the maximum quasi-likelihood, 

we set to zero the gradient of the right-hand side of equation (3.17) with respect to the 

parameter vector /?:
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0 = a
A_ + ln(/(x,,#)

n= X (f(.x,,ffi-y,}
(3.20)

for j = 1, . . . , m .

Alternatively, consider the sequence of estimators generated by IRLS. In 
particular, ^(p+1) sets to zero the gradient of the right-hand side of equation (3.11) with 

respect to /?. Again, we minimize with respect to ft in the numerator only, fixing B~B(P) 
in the denominator:

= 2x1

(3.21)

for7 =1, ...,m. Note that we replace /?by fi(p+l) in the numerator, to indicate that the 

gradient vanishes at the new estimate, /?(/?+l) . At convergence, however, B(p) =j3 (p+l) , so 

equation (3.21) reduces to:

(3.22)

which is identical to the condition for maximum quasi-likelihood.41

We may also use this analysis to gain some understanding into the bias in the 

MPE estimator and, in particular, its sensitivity to the variance. Referring back to 

equation (3.8), the MPE estimator minimizes the sum-of-squares with respect to ft as it 

appears in both the numerator and denominator, whereas IRLS fixes B in the denominator

Under certain conditions, IRLS can be used to maximize the likelihood (not quasi-likelihood) function 
as well, rendering all three estimators (IRLS, maximum quasi-likelihood, MLE) identical. The main 
regularity condition is that the density function belongs to the exponential family; see Bradley (1973), 
Jennrich and Moore (1975), and Charnes, Frome and Yu (1976). Lee's multiplicative normal density 
(our equation (3.6)) does not belong to this family and, as we will see in the numerical examples, the 
MLE is quite distinct from the IRLS/maximum quasi-likelihood estimates.
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and minimizes with respect to J3 in the numerator only. The gradient equation that defines 
MPE may be decomposed into two terms: the first term represents the gradient with 
respect to ft in the numerator only, as in equation (3.22) (i.e., IRLS); the second term 
represents the bias away from the IRLS solution. Thus, the gradient of the minimand in 
equation (3.8) may be decomposed as:42

n

2*1 a In/(*„/?) 1 (y.-ftx,,?)}2———————— x — ———————— (3.23)

Comparing the variance estimator in equation (3. 9), the second term here is more 
important, roughly speaking, when the variance is larger. Thus, the bias in MPE is more 
severe for large- variance problems. We confirm this finding in the Monte Carlo results in 
Chapter 5.

Because IRLS and quasi-likelihood estimation are identical, they share the 
properties of consistency and asymptotic normality under the minimal assumptions of 
finite variance and continuity of the variance-to-mean function. To quote Seber and Wild 
(1989, p. 46):

An attractive aspect of quasi-likelihood theory... is the following. When 
the data analyst is fairly confident that the mean function and the 
relationship between the mean and variance has been modeled fairly well, 
but is unsure of the other aspects of the parametric distribution used, 
quasi-likelihood theory assure him or her of the asymptotic correctness of 
the resulting inferences. In this way it is a generalization of the asymptotic 
applicability of least-squares theory beyond the restrictive assumption of 
normally distributed errors.

The asymptotic covariance matrix of the estimator may be developed as follows. 
Again let J denote the n x m Jacobian matrix of the mean function with respect to the m 
parameters ft. Also, let G denote the diagonal matrix of relative variances of the 
observations:

G = ^0g{g(//,),. .,£(//„)}- (3.24) 

The m x m asymptotic covariance matrix is given by:

Var(J34 ) = ^x(jTG~ l j)~} , (3.25)

42 This equation is essentially the same as equation (2.183) on p. 89 of Seber and Wild (1989).
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where the dispersion estimate A4 was given previously in equation (3.18). Specializing to 
our situation with g(jut ) - jit:1 , the asymptotic covariance matrix may be written as:

_, (3-26)

where each term [J/V,] is again anmxm outer product matrix.

Although the calculations here appear formidable, they are in one sense simpler 
than the corresponding calculations under lot-midpoint NLS. In the latter situation, 
the Jacobian matrix had to be computed for the predictor function 
/(*(,/?) = In(7^) + b In[0(6)], which is highly non-linear in light of the definition of

the lot midpoint. Under IRLS, the predictor function generally takes a much simpler 
form. In the learning-curve context, the predictor function is the non-linear model for lot- 
average cost obtained by integrating under the (Crawford) marginal cost curve, 
equation (3.4). The calculation is even simpler in the CER context, in which case the 
predictor function is simply the CER itself, equation (3.5).

3.5 Comparison of the six estimation methods
Table 3.1 summarizes our comparison of the six estimation methods considered in 

this monograph. Lot-midpoint regression assumes a log-normal error distribution. The 
NLS estimator is consistent and asymptotically normally distributed. The covariance 
matrix is available as equation (2.30) above. A closely related method is lot-midpoint 
iteration. Although widely used in cost analysis, the asymptotic properties of this 
estimator are not currently known. In particular, the conventional formula is an 
underestimate of the standard error of b. Moreover, there are no theoretical guarantees of 
existence or uniqueness of the solution, or of convergence even when a solution does 
exist.

We cannot endorse MPE because it is biased and inconsistent, and its covariance 
matrix has not been derived in the literature. Maximum likelihood is probably the most 
ubiquitous estimation method in statistics, but it requires a particular distributional form. 
In addition, although the MLE covariance matrix follows a well-known formula, 
evaluation of that formula may require numerical approximation.
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Table 3.1. Comparison of Six Estimation Methods for Learning-Curve Models

Estimation method 
Lot-midpoint non-linear 
least squares (NLS)

Distributional assumptions 
log-normal

Asymptotic properties 
consistent and 
asymptotically normal

Covariance matrix 
formula available

Lot-midpoint iteration

Minimum percentage error 
(MPE)
Maximum likelihood
estimation (MLE)

Iteratively reweighted

log-normal

multiplicative model, 
finite variance
particular distributional 
form

multiplicative model,

unknown

biased and 
inconsistent
consistent if correct 
distributional form

consistent and

conventional formula, 
an underestimate
unknown

well-known formula, 
may require numerical 
approximation
formula available

least squares (IRLS) / 
Minimum unbiased 
percentage error (MUPE) _ 
Maximum quasi-likelihood

finite variance, 
continuous variance-to- 
mean function

asymptotically normal

multiplicative model, 
finite variance, 
continuous variance-to- 
mean function

consistent and formula available 
asymptotically normal

Finally, as we (and others) have shown, the IRLS (recently renamed MUPE) and 
maximum quasi-likelihood estimators are identical, thus they share all of the same 
properties. In particular, these estimators are consistent and asymptotically normally 
distributed. The covariance matrix is available in closed-form as equation (3.26) above.

Reviewing Table 3.1, IRLS appears to produce the best estimates for the fewest 
assumptions. It does not require a log-normal or any other particular distributional form, 
only finite variance. Moreover, its asymptotic properties are the best that can be hoped 
for in a non-linear model, and its covariance matrix is easily computed.

Some would question our harsh assessment of the MPE method. Book and Young 
(1997, especially pp. 6-7) observe that the minimized sum-of-squares is generally lower 
for MPE (our expression (3.8)) than for IRLS / MUPE (our expression (3.11) evaluated at 
convergence). They engage in a rather lengthy discussion of the tradeoff between MPE, 
which is biased and inconsistent but has a smaller sum-of-squares, and IRLS/MUPE, 
which is consistent (though possibly biased in small samples) but may have a 
considerably larger sum-of-squares. In our view, reducing bias should always be a higher 
priority than reducing the sum-of-squares. First, the sum-of-squares can always be 
artificially reduced to zero by regressing a times series of lot costs on a sufficiently high- 
order polynomial in any single predictor such as calendar time or lot size. However, such
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a polynomial equation, with multiple points of inflection or even non-monotonicities, is 
of virtually no value in forecasting the cost of future lots.43

Further, a common use of regression models in cost analysis is to forecast the 
growth in unit cost due to a deviation from baseline assumptions (e.g., an increase in 
system weight or a smaller production run). These exercises require "good" estimates of 
the weight coefficient in a CER or the learning slope. A "good" estimate is one 
possessing both low bias and low variability (i.e., a small standard error). Although Book 
and Young make claims for MPE based on its smaller regression sum-of-squares, they 
have not demonstrated that the parameter vector estimated via MPE has smaller standard 
errors than the one estimated via IRLS/MUPE. As we have pointed out, the covariance 
matrix of the MPE estimator is unknown. Hence, there is currently no basis for claiming 
that the MPE estimator has lower variability—it may well have higher variability.

3.6 Correction for serial correlation

Our maintained assumption throughout this entire work has been that the costs of 
successive lots are statistically independent. In particular, the derivations of the various 
estimation methods have all assumed the absence of serially correlated errors. In the 
Monte Carlo analysis of Chapter 5, we measure the loss of precision that occurs when 
serial correlation is present, despite the modeling assumption to the contrary. We show 
there that all of the methods considered, except for lot-midpoint iteration, are robust to 
serial correlation. Moreover, as we argued in Chapter 2, serial correlation can often be 
reduced by transforming the data series from cumulative average cost to lot average cost 
prior to estimation (equations (2.9) and (2.10)).

Nonetheless, we want to give the reader some indication of the estimation 
technique when serial correlation is present and perceived as a serious problem. We do 
not pursue this extension for either lot-midpoint iteration or MPE, because we do not 
recommend these methods even under the best of circumstances. The extension of MLE 
to serially correlated errors is covered in many sources; Womer and Patterson (1983) 
apply this method, and Seber and Wild (1989, Chapter 6) explicitly give the estimating 
equations. Therefore, we restrict our discussion to NLS estimation in the presence of 
serial correlation.

43 Lee (1997, pp. 79-81) gives an excellent example of the pitfalls that arise when attempting to forecast 
using models that were selected solely on the basis of in-sample goodness-of-fit.
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We consider the particular case of first-order serial correlation, or so-called AR(1) 
errors. For this analysis it is convenient to zero-out the mean of the error term, thus we 
write the model as:

y, =

where now E(ui ) = 0 . However, the errors now have the AR(1) structure:

U, =/7XW/_,

(3.27)

(3.28)

where |p|<l and the error terms {£,} independent normal, s( ~ Af(0,cr 2 ). The 
correlations between successive values of {M( } decline geometrically with their distance 
on the time scale, Corr («,,«,) = p ' ; .

It can be shown that Var(ui ) = Var(e •)/({-p2 ) = cr2/(\-p2 ). Thus, we have 

the variance of each observation:

(3.29)

=/(*,,/?)• We can also derive thewhere we have used the shorthand notation 

covariance between any two observations:

Cov(y,, yj ) = p'^f,fjfr

We can array all of the variances and covariances into a matrix:

(3.30)

V = Cov(y} ,...,yn ) = a2 /(l-p2 ) x

y;2 PM 
pf2 fi fi
^fj, PJn Jn-\ J n

. (3.31)

We can also find the lower-triangular nxn matrix L such that V = L~ ] (LT )~ l 
or F" 1 = llL, where the superscript "7" indicates the matrix transpose:44

44 The matrix L generalizes the standard factorization of a serially-correlated covariance matrix that was 
first derived by Kadiyala (1968) and reproduced in many places including Seber and Wild (1989,
p. 276). Our generalization introduces the weights {fi } that account for heteroscedasticity.
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L = or1 x

V!-P 0

IP. _L

0 0
V

0

0 0

-p 1
/.-, /J

(3.32)

Conventional NLS estimation of equation (3.27) would minimize the 
untransformed sum-of-squares, '^(yi -f(xi ,fl)) . However, the covariance matrix of

the observations, V, exhibits both heteroscedasticity (unequal diagonal elements) and 
serial correlation (non-zero off-diagonal elements). Thus, conventional NLS estimates are 
consistent but not efficient (i.e., do not have the minimum sampling variance among all 
consistent estimates).

Efficient estimates may be obtained by applying non-linear generalized least 
squares (NGLS). We minimize instead the weighted sum-of-squares, which is 
represented in matrix form as:

(3.33)

where y is the wxl vector of response variables and f(x,/0 is the «xl vector of model
predictions. Expression (3.33) differs from the untransformed sum-of-squares by the 
insertion of the weighting matrix, V~ } . However, we also see from the final line that 
NGLS is achieved by transforming both the response variables and the model predictions 
by the matrix L prior to estimation. That is, expression (3.33) reduces to the sum-of- 
squared differences between the transformed response variables Lxy and the 
transformed model predictions L x f(x,/7) (both «xl vectors).

The matrix L contains the unknown parameters p and a, as well as the parameters 
ft that are embedded in the model predictions {ft }. This situation suggests an iterative

procedure in which we first estimate all of the parameters (most likely by conventional 
NLS), use those estimated parameters to form the L matrix, estimate the transformed 
model, then possibly continue iterating until convergence (i.e., until the parameters ft and 
perhaps also p and a stabilize). However, several points must be noted here. First, 
Gallant and Goebel (1976) reported that the NGLS estimates obtained after a single
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round of transformation have the same asymptotic distribution as the estimates obtained 
by iterating until convergence. Except for some very special cases that have been studied 
in the literature, the justification for NLS is based solely on its asymptotic properties. 
Thus, there appears to be little gain from continuing beyond the first round of 
transformation.

Second, when estimating the transformed model, we must hold the L matrix fixed
and minimize the sum-of-squares with respect to the parameters J3 only as they enter the 
model predictions f (x, /?), not as they feed back through the L matrix. This distinction is
quite analogous to the one we emphasized in Chapter 3, where IRLS sought the minimum 
sum-of-squares in the prediction errors alone, expression (3.11), but MPE allowed the 
same parameters to vary in the weights as well as in the prediction errors, 
expression (3.8). We saw there that the latter approach leads to biased parameter 
estimates.45

To make it absolutely clear that the weights {ft } are fixed in the L matrix, we 
re-write that matrix with the notation {w,} replacing {ft } ; we regard the weights {w.},

like p and cr, as fixed elements during the minimization that yields the estimate of /3. 
Moreover, we can suppress cr because (as is easily demonstrated) doing so does not affect 
the estimate of ft. Instead, O2 may be recovered in the usual way at the end of the 
process, as the minimized regression sum-of-squares divided by the degrees-of-freedom. 
Thus, without any loss of generality, we re-write the L matrix as:

L =

0 ••• 0
w,

w,

-P

(3.34)

rn J

Returning to equation (3.33), we can now explicitly display the transformations 
applied to the response variables and the model predictions prior to estimation (both n x 1
vectors):

45 By contrast, MLE treats all of the parameters (including p and cr) on an equal footing, wherever they 
may appear in the likelihood iunction. For the case of AR(1) errors (though without the additional 
complication of heteroscedasticity), see Seber and Wild (1989, section 6.2.2).
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Lxy =

n-i/y

(3.35)

and

(3.36)

We have not yet indicated the procedure for estimating p. Inverting 
equation (3.27), we can estimate the individual error term «, as the percentage prediction
error, ui = [yi -f(xi ,ft)]/f(xi ,fl). Goldberger (1964, p. 243) gives the expression for 

the first-order serial correlation coefficient:

i=2 (3.37)

We give an example of the NGLS procedure in the next chapter. However, we 
must alert the reader to one oddity before ending this discussion. When first forming the 
vector Lxf(x,/7), we set w, =/(*,,/?(0) ) where /?(0) is the estimate obtained by

conventional NLS (i.e., by simply minimizing ^(yt -/(*»/?)) )- Thus, the terms 
{fi/wi} reduce to unity and the vector L x f (x,/7) numerically computes as:

1-p

1-p

(3.38)

However, when programming the NGLS algorithm, it is imperative to write the 
terms {f,} functionally (vs. numerically) in terms of the coefficient vector ft, as we have
done in equation (3.36) with the explicit notation fi =/(*,,/?). The NGLS algorithm
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will adjust fl, and thus adjust the numerators of the ratios {/~/w.}, in an attempt to 
minimize the weighted prediction errors. If the vector L x f(x,/?) is revisited at the end 
of the process, it will be seen to differ numerically from expression (3.38). That 
difference reflects the improvement due to the single NGLS step.
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4. APPLICATION OF THE ESTIMATION METHODS
TO LEE'S DATA

In this chapter, we apply the various estimation methods to Lee's (1997) data on a 
tactical missile program, reproduced earlier as Table 1.1. This exercise reinforces several 
of our theoretical results and illustrates the magnitudes of the differences among the 
various estimation methods. In particular, we show that lot-midpoint iteration converges 
on Lee's data, even though the eigenvalue db(p+l} /db(p^ evaluates as -1.041 at the
starting point. This example confirms our theoretical finding from Chapter 2 that an 
absolute bound of 1.0, while sufficient for convergence, is not necessary. We also 
directly compare two fitting criteria: the sum-of-squared errors in predicting the 
logarithm of lot average cost, and sum-of-squared percentage errors in predicting the 
level (not logarithm) of lot average cost. Contrary to Young's (1999) somewhat 
ambiguous assessment, we show that for a symmetric data set with no extreme outliers, 
the logarithmic sum-of-squares is generally larger than the percentage sum-of-squares.

4.1 Non-linear least squares

Lee presents only a single set of numerical estimates. He applied NLS to a 
regression of incremental lot cost, as in our equation (2.15). That is, Lee minimized the 
following quantity:46

(4.1)

There is some evidence of heteroscedasticity in the data (i.e., lots containing more 
units also exhibit greater variability in incremental lot cost). To restore variance 
homogeneity, we also applied NLS to a regression of lot average cost, as in our 
equation (2.16). That is, we minimized, instead, the following quantity:

More precisely, Lee (1997, pp. 35-41) replaced the right-hand side of our expression (4.1) with a more 
exact expression for incremental lot cost, based on the Euler-Maclaurin summation formula. However, 
his procedure yields a learning coefficient (b) that differs from our estimate by only 10 .
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{LAC, - —— — ̂  ———— x\(Qi +Q5) l+b - (Q, ,+05)1+*l . (4.2) 
(l + *)x(a-0-,) L J J

These two sets of estimates appear in the first two rows of Table 4.1.

Using the definition of the lot midpoint, the latter estimate is exactly what one 
would obtain by applying NLS directly to equation (2.26). However, equation (2.26) has 
multiplicative error structure, whereas NLS implicitly assumes an additive error structure. 
Thus, NLS would more appropriately be applied to equation (2.27), which indeed has an 
additive error structure. We label this method "Lot-midpoint NLS" in Table 4.1; it is the 
non-linear estimator that minimizes expression (2.28). The resulting estimates appear in 
the third row of Table 4.1. We adjusted the intercept by the log-normal correction factor, 
exp(<72 12), to enable consistent predictions of lot average cost (rather than its natural 
logarithm). Note that the first three rows of Table 4.1 all use different response variables: 
incremental lot cost (expression (4.1)), lot average cost (expression (4.2)), and the natural 
logarithm of lot average cost (expression (2.28)), respectively. Thus, although the 
parameter estimates are comparable, the sums-of-squared errors are not.

Figure 4. 1 compares the intercepts and learning slopes for these and all of the 
other estimation methods considered in this chapter. Methods that yield higher intercepts 
for this particular data set compensate with "steeper" (numerically smaller) learning 
slopes, else the fitted learning curve would bypass the centroid of the data. Within the 
small ranges of slopes in this example, the relationship between slope and intercept is 
remarkably linear. The NGLS estimates do not appear in Table 4.1, but are highlighted 
for discussion in a later section.

j NGLS
79.5% .................................................TfU..^..............

"79.0% .........................................................................................^..^.^.^........................
E lot midpoint, """- - 
8 NLS, IRLS

78.5% \............................................................................................................................

Non-linear least squares, 
incremental lot cost

78.0% -i~- - ——————- •—————-- ,-- ——————— - ---—————— T——————— r ————i——---—————- - --.

1.75 1.80 1.85 1.90 1.95 2.00 2.05 2.10 2.15 2.20 2.25

Intercept (T1)

Figure 4.1. Comparison of Intercepts and Slopes for Various Estimation Methods
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Table 4.1. Alternative Learning-Curve Estimates using Lee's Data for a Tactical Missile Program

Estimation method
Non-linear least squares, 
incremental lot cost
Non-linear least squares, 
lot average cost
Lot-midpoint NLS
Lot-midpoint iteration
Minimum percentage 
error (MPE)
Maximum likelihood 
estimation (MLE)
IRLS/MUPE/ 
Maximum quasi- 
likelihood

Intercept
2.2319

1.8593

2.0256
2.0301
1.8921

1.8663

1.9649

Quantity 
exponent

-0.3496

-0.3254

-0.3366
-0.3369 ___-__.„

-0.3266

-0.3331

Standard error 
of exponent

0.0381

0.0118

0.0300
0.0312

not available

0.0248

0.0283

Learning Sum-of-squared errors Standard error Log- Log-quasi-
slope Arithmetic Logarithmic Percentage of estimate (pet.) R-squared likelihood likelihood
78.48%

79.81%

79.19%
79.18%
79.75%

79.74%

79.38%

5,085.6 —

0.00102 —

— 0.7528
— 0.7528
— 0.1394

— 0.1358

— 0.1336

— — 20.842

0.
0.

1218
1188

0.7755

0. 
._,.._..

1170 

1180

—

0.1425
0.1407
0.7586

0.1396

0.1402

21.

0.951 21.
0.951 21.

21.

27.

21,

226

,155
,150 
.178

256

,202

-50.6320

-50.6296

-50.6289
-50.6289
-50.6301

-50.6292

-50.6257

Note: entries in italics represent minimum sum-of-squared errors, or maximum likelihood or quasi-likelihood.



We next compute the fitted learning curve that results from lot-midpoint NLS, as 
well as the ±2cr confidence band around the fitted curve. Because the formula for the 
confidence band is not widely known by cost analysts, we present most of the details 
behind this calculation. Table 4.2 summarizes some of the key ingredients required for 
the calculation.

Table 4.2. Parameter Estimates from Lot-Midpoint NLS
Parameter Estimate

Sum-of-squared errors 
Sample size («) 
Number of parameters (k) 
Degrees of freedom (n - K) 
Standard error of regression (a) 
T], pre-adjustment 
Log-normal correction factor 
T\, post-adjustment 
Exponent (b) 
Learning slope_________

0.1328 
8 
2 
6
0.1488
2.0033
1.0111
2.0256

-0.3366
79.19%

The formula for the asymptotic variance of the prediction was given previously in 
equation(2.41). We repeat that formula here, except that we subsume the 2x2

0 / T \ —co variance matrix of the NLS parameter estimates V = a \J Jj into the single term V 

that is available directly from the regression output:

Var(LACt ) w, + /-*2n
x(LAC,Y (4.3)

where wt = (l/T^, InQJ. Only two terms in this formula vary across the observations:
— ^ _

\nQi and LACr We present these terms in Table 4.3. In particular, the middle column 
gives the logarithmic lot midpoint (Ing-) for each lot, and the final column gives the 
predicted lot average cost (LACt ).

80



Table 4.3. Terms that Vary Across the Observations

Lot number
1
2
3
4
5
6
7
8

Lot midpoint
67.6

606.4
2,066.6
4,459.3
6,722.3
8,764.3

10,825.9
13,019.7

Logarithmic 
lot midpoint

4.214
6.408
7.634
8.403
8.813
9.078
9.290
9.474

Actual lot average 
cost ($M)

0.471
0.226
0.158
0.124
0.126
0.094
0.095
0.062

Predicted lot 
average cost ($M)

0.490
0.234
0.155
0.120
0.104
0.095
0.089
0.083

Considering, for example, the second lot, the asymptotic variance of the 
prediction Var(LAC2 ) would be calculated as follows:

0.2355 -0.0142") (0.499") (0.1488)4
(0.499 6.408)x ——— ™ x ~ + ^^ 
v ' 1.-0.0142 0.0009 J 1,6.408; 2x8

.2x(0.234) z . (4.4)

Note that we invert the pre-adjustment value of T} , 1/f, = 1/2.0033 = 0.499. 
Expression (4.4) evaluates as (0.0162)2 , so the standard error of the prediction for the 
second lot equals 0.0162.

Figure 4.2 illustrates the close fit of the two-parameter learning-curve model to 
the tactical missile data. Each data point represents the computed lot midpoint (second 
column of Table 4.3) and the actual lot average cost (fourth column of Table 4.3). The 
solid curve represents the smooth model prediction of marginal cost (i.e., the Crawford 
model). The data points would ideally fall along the solid curve, because the lot midpoint 
is calculated such that its marginal cost (the height of the solid Crawford curve) equals 
the predicted lot average cost (the predicted height of the data point). Although the figure 
is drawn for the lot-midpoint NLS estimates, all of the alternative estimates are 
numerically close and the visual representations are indistinguishable.

The ±2 a confidence band reveals two minor outliers at the fifth and eight lots. 
However, these outliers are departures from the two-parameter learning-curve function 
and cannot be resolved by mere recalibration of that function. The analyst's only choices 
are to:

• Review the data for possible errors,

• Expand the two-parameter functional form,

• Add more predictor variables (e.g., production rate), or
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Simply live with the two minor outliers.47

2,000 4,000 6,000 8,000 10,000 12,000 14,000 
Quantity

Figure 4.2. Learning Curve Fit to Tactical Missile Data

The prediction errors in Figure 4.2 do not show any indication of serial 
correlation. We again use Goldberger's (1964) expression for the first-order serial 
correlation coefficient:

1=2 (4.5)

where e-t is the prediction error for the i'h lot. The serial correlation among the errors in 
predicting lot average cost (not its logarithm) is only 0.054.

Recall our previous assertion that serial correlation is more likely in a series of 
cumulative average costs (i.e., the Wright model) than in a series of lot average costs 
(i.e., the Crawford model). To test this assertion, we used the same lot-midpoint NLS 
estimates to predict the cumulative average cost for each lot, as in equation (2.5) (with

47 We also computed the nearly unbiased predictions suggested by Eskew and Lawler (1993, 1994). 
The two sets of predictions differed by 0.3% on average, with a maximum difference of 0.8%. Thus, 
our consistent predictions appear to be essentially unbiased even in a sample containing only eight lots.
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non-recurring cost set equal to zero). We then computed the prediction errors and, finally, 
the serial correlation among these errors. In this instance, the serial correlation coefficient 
evaluates much higher, 0.884.

The confidence band is useful not only for displaying the model fit within the 
estimation sample, but also for predicting the next observation beyond the current 
sample. For example, suppose we had applied lot-midpoint NLS to Lee's data after 
observing only seven lots, not all eight lots, and we attempted to predict the average cost 
for the (as yet unobserved) eighth lot. Table 4.4 summarizes the model estimates from the 
sub-sample consisting of the first seven lots.

Table 4.4. Parameter Estimates from Lot-Midpoint NLS, 
Sub-Sample of Seven Lots

Parameter Estimate
Sum-of-squared errors 0.0250
Sample size (n) 1
Number of parameters (k) 2
Degrees of freedom (n-k) 5
Standard error of regression (cr) 0.0707
T\, pre-adjustment 1.7173
Log-normal correction factor 1.0025
T\, post-adj ustment 1.7216
Exponent (ft) -0.3112 
Learning slope______________80.60%

Now we are asked to predict the average cost for eighth lot, consisting of 2,768 
units beginning with unit #11,669 and ending with unit #14,43 6. We estimate the 
midpoint of the eighth lot as unit #13,020, and we predict the lot average cost as 
1.7216 x!3,020~° 3112 = 0.0903 (i.e., $90,300). The asymptotic variance of the
prediction Var(LACg ) would be calculated as follows

0.0431 -0.003H (0.5823^1 (0.0707)4(0.5823 9.474)x w '™ """"" x """'~ + ^^ 
v ' I,-0.0031 0.0002 J ^ 9.474 J 2x7

x (0.0903) 2 . (4.6)

Expression (4.6) evaluates as (0.0035)2 , so the standard error of the prediction for
the unobserved eighth lot equals 0.0035. Thus, the ±2cr prediction interval for the 
average cost of the eighth lot is 0.0903 ± 2x0.0035 = (0.0833,0.0973), or $83,300 to
$97,300. However, the actual average cost of the eighth lot is only $62,000. This 
situation is illustrated in Figure 4.3, where that actual average cost (square data point) lies
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not only below the predicted average cost (diamond), but actually below the entire 
prediction interval (range between the two dashed curves). The relatively low cost of the 
eighth lot would have come as a surprise to the cost analyst who had observed only the 
first seven lots.

• Estimation data 
+2 sigma

• Model
• - -2 sigma
• Predicted cost, lot #8
• Actual cost, lot #8

0.00
2,000 4,000 6,000 8,000 

Quantity
10,000 12,000 14,000

Figure 4.3. Prediction Interval for Eighth Lot from Sub-Sample of Seven Lots

4.2 Lot-midpoint iteration
We next applied lot-midpoint iteration to equation (2.27), following the algorithm 

outlined in equations (2.32) and (2.33). This procedure converged in four iterations, 
starting from the NLS estimates of incremental lot cost (i.e., starting from the first row in 
Table 4.1). The eigenvalue db(p+l) /'db(p} evaluates as -1.041 at the starting point,
illustrating that an absolute bound of 1.0, while sufficient for convergence, is not 
necessary.

We again adjusted the intercept by the log-normal correction factor, exp(<72 II). 
Using equation (2.39), the adjusted intercept of 2.0301 has a standard error of 0.512. We 
also report the standard error of the learning coefficient b, recalling our earlier claim that 
the standard error is underestimated because the true lot-midpoint variable is unknown 
even at convergence. Even the underestimated standard error from lot-midpoint iteration 
is larger than the standard error from lot-midpoint NLS (0.0312 versus 0.0300); the true 
standard error from lot-midpoint iteration must be larger still. Thus, although the
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numerical estimates are virtually identical, lot-midpoint iteration appears to be a less 
efficient estimation technique than lot-midpoint NLS. Moreover, there is no longer any 
computational advantage to using lot-midpoint iteration. Commercial spreadsheet 
programs now contain non-linear solvers that can easily perform lot-midpoint NLS 
(i.e., minimize expression (2.28)). Further, most statistical software packages 
automatically provide the NLS standard errors as well as the point estimates. Thus, 
manual calculation of the standard errors (i.e., evaluation of equation (2.31)) is no longer 
necessary.

We have argued rather vociferously against lot-midpoint iteration. In addition, as 
we show in Chapter 5, among all the estimation techniques that we compare, only lot- 
midpoint iteration is sensitive to serial correlation in the error terms (though that problem 
is not present in Lee's data). The lot midpoints themselves have the sole (and rather 
modest) virtue of providing plot points for each lot, as in Figure 4.2 above. Indeed, Lee 
(1997, p. 35) first introduces the lot midpoints merely as plot points. He then (pp. 55-56) 
goes on to describe lot-midpoint iteration, though he concludes rather pessimistically by 
stating that:

While this procedure [lot-midpoint iteration] may appear to make the 
wealth of information that is known about linear regression available to 
the estimation of cost-progress curve parameters, the dependence of 
[the lot midpoint on the unknown exponent] is a complication whose 
consequences seem not easily seen. Today's practitioners almost always 
have more straightforward means of estimating cost-progress curve 
parameters.

4.3 Other estimation methods

The two lot-midpoint estimators attempt to fit equation (2.27) directly; that is, 
they attempt to minimize the differences between observed log-average cost, \n(LACt ), 
and predicted log-average cost, \n(LACt ). Put differently, the two lot-midpoint 
estimators attempt to minimize the quantity:

',) - ln(L4C,)] 2 = Y[ln(Z^C, / LAC,)] 2

n

= I

2 (4.7) 
(LAC,-LAC,)*In 1 +

LAC
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The logarithmic sums-of-squares reported in Table 4.1 are the minimized values of 
expression (4.7).

By contrast, the next three estimators operate on the percentage sum-of-squares:

where yi = LACi and /(*,,/?) is the non-linear predictor for LACi given in 
equation (3.4). Put differently, these three estimators operate on the quantity:

^ '

To compare the quality of estimators based on expression (4.7) with estimators 
based on expression (4.9), we must establish the mathematical relationship between these 
two measures of fit. We recall the second-order Taylor series approximation, 
ln(l + z) = z - z2 /2 < z. Letting zt - (LACt - LAC^j LACi , the two measures are first- 
order equivalent. However, their second-order relationship is theoretically indeterminate

^

in sign. If LAC- > ZJC, > 0 , then we have:

0 < \n(LAC,/LAC,)
LAC, 

and

[\n(LAC, /LAC,)] 2 < I ~~' ——''\ . (4.11)
V LAC:

But if 0 < LAC, < LAC,, we have:

~ LAC>"> < o (4.12) 
LAC,

and
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(4.13)

This indeterminacy cannot be resolved theoretically and, in fact, the ordering
between expressions (4.7) and (4.9) depends on the particular data set. To make a fair

»
comparison, consider a case in which ^ z; « 0 , as must be true for any reasonable

estimation procedure. As indicated by inequalities (4.11) and (4.13), the squared 
percentage error exceeds the squared logarithmic error when z;. > 0 (i.e., for a data point
lying above the model prediction — a positive outlier), but the relationship is reversed 
when z, < 0 (a negative outlier).

The circles in Figure 4.4 represent a hypothetical data set containing a large 
positive outlier (i.e., a point lying far above its model prediction), yet balanced by four

points lying slightly below their model predictions so that z(. = 0. The positive outlier
/=i

evaluates much higher on the function z1 than on the function [ln(l + z)] in the right-

hand side of the figure, dominating the other terms in the summation. Thus, for this data 
set, the percentage sum-of-squares is larger than the logarithmic variant (1.025 > 0.698). 
Conversely, the squares in Figure 4.4 represent a hypothetical data set containing a large 
negative outlier. For the latter data set, the negative outlier evaluates much higher on the 
function [ln(l + z)] , dominating the other terms and causing the logarithmic sum-of-

squares to be larger (5.473 > 1.025).

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.4. Two Measures of Fit, Hypothetical Data
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For a symmetric data set with no extreme outliers, the logarithmic sum-of-squares 
will generally be larger than the percentage sum-of-squares. To see why, consider a data 
set containing n/2 under-predicted points {z,,...,zn/2 >0} and, symmetrically,
n/2 over-predicted points {-z,,...,-zn/2 <0}. Put differently, the percentage deviations 
in the data set are {±zl ,...,±zn/2 }. The percentage sum-of-squares over the entire data 

set is simply:

n/2 nil n/2

£z2 + K-*,)2 = 2x£z2 . (4.14)
1=1 i=l ;=1

Again using the second-order approximation In (1 + z) « z - z2/2, the logarithmic sum- 
of-squares over the entire data set is larger:

n/2 n/2 nil n/2

(=1
« £[z,-(z2 /2)]2 + £[-z,-(z2 /2)]2

(4.15)
« 2x5>,>

n/2 n/2 n/22
(=1

Young (1999) also compared the logarithmic and percentage sums-of-squares. 
However, he did not notice our inequalities (4.11) and (4.13); more importantly, he did

n
not impose the symmetry condition ^z^O. Figure 4.5 shows the values of z

1=1
3

for Young's two examples. 48 His Example 1, depicted as circles, has ^z; =0.4 in our
1=1

notation, with two positive outliers. His Example 2, depicted as squares, has
3

^Zi = - 0-99 with two large (but symmetrical) outliers as well as one extremely large
/=!

negative outlier. The value z3 = (y3 -y3 )/y3 =-0.99 implies that j>3 =100xy3 , so the 

prediction error is hundred-fold. The prediction errors for the two symmetrical outliers
n

are ten- fold. In either case, the condition ]Tz; «0 is clearly violated, thus Young's
1=1

examples shed little insight on the general relationship between the logarithmic and 
percentage sum-of-squares.

48 Note that Young's variable z corresponds to z - 1 in our notation. We will use our notation throughout 
the discussion of his examples.
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Figure 4.5 Two Measures of Fit, Young's Data

Finally, Figure 4.6 results when lot-midpoint NLS is applied to Lee's data set.
The values of z are simply the percentage errors from Figure 4.2. We again observe two 
minor outliers at the fifth (ys = 0.821 x^5 ) and eight (ys =1.334 x>>8 ) lots. The

logarithmic sum-of-squares is larger than the percentage sums-of-squares (0.1328 > 
0.1218). Indeed, this ordering holds not only for the lot-midpoint NLS estimates, but for 
all of the estimates reported in Table 4.1. This pattern is consistent with inequality (4.15), 
because the data set is fairly symmetric, the errors sum to approximately zero

8

zt = 0.064 ), and the two outliers are modest.

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Figure 4.6 Two Measures of Fit, Lee's Data
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We also computed the standard error of the estimate, dividing the percentage 
sum-of-squares in expression (4.8) by the degrees of freedom (n-m), then taking the 
square root. This procedure is suggested by the quasi-likelihood dispersion estimate in 
equation (3.19). Because the standard error, so computed, is monotone in the percentage 
sum-of-squares, these two measures provide identical rankings of the various estimators; 
the standard error is simply a more familiar metric.

The MPE, MLE (assuming multiplicative normal errors, as in equation (3.7)), and 
IRLS estimators round out Table 4.1. All of these estimators avoid the logarithmic 
transformation and operate directly on the lot-average cost, equation (3.4). The MLE is 
suggested, but not actually applied to this data set, by Lee (1997, pp. 47-49). We 
computed the covariance matrix of the MLE as the negative inverse Hessian of the 
concentrated log-likelihood function; we approximated the Hessian via numerical second 
differencing in the neighborhood of the maximum.49

Finally, the IRLS (MUPE) estimates are identical to maximum quasi-likelihood. 
The IRLS estimates converged in three iterations, starting from the first row in Table 4.1. 
As previously remarked, IRLS does not minimize the percentage sum-of-squares (0.1180
versus 0.1153 at the MPE solution). The gradient of the percentage sum-of-squares 
(expression (4.8)), evaluated at the IRLS estimate, is: d/d(T} ,b) = (-0.120, -2.163) * 0.

Although all of the alternative estimates are numerically close, a few interesting 
differences emerge from Table 4.1. Because the two lot-midpoint estimators attempt to 
predict log-average cost directly (equation (4.7)), they score the best in terms of 
logarithmic sum-of-squares. By contrast, the MPE estimator explicitly minimizes the 
percentage sum-of-squares (equation (4.9)), thus MPE scores the best in terms of this 
metric as well as the monotonically-related standard error of estimate. Book and Young 
(1997) report a bias in their MPE estimates as high as 29%, though typically closer to 
8%. While we do not know the true parameter values, the MPE estimates for Lee's data 
lie within the range of the other estimates that are known to be unbiased. Thus, we find 
no evidence of bias when MPE is applied to this particular data set. However, the Monte 
Carlo experiments reported in Chapter 5 reveal considerable bias in the MPE estimates.

We also report the log-likelihood and log-quasi-likelihood values not only at their 
respective maxima, but also evaluated at each of the other estimates in Table 4.1. The 
log-likelihood function, again assuming multiplicative normal errors, is relatively flat in

49 Numerical differentiation is covered by Dennis and Schnabel (1996, p. 80 and pp. 103-106).
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the neighborhood of the MLE, with most differences among the estimates appearing in 
the 4th significant digit. The log quasi-likelihood function is even flatter, with most 
differences appearing in the 5th significant digit. Thus, there is little basis for 
distinguishing the alternative estimates for this particular data set.

The results of this chapter, though illuminating, are not definitive because we do 
not know the true parameter values that generated Lee's data. Therefore, we supplement 
Lee's data with a series of Monte Carlo experiments, in which we know the true 
parameter values. We report the results of these Monte Carlo experiments in Chapter 5.

4.4 Correction for serial correlation

When using lot-midpoint NLS, we found serial correlation of only 0.054 among 
the errors in predicting lot average cost. However, the serial correlation coefficient will 
vary somewhat with the method of estimation. Moreover, for the sake of completeness, 
we want to illustrate the correction for serial correlation under NLS. To make the 
problem more interesting, we consider NLS applied directly to a regression of lot average 
cost, without the artifice of lot midpoints. Thus, we return to expression (4.2) and the 
corresponding estimates that appear in the second row of Table 4.1. For that estimation 
method, the serial correlation coefficient evaluates as -0.257.

Expression (4.2) is consistent with our conjecture, back in Chapter 1, that a 
modern statistician would simply apply NLS to the model for lot average cost based on 
the area under the continuous approximation to the learning curve. However, we must 
correct those estimates for serial correlation. In addition, we must also correct for 
heteroscedasticity if we make the now-familiar multiplicative error assumption:

LAC, = ————^————xr(Q+0.5)1+6 - (Q,+0.5)1+6 ]xw, . (4.16) 
(l + 6)x(Q-£M ) L J

Table 4.5 shows the weights w,= f(x,,/3w) = LAC(Q,,Ql_l ; T,(0\b(0) ), where 
(TH O) , £(0)-j gj.g tke starting estimates obtained by conventional NLS applied to the model
for lot average cost. Table 4.6 shows the starting estimates (repeated from the second row 
of Table 4.1) and the final estimates after a single step of non-linear generalized least 
squares. In this instance, NGLS produces an almost imperceptibly steeper learning slope. 
The NGLS intercept is 3.7 percent higher than the NLS intercept, an apparently large 
difference. However, referring back to Figure 4.1, the NGLS parameters appear almost 
exactly on the line that interpolates between the various other sets of parameter estimates.
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The higher intercept compensates for the steeper slope, ensuring that the NGLS learning 
curve passes through the centroid of the data.

Table 4.5. Weights for NGLS Estimation

Lot number

1
2
3
4
5
6
7
8

Actual lot
average cost

0.4714
0.2257
0.1576
0.1236
0.1257
0.0939
0.0953
0.0619

Predicted lot
average cost ( w, )

0.4708
0.2311
0.1551
0.1208
0.1057
0.0970
0.0905
0.0852

Table 4.6. Comparison of NLS and NGLS Estimates
NLS NGLS

Intercept 1.8593 1.9281
Quantity exponent -0.3254 -0.3298
Learning slope __ 79.81% 79.57%
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5. SIMULATION EXPERIMENTS

As shown in the previous chapter, there are limitations to comparing the 
effectiveness of the different estimation methods when using an actual data set, such as 
Lee's data on tactical missiles. The "true" values of the parameters are unknown, so it is 
impossible to say which of the methods' estimates are closest to "truth." The different 
methods minimize different functions, and comparing the relative merits of these 
functions is subjective. Nor is it possible to fully compare the estimation errors, because 
the theoretical form of the co variance matrix for some of the methods is unknown.

These difficulties motivated a series of Monte Carlo simulation experiments. 
Because the simulated data were generated using known parameters, the estimates 
produced by the different methods could be directly compared to "truth." The bias and 
random error in the parameter estimates could be separately measured, even for methods 
where theoretical values were unknown. In addition, in most cases, even if a formula for 
the covariance matrix is available, the matrix produced is only an asymptotic covariance 
matrk. The simulation experiments allowed us to compare the variances over a spectrum 
of sample sizes, ranging from very small (unfortunately, the typical situation in cost 
analysis) up to asymptotically large.

Because actual data sets do not always have normally distributed random errors, 
we examined several alternative error structures. By varying the error structure, we could 
determine how robust the methods are even if their assumptions are incorrect. We also 
varied the underlying parameter values, because it was unclear from theory alone how the 
parameter values affected the covariance matrix of the lot-midpoint iteration and MPE 
estimates.

5.1 Basic methodology

We compared four of the estimation methods previously discussed. We did not 
include maximum likelihood because this method requires the most computation to 
converge, and because its properties (at least, asymptotically) are already well known. 
Each simulation is defined by the assumed values of the "true" parameters, the magnitude
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of the random error, the structure of the random error, the number of lots, and the method 
of estimation.

We first conducted a baseline experiment under the following conditions:

• the true learning slope equals 80%,

• each lot contains 50 units,

• the error term HI is normally distributed with standard deviation a = 0. 1 5 , and

• the error terms |w,} are statistically independent.

We then conducted the following excursions, varying one assumption at a time 
relative to the baseline experiment:

• the true learning slope equals 90%;

• each lot contains 1 0 units;

• the error term is normally distributed with standard deviation a - 0.30 ;

• the error term is uniformly distributed with standard deviation a = 0. 1 5 ;

• the error term is ^-distributed with standard deviation a = 0. 1 5 ; and

• the error term is normally distributed with standard deviation a = 0. 1 5 , 
but suffers from first-order serial correlation.

Once we selected parameter values and error structures, we calculated "true" lot 
average costs using the "true" parameter values and the theoretical formula from the 
Crawford model:

LAC, = ———— ———— x(Q+0.5) + - (Q ,+0.5) + . (4.1) 
' (l + &)x(a-0_,) L^' ^ J

We generated observed lot average costs by applying random error to the true lot average 
cost using a pre-determined error structure, discussed in each experiment below. The 
estimation method of interest was then applied to these observed costs to estimate the 
parameters T\ and b. Finally, the estimated parameters were compared to the true 
parameters.

In each simulation experiment, and for each method of estimation, we varied the 
number of consecutive lots from 5 to 200. The number of lots represents the sample size, 
n, from the previous chapters. The range in sample size enables us to examine both the
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small-sample and the asymptotic properties of each estimation method. For each sample 
size, we ran 3,000 repetitions of the simulation experiment. Thus, for each case, we 
produced 3,000 sets of estimated parameters for each method.50

We summarized the error in the estimate of each parameter using the following 
measures. First, we calculated the root mean squared error (RMSE) between "true" 
parameter and the estimates of that parameter:

3000

RMSEb = JXooox2>-6,)2 , RMSETi =
3000

-f,,)2 . (4.2)

The RMSE includes both bias and random error. We used the following formulas to 
decompose the RMSE into its bias and random error components:

RMSEb = bias b2 + ran _errb2 ,

where:

(4.3)

3000

= 1
(=1

(4.4)

ran _ errb = -b,) =
3000 3000

(4.5)

The corresponding formulas for T\ have the same form.

Finally, we are interested in how errors in the parameter estimates propagate 
when attempting to predict unit cost (not lot average cost), r, x Qb , at a given cumulative
quantity. Therefore, we report the bias and random errors for unit cost at the following 
cumulative quantities: 50, 100, and 1,000 units (i.e., 1, 2, and 20 lots).

50 It appears that 3,000 repetitions are sufficient to capture the basic behavior of the estimation methods 
we compared. As we show in some of the summary plots, additional repetitions might have controlled 
the erratic behavior observed in a few of the simulation experiments. However, because of limitations 
on computer time, we did not perform additional repetitions in this study.
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5.2 Simulation experiment 1: multiplicative, normal errors, 
learning slope = 80% (baseline)

For this simulation experiment, we chose the parameter values 
b = -0.33 and 7^=1.8 to resemble the estimates derived in Chapter 4 from Lee's
tactical missile data. We calculated the true lot average cost using equation (4.1). We 
generated the observed lot average cost by applying a multiplicative normal error with 
standard deviation a = 0.15 :

Obs _ LAC, = LAC, x u,, (4.6)

where ut ~7V(l.O,0.15 2 ). We generated the error terms {u^ independently, without 

any serial correlation: E(ui w,) = 0 for all i* j.

In Chapter 3 we reviewed the MLE under a multiplicative normal error structure, 
and we showed that same error structure underlies the derivation of the MPE. The lot- 
midpoint NLS and lot-midpoint iteration methods assume, instead, a log-normal error 
structure. As Figure 2.9 revealed, these two error structures are quite similar for random 
errors of the magnitude a = 0.15 . Nonetheless, we are evaluating the two lot-midpoint 
methods under a slightly different error structure from the one assumed in their 
derivation.

Figures 5.1 through 5.5 compare the estimation errors for the different methods. 
Three of the methods — IRLS, lot-midpoint NLS, and lot-midpoint iteration — are 
consistent estimators and converge to the true parameter values at similar rates. Although 
it was known from theory that IRLS and lot-midpoint NLS would produce consistent 
estimates, we were surprised to find that lot-midpoint iteration performed about as well. 
While the latter method does not minimize any continuous function, it nonetheless 
produced consistent estimates. Moreover, the estimation errors from lot-midpoint 
iteration were quite close to those found in the two methods having a stronger theoretical 
basis.

MPE did not perform as well, producing biased estimates as predicted from the 
theory. The MPE estimates of b are biased for small numbers of lots, although the bias 
decreases as the number of lots increases. However, the bias in T\ remained nearly 
constant even with large numbers of lots. The bias was small relative to the random error 
and is therefore not obvious when examining the RMSE for the parameter estimates. But 
when projections are made for unit cost, the bias is large enough to separate MPE from
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the other methodologies. For example, when the cost of the 1,000th unit is estimated 
(Figure 5.5), the bias accounts for half of the total error. In contrast, none of the other 
methodologies showed substantial bias.

For all methods examined, the errors in estimating the cost at the 1,000th unit are 
smaller than the errors at the 50th unit. This is true for both the absolute RMSE errors (see 
Figures 5.3 and 5.5) and the percentage errors (see Figure 5.6). In general, the errors are 
smaller nearest to the observed data, and increase as larger extrapolations are made. In 
the percentage error plots, the errors for both the 50th unit (1 lot) and the 1,000th unit (20 
lots) are close to 8% when only a few lots have been observed. However, the error for the 
cost of the 1,000th unit declines rapidly, while the error at the 50th unit remains nearly 
constant. This difference is due to the multiplicative nature of the model. Because the 
model is multiplicative, the predictor variable—cumulative quantity—should more 
properly be treated on a logarithmic scale. As more lots of equal size are accumulated, 
they become more tightly clustered on a logarithmic scale (see Figure 5.7). More data 
points are observed near the 1,000th unit than near the 50th unit, so the error at the 1,000th 
unit declines. Furthermore, because of the logarithmic scale, extrapolating forward to 
higher cumulative quantities will produce less error than extrapolating backward to lower 
cumulative quantities. Of course, if the lots were smaller at low quantities, predicting the 
cost at low quantities would involve interpolation rather than extrapolation and the errors 
might be smaller.
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5.3 Simulation experiment 2: multiplicative, normal errors, 
learning slope = 90%

For this experiment, we retained 7J = 2.0 but we changed the exponent to 
b--0.l5. Thus, we increased the learning slope from 80% to approximately 90%. 
Because of the way the learning slope is defined, 90% is a shallower slope and 
corresponds to less rapid learning than in the previous experiment. We also retained the 
multiplicative normal error structure from the previous experiment, again with <j = 0.15 . 
Hence, we again generated the observed lot average cost as:

Obs _ LAC, = LAC, x «., (4.7)

where «, ~ JV(l.O,0.15 2 ).

Figures 5.8 through 5.12 present our results. Again, as expected, MPE produces 
biased estimates even with a large number of lots. The other methods are unbiased and all 
perform about equally well. As in the baseline experiment, the ability of lot-midpoint 
iteration to produce unbiased estimates is impressive though lacking in theoretical 
foundation.

When compared to the steeper slope, the raw total error assuming a 90% slope is 
considerably higher (see Figure 5.13). To understand this finding, consider the following 
identity:

—n e \-0.3

" ) - (4-8)

Predicting the cost of a given cumulative quantity, Q, for a 90% slope (left-hand side) is 

equivalent to predicting the cost of the square root of that quantity for an 80% slope 
(right-hand side). As already discussed, there is less error in predicting cost at higher 
quantities than at lower quantities, as long as some data have been observed near both. 
For a given quantity, Q, more error can be expected in the estimate using a 90% slope
than using an 80% slope, because the former is tantamount to predicting at a lower 
cumulative quantity.

Figure 5.13 shows that the absolute error assuming a 90% slope is higher than the 
absolute error assuming an 80% slope at the same cumulative quantity. However, the unit 
cost at that quantity is also higher for the assumed 90% slope. Figure 5.14 shows that the 
percentage prediction errors under the two assumptions are virtually identical. This
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finding is plausible because the two simulations use the same percentage random error 
(IT = 0.15). Ultimately, it is the percentage random error, not the slope, that determines 
the accuracy of the predictions.
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5.4 Simulation experiment 3: multiplicative, normal errors, 
learning slope = 80%, lot size = 10

This experiment is similar to Simulation Experiment 1, in that we restored the 
learning slope of 80%. However, we reduced the lot size from 50 units to only 10 units 
each. This experiment better corresponds to some aircraft manufacturing programs, 
whereas a lot size of 50 better corresponds to some missile programs.

Figures 5.15 through 5.19 show the relative errors for the different estimation 
methods. Because the individual lots are smaller, there is a greater concentration of data 
at lower cumulative quantities. Thus, the estimates of T\ and the predictions of cost at 
lower quantities are more accurate, particularly when only a few lots have been observed 
(see Figures 5.20 and 5.21). However, because the data are concentrated at lower 
quantities, the predictions of cost at higher quantities are somewhat less accurate (see 
Figure 5.22).
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5.5 Simulation experiment 4: multiplicative, normal errors, 
learning slope = 80%, sigma = 0.3

This experiment is identical to Simulation Experiment 1, except that we doubled the 
magnitude of the random error from a standard deviation of a — 0.15 to cr = 0.30. With this 
one exception, we returned to the model parameters from Simulation Experiment 1, 
b - -0.33 and 7j =1.8. Hence, we generated the observed lot average cost as:

Obs_LACl =LACi xul ,

where u, ~ 7V(l.O, 0.30 2 ).

(4.9)

Figure 5.23 compares the error distributions. The solid curve represents the baseline 
normal distribution with cr = 0.15, and the dashed curve represents a more dispersed normal 
distribution with a = 0.30 .

3.0 n

0.10 0.25 0.40 0.55 0.70 0.85 1.00 1.15 1.30 1.45 1.60 1.75 1.90

Figure 5.23. Comparison of Two Normal Distributions

Figures 5.24 through 5.28 show the relative errors for the different estimation methods. 
Perhaps the most striking finding is that MPE seems to perform better than the other methods 
when only a few lots have been observed. MPE appears, on the surface, to be less sensitive to 
the size of crthan are the other methods (see Figure 5.29). When the total error is decomposed, 
it becomes apparent that the random error component of the MPE estimate is less sensitive to cr 
than are the other methods (see Figure 5.30). However, while other methods remain
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asymptotically unbiased, the bias in the MPE estimate is much worse under the larger value of 
<j.

That the bias in MPE is sensitive to the size of <j is not surprising. Recall that the 
parameters b and T\ are solutions to the minimization problem:

argrmn^ r^ L ;rr /J - (4.10)
(A, 71} M

There are two ways to minimize this function. The first is to make small prediction errors and
thus make the numerator small. The second is simply to inflate the denominator by making 
f[Xi,(b,T} y\ very large.

Recall that the magnitude of the random error, cr, is estimated by:

1/2
(4.11)

When a increases, the numerator of MPE's minimization function (the right-hand side of
equation (4.10)) necessarily grows larger. In that instance, the minimization algorithm is more 
likely to just increase the size of f[xt ,(b, T} )], amplifying the bias in the model predictions.

Between the two parameters b and T\, the bias is more evident in T\ because that 
parameter is strictly proportional to the model prediction, f[Q,,(b,Ti y] = Tl xQf. A bias in

estimating b would tilt the estimated learning curve, but would not uniformly inflate the model 
predictions that appear in the denominator of equation (4.10).

Finally, there is an ironic corollary in using MPE to predict unit cost. At unit 100, for 
example, we see in Figure 5.27 that the random error in MPE is small regardless of the number 
of lots used in estimation. Now examine Figure 5.31. Because the random error is small, the 
bias component dominates and the total error in MPE remains constant even for very large 
numbers of lots. Thus, our initial observation that MPE has small random error, even for large 
values of a, is more than offset by a severe bias that does not diminish asymptotically.
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5.6 Simulation experiment 5: multiplicative, uniform-distributed 
errors, learning slope = 80%

This experiment is identical to Simulation Experiment 1, except that we replaced 
the multiplicative normal error term with a uniform error term having the same mean and 
standard deviation. The uniform distribution does not correspond, even approximately, to 
the distributions assumed in the derivation of any of the four estimation methods under 
comparison. Because the uniform distribution does not have tails like the normal 
distribution, the uniform distribution generates many more extreme observations or 
outliers. The current experiment contrasts with the previous Experiment 4, which retained 
the shape of the error distribution but merely increased the magnitude of the error term.

To generate the uniform error term, first consider the canonical uniform 
distribution on the interval (0,1), denoted f/(0,l). This distribution has mean 0.5 and
standard deviation 1 />/12 . We can linearly transform this uniform random variable so 
that it becomes centered at a mean of 1.0 with a standard deviation of 0.15. The required 
transformation is as follows:

Obs_LACl = LACi xui ,
r r- -i r i-\ (4 - 12) where «,. ~ [0.30xV3 xt/(0,1)J + [l-0.15xV3j.

This transformed uniform error distribution has positive probability on an interval 
centered at its mean of 1.0: 1.0 ± 0.15x^/3 - 1.0 ± 0.2598 = (0.7402,1.2598).
Figure 5.32 compares the two error distributions.

Figures 5.33 through 5.37 show the rektive errors for the different estimation 
methods. Comparing these figures to Figures 5.1 through 5.5 from Simulation 
Experiment 1, we see that the results from uniform errors are virtually identical to those 
from normally distributed errors. All four estimation methods are robust in the face of 
data containing uniform errors.
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5.7 Simulation experiment 6: multiplicative, ^-distributed errors, 
learning slope = 80%

This experiment is identical to Simulation Experiment 1, except that we replaced 
the multiplicative normal error term with a /-distributed error term having the same 
standard deviation and an offset to yield a mean of 1.0. The /-distribution is indexed by 
the degrees-of-freedom parameter df, and approaches the normal distribution as df —> co. 
We chose a /-distribution with df = 3. This distribution has considerably thicker tails 
than does the normal distribution, thus generating more extreme observations or outliers.

The standard deviation of the /-distribution equals ^]df/(df-2') . Multiplying the 
error term by the factor 0. 1 5 x ^j(df - 1)1 df yields a distribution with standard deviation 
0.15, comparable to the normal distribution from Simulation Experiment 1. With df = 3, 
this factor becomes 0.15 />/3 . By normalizing the standard deviation to 0.15, we isolated 
the effect of the shape of the error distribution from that of the standard deviation. Recall 
that we already examined the latter effect in Simulation Experiment 4. Thus, we 
calculated the observed lot average cost as:

Obs
/ r where ut ~ /^=3 x 0.15 /V3 .

Figure 5.38 compares the two error distributions, both centered on a mean of zero. 
Note that the /-distribution has higher density than the normal distribution in both tails, 
specifically for error values u > 0.42 or u > 2.80xer. For example, at the error value
u = ±0.50 (or w = ±3.33xcr), the /-distribution is 2.81 times as high as the normal 

density having the same standard deviation. Thus, very large outlying errors are much 
more likely under the /-distribution than under the normal distribution. 51

Figures 5.39 through 5.43 show the relative errors for the different estimation 
methods. The most noticeable feature of these results is the erratic behavior of the MPE 
estimates. The /-distribution has thicker tails than does the normal distribution. For the 
same reasons that MPE is sensitive to the size of the standard deviation, MPE is also 
sensitive to these outliers, occasionally leading to very large biases. Of course, a human

51 The differences between the normal distribution and the normalized ^-distribution are discussed in 
Johnson and Kotz (1970), Volume II, Chapter 27, p. 97. A more detailed, primary reference is Weir 
(1960).
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analyst seeing these outlying lot costs could choose to exclude them from the data 
sample, thereby dampening their effect on the MPE estimates. Our simulation algorithm 
did not exclude any lots, so it could be argued that the errors shown here are larger than 
would be experienced in a real-life cost analysis. Nonetheless, there are borderline cases 
in which the cost analyst does not know whether a data point is truly an outlier, because it 
is not as extreme as some of those included in our simulated data. Given the typically 
small samples available to cost analysts, a conservative analyst might not be willing to 
discard any of these data points as outliers. These retained data points would influence 
MPE more than any of the other estimation methods. Below, we discuss specific 
examples of the effects of outliers on MPE.

Normal distribution, sigma = 0.15
- - - t-distribution, sigma = 0.15

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 5.38. Comparison of Normal and f-distribution
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We investigated which specific cases were leading to the extremely large biases in 
the MPE estimates of T\ and, thus, in the predictions of unit cost for that method. We 
found that, in all cases, the results were driven by the costs of only one or two outlying 
lots. Although we ran the simulation on lots of size 50, the same results were found for 
lots of size 10 under /-distributed errors. For ease of interpretation, the examples below 
have lots of size 10.

Table 5.1 illustrates one case in which the MPE estimate of T\ was biased high. 
The observed cost of the third lot is an extreme outlier. A cost analyst would likely try 
deleting this point. However, because our simulation did not have a decision rule for 
outliers, the third lot was included in the sample for all four estimation methods.

Table 5.1. Data with Outlier from Simulation

Lot start
1

11
21
31
41
51
61
71
81
91

Lot end Observed average cost
10
20
30
40
50
60
70
80
90

100

1.0670
0.7521
2.3754
0.6086
0.4022
0.4123
0.4997
0.4200
0.3766
0.3463

Using the data in Table 5.1, MPE found b = -1.18andr, =69.14, and IRLS
A A

found b = -0.48 and 71, = 3.76. Recall that the simulated data were generated using "true" 
parameter values b - -0.33 and T\ = 1.8. Recall also that Lee (1997, p. 41) argued for the 
restriction -1 < b < 0. The MPE estimate violates that restriction, implying an 
implausibly steep 44% learning slope. However, the reason MPE estimated an

A

implausible slope was to compensate for the even less plausible intercept, T} = 69.14.

Figure 5.44 plots both the raw data and two fitted models. The MPE estimates 
have been pulled high by the outlying third lot, to a much greater extent than have the 
IRLS estimates. The reason for this difference can be seen by comparing the percentage 
errors for the MPE and IRLS estimates at convergence (see Table 5.2). The MPE method 
explicitly minimizes the sum-of-squared percentage errors. Thus, MPE would never 
tolerate the nearly 200% error that IRLS tolerates in lot #3 in order to better fit the other
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(non-outlier) data points. 52 However, the price that MPE pays for fitting lot #3 is to tilt 
the learning curve toward very high levels at low cumulative quantities. This tilt is 
manifested in the much more severe overprediction of the cost of the first two lots 
(-94.2% and -73.7%), relative to the more moderate prediction errors under IRLS 
(-45.6% and-27.1%).

Influence of Outliers on MPE Method

*

10
9
8

6
5
'.
2
1
0

X Observed
MPE Estimate 

_ _ _ _ IRLS Estimate

X

20 40 60 
Midpoint

80 100

Figure 5.44. Influence of Outliers on Estimated Learning Curve

Table 5.2. Percentage Errors for Data with Outliers

Lot start
1

11
21
31
41
51
61
71
81
91

Lot end
10
20
30
40
50
60
70
80
90

100

Observed
average cost

1.0670
0.7521
2.3754
0.6086
0.4022
0.4123
0.4997
0.4200
0.3766
0.3463

MPE
estimate
18.3628
2.8565
1.5407
1.0343
0.7692
0.6075
0.4991
0.4218
0.3641
0.3195

Percent error
for MPE
-94.2%
-73.7%

54.2%
-41.2%
-47.7%
-32.1%

0.1%
-0.4%

3.4%
8.4%

IRLS
estimate
1.9608
1.0315
0.8069
0.6876
0.6103
0.5548
0.5125
0.4789
0.4513
0.4280

Percent error
for IRLS
^5.6%
-27.1%
194.4%
-11.5%
-34.1%
-25.7%
-2.5%

-12.3%
-16.6%
-19.1%

52 Recall that the percentage error is calculated as (observed - predicted) /predicted.
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In case the reader doubts that the global minimum of MPE's criterion function 
occurred at 7^=69.14, Figure 5.45 shows the minimized sum-of-squared percentage

/v

errors at various values of T\. In each case, we found the best estimate b conditional on 
T,, and we calculated the criterion function at the parameter vector (b,T} ). As is clearly 
shown in the figure, the minimum occurs when T, is close to 70.

Error Sums of Squares

4.2
4.1
4.0
3.9-

3.8
3.7-
3.6 :
3.S
3.4-
3.3
3.2-

3.1
3.0
2.9
2.8
2.7
2.6
2.6-
2.4 :
23-
22-

20 40 80 80 100

11

120 MO WO 180 200

Figure 5.45. Minimum Squared Percentage Error as a Function of T-\

It could be argued that the example presented above is too extreme, and that any 
competent cost analyst would know to delete lot #3 from the analysis, thereby avoiding

A_

the extreme bias in T} . However, even in much less extreme cases, outliers continue to 

exert too much influence on the MPE estimates.

Example data are provided in Table 5.3. With this data set, MPE found 
b = -0.68 and 7j = 7.84, and IRLS found b = -0.49 and f} = 3.58. Again, the simulated 
data were generated using "true" parameter values b = -0.33 and 71, =1.8. Figure 5.46 
plots the true model, the simulated data containing ^-distributed errors around the true 
model, and finally two fitted models. Unlike the previous example, it is difficult to say 
whether the outlier is lot #1 being too low or lot #2 being too high. In fact, the minimized 
sum-of-squared percentage errors is 0.21 when lot #1 is removed, and 0.11 when lot #2 
instead is removed. MPE does not offer much guidance as to which of the two lots (if 
either) should be removed from the analysis. Yet, inclusion of both lot #1 and lot #2
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yields an upward-biased estimate of T,. And again, MPE compensates with too steep a 
learning slope, 62% versus the "true" value of 80%.

Table 5.3. Data with Smaller Outlier from Simulation

Lot start
1

11
21
31
41
51
61
71
81
91

Lot end Observed average cost
10
20
30
40
50
60
70
80
90

100

1.0586
1.7838
0.8029
0.5139
0.4909
0.4758
0.4549
0.4127
0.3916
0.3542

Influence of Outliers on MPE Method
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Figure 5.46. Influence of Smaller Outliers on Estimated Learning Curve

We conclude that MPE's sensitivity to outliers makes it a less reliable method 
than the other three examined.
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5.8 Simulation experiment 7: multiplicative, normal errors with 
first-order serial correlation, learning slope = 80%

This experiment is identical to Simulation Experiment 1, except that we replaced 
the independent normal error term with one that exhibits first-order serial correlation. The 
errors still have a standard deviation of 0.15, but now the error for the /-th lot is highly 
dependent on the error for lot /-I. This situation may frequently arise in practice, 
because successive lots are likely produced by many of the same workers using mostly 
the same equipment.

Womer and Patterson (1983) found evidence of serial correlation, and devised 
special methods to efficiently estimate the learning curve in the face of this problem. 
They opined that (p. 268):

Since learning is measured as successive units of output are produced, one 
should not be surprised at the presence of autocorrelation in the data. In 
many cases, this violation of the assumption of independent error terms is 
ignored or viewed as insignificant or unimportant. This is a careless 
oversight.

Although we agree with Womer and Patterson, our objective is different from 
theirs. The reality is that most cost analysts continue to apply estimation methods that 
were not specifically designed for serially correlated data. In their defense, it may be 
difficult to detect serial correlation in the small samples that typify cost analysis. Our 
objective in this section is to assess the robustness of the four estimation methods that 
were not designed for serial correlation, when they are applied to serially correlated 
data. 53

For this analysis it is convenient to zero-out the mean of the error term. Thus we 
calculated the observed lot average cost as:

Obs _ LAC, = LAC, x (1 + «,), (4.14) 

where:

(4.15)

53 Along these lines, Womer and Patterson found that maximum likelihood estimation of incremental lot 
cost is particularly sensitive to serially-correlated errors. We did not independently investigate 
maximum likelihood in this monograph, because it requires by far the most computation per iteration.
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with p = 0.5 and e- ~ N(o,0.15 2 ).

We generated the error terms {£,} independently, without any serial correlation: 
Corr(sj ,£j ) = Q.O for all i* j. However, the transformation in equation (4. 15) induces 
serial correlation among the {ut } : Corr(ut , «,_, ) = 0.5 .

Note also that, by construction, the {wj have the same standard deviation as 
the {£,}:

Var(u,) = p2 x Pflr(wM ) + (1-p2 ) x Var(s,) . (4.16)

Because the {ut } are identically distributed, we have Var («, ) = Var (MM ) . Using this fact 
(and /»<!), we can solve equation (4. 1 6) for Var(ui ) = Var(si ). Thus, by first 
generating the {s,} with cr = 0.15, and then applying the transformation in 
equation (4. 15), we were able to obtain error terms {«,.} having the same standard

deviation.

Figures 5.47 through 5.51 show the relative errors for the different estimation 
methods. Of the four estimation methods compared, it appears that only lot-midpoint 
iteration is particularly sensitive to serial correlation. We see in Figure 5.52 that the loss 
of precision in lot-midpoint iteration due to serial correlation is almost as large as that 
caused by doubling the standard deviation. Because the theory behind lot-midpoint 
iteration is so poorly developed, we do not have a sound theoretical explanation for this 
result. Perhaps the iterative nature of lot-midpoint iteration serves to compound the errors 
as the procedure converges.
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5.9 Conclusions from the simulation experiments
Figures 5.53 through 5.56 compare the performance of each estimation method 

under various assumptions on the error term. We drew the following conclusions from 
the simulation experiments. First, both IRLS and lot-midpoint NLS are theoretically 
guaranteed to produce consistent estimates. However, these are general-purpose 
estimation methods, and their small-sample properties (such as bias) are not known for 
general predictor functions. In the particular case of learning curves, our simulation 
experiments suggest that IRLS and lot-midpoint NLS actually produce unbiased 
estimates even for small numbers of lots.

Most estimation methods are developed under a particular set of assumptions. 
Estimation methods are called robust if they continue to produce good estimates even 
when those assumptions are violated. None of the methods we compared rely on any 
particular assumption about the true learning slope, the number of units in a lot, or the 
standard deviation of the error term. However, it is still of interest to inquire whether the 
methods perform as well under a range of values for these parameters. Some of the 
methods rely on a particular distributional assumption, such as normally distributed 
errors. Thus, it is also of interest to inquire about the performance of the methods under 
alternative (non-normal) error distributions.

IRLS and lot-midpoint NLS continued to produce unbiased estimates under all of 
the simulation excursions. The performance of these two methods was essentially 
unaffected by the substitution of either uniform or /-distributed errors for the normal 
errors found in the baseline experiment. Naturally, however, the parameter estimates 
became less precise during Simulation Experiment 4 when we doubled the standard 
deviation of the error terms (see Figures 5.53 and 5.54). In addition, the predictions of 
unit cost became less precise when we replaced the baseline 80% learning slope with a 
shallower 90% slope. However, as explained in the discussion of Simulation 
Experiment 2, that loss of precision is not a bias, but rather an inevitable consequence of 
the pattern of data clustering under the shallower learning slope.

The estimates produced by lot-midpoint iteration and lot-midpoint NLS are 
numerically distinct. However, with just one exception, the numerical differences 
between the two sets of parameter estimates (e.g., between the estimated learning slopes) 
were essentially negligible. Consequently, both of these methods produced unbiased 
estimates even for small numbers of lots. The one exception is that the parameter 
estimates from lot-midpoint iteration (though not lot-midpoint NLS) became much less
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precise under first-order serial correlation (Simulation Experiment 7; see the summary in 
Figure 5.55). The introduction of serial correlation led to a drop in precision nearly equal 
to that engendered by doubling the standard deviation of the error terms (but without 
serial correlation). None of the other estimation methods exhibited any sensitivity to 
serial correlation. The difficulty is that serial correlation is not always detectable in the 
small samples that typify cost analysis. Thus, a cost analyst might inadvertently apply lot- 
midpoint iteration in a situation where it is rather imprecise. This imprecision could be 
avoided by applying other estimation methods (e.g., lot-midpoint NLS) that are robust to 
serial correlation.

Notwithstanding this case, the performance of lot-midpoint iteration was much 
better than we had expected. Prior to the simulation experiments, there was no theoretical 
basis for lot-midpoint iteration and little was known about the behavior of its estimates. 
We now know from Chapter 2 that lot-midpoint iteration does not minimize any 
continuously differentiable function. In a sense, that finding further undermines the 
theoretical basis for the method. Its apparently satisfactory performance characteristics, at 
least in the absence of serial correlation, remain a theoretical mystery.

The MPE estimates of T\ were biased high, even in large samples, under every 
one of the simulation excursions. Similarly, the MPE predictions of unit cost were also 
biased high. Moreover, the biases increased both when we doubled the standard deviation 
of the normal errors, and (unique to this method) when we substituted 
/-distributed errors for the normal errors (Simulation Experiment 6; see the summary in 
Figure 5.56). The latter result illustrates that the performance of MPE degrades when 
there are more outlier observations (in statistical parlance, the error distribution has 
"thicker tails") than would be expected under a normal error distribution. Because of 
these biases and sensitivities, we recommend against the use of MPE.

In light of the latter result, as well as the sensitivity of lot-midpoint iteration to 
serial correlation, we recommend either IRLS or lot-midpoint NLS as the estimation 
methods of choice. NLS is already available as an option in most statistical software 
packages. IRLS is becoming increasingly available as a built-in feature in many statistical 
packages, and the equivalent method of quasi-likelihood can be programmed quite easily 
using any computational software or even a simple spreadsheet. There is no longer any 
excuse for cost analysts to use methods that produce inconsistent parameter estimates.
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APPENDIX: CONVERGENCE THEORY FOR 
LOT-MIDPOINT ITERATION

In this appendix, we investigate the existence of a solution to lot-midpoint 
iteration, the uniqueness of any solution, and convergence to that solution.

The regression sum-of-squares is given by:

^(ln(LAC,) - ln(7;) - bln[Q(b)]) 2 . (A.1)
i=\

Begin with an initial estimate of b, denoted b (0) . Fix b=b w in the definition of the lot 
midpoint, Q(6 (0) ), and minimize the regression sum-of-squares with respect to b as the 
regression coefficient only. The minimum occurs at a new estimate, b m . Now fix b=b m 
in the definition of the lot midpoint Qt (b m ) and again minimize with respect to b as the 
regression coefficient only. In general, estimate the following sequence of regressions:

for p = 0,1,2,.... Finally, the lot-midpoint estimator is defined as the limit of the 
sequence:

b} = \imb (p) , (A.3)

when the limit exists. In practice, the lot-midpoint estimator is taken where the sequence 
converges within a pre-specified numerical tolerance

It can be shown that lot-midpoint iteration is numerically distinct from lot- 
midpoint NLS. Lot-midpoint iteration does not minimize the regression sum-of-squares 
when the functional dependence of Qt (b) on b is acknowledged. In fact, lot-midpoint 
iteration does not minimize any continuously differentiate function. Letting a = m(7J), 
at any iteration p = 0,1,2,... , the parameter estimates satisfy the two normal equations
for linear least squares:
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a: 0 = \n(LACJ - a p+ - Z>"+ \n(Q,(b p )], (A.4) 

and

b: 0 = ln[e,(Z>)]xln(Z,4C,) - a p+ - 6"+ \n[Q,(b)]. (A.5)

At convergence, however, the value of b used to define the lot midpoint (6 (p) ) is
identical to the OLS regression coefficient that multiplies the logarithm of the lot 
midpoint (6 (p+1) ) , or b (p) =b (p+l\ Thus, equations (A.4) and (A.5) reduce to:

a: a - b\n[Q(b)]), (A.6)

and

b: 0 = JTln[Q(6)]x(ln(^C,) - a - b\n[Q,(b)]). (A.7)

If the solution (a, b) represented an interior optimum of some continuously
differentiable function on an open set, then the gradient of that function would vanish at 
(a, b). In fact, equations (A.6) and (A.7) would be precisely those gradient conditions.
Thus, there would exist a parent objective function F(a,b) such that the right-hand side 
of equation (A.6) equals Fa (a,b), and the right-hand side of equation (A.7) equals 
Fb (a,b). Because a continuously differentiable function has a symmetric Hessian matrix,
existence of a parent function would further require that the cross-partial derivatives be 
equal. 54 However, the partial derivative of equation (A.6) with respect to b is equal to:

8Fa (a,b)/db: -\n[Q,(b)] + b (A.8) 

and the partial derivative of equation (A.7) with respect to a is equal to:

54 This is the exactness condition for differential forms; it is both necessary and sufficient. See Kaplan 
(1958, pp. 44-48).
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dFb (a,b)/8a: -[Q,(b)]. (A.9)
;=]

These two expressions cannot generally be equal because the location of the lot midpoint 
depends on the value of b. Thus, equations (A. 6) and (A.7) cannot be integrated back to a 
parent objection function, F(a,b).55

It is not currently known from theory whether a value of b always exists that 
balances equation (A.2); whether such a value, if it exists, is always unique; or whether 
lot-midpoint iteration is guaranteed to converge to such a value. The situation would be 
particularly problematic if there were multiple, distinct values of b that balance 
equation (A.2). In a maximization problem, we can always compare the value of the 
objective function at two distinct local maxima, disposing of the smaller value because it 
cannot be the global maximum. But because lot-midpoint iteration does not maximize 
any continuous objective function, we have no basis to choose between two distinct 
values of b that both balance equation (A.2).

We demonstrate that the existence, uniqueness, and convergence of lot-midpoint 
iteration depend upon the slopes of certain functions being less than 1.0 in absolute value. 
Before examining this condition more formally, we present a simple example to illustrate 
the problem in two dimensions.

Consider the following two functions: f(y) = y-y3 and g(y) = (1 + e ) x sin(j) , 
where we restrict our attention to the interval 0.0<j<0.9. If we choose 
£ = [(;r/4)/sm(;r/4)]-l«0.1107, then the function g(y) has a fixed point at 
7t/4 (« 0.7854): g(;r/4) = ?r/4. The fixed point is illustrated by the intersection of g(y)
with the 45-degree line in Figure A. 1 . The function g(y) actually intersects the 45-degree 
line twice for non-negative values of y. The slope g'(7i 1 4) = n 1 4 « 0.7854 at the fixed 
point already identified. In addition, there is a second fixed point at the origin, g(0) = 0 
and g'(Q) = l + e * 1.1107. Finally, the function f(y) has a single fixed point at the 
origin, /(O) = 0 and /'(O) = 1 .0 .

In particular, lot-midpoint iteration does not maximize the likelihood function for any continuous 
probability density. Despite a superficial resemblance, lot-midpoint iteration is not an example of an 
EM algorithm because the latter always converges to a stationary point (local or global maximum, or 
saddle point) of the likelihood function. On the latter property of the EM algorithm, see McLachlan 
and Krishnan (1977), especially chapter 3.
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Figure A.1. Fixed Points of Cubic and Trigonometric Functions

Now consider an iterative scheme such as y (p+l) =f(y (p) } for p = Q,l,2,.... This

scheme will converge to the fixed point at the origin, albeit slowly, even for starting 
values y (0) lying to the right of the peak of the cubic (which occurs at
y = 1 / >/3 « 0.5774 ). However, let us turn to the less well-behaved trigonometric function 
g(y) and consider the iterative scheme y (p+]} -g(y (p) }- This scheme will converge to the

fixed point at n/4 [where g\n / 4) < 1 ] from any starting value 0 < y (0) < n ; it will never 
converge to the second fixed point at the origin [where g'(0) > 1 ] from any such starting 
value. Figure A.2 illustrates the convergence to 7i/4 from a starting value of 0.9, as well 
as from a starting value of 0.1 which is much closer to the origin.
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Figure A.2. Convergence of Iteration on Trigonometric Function
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It appears from this example that fixed points tend to attract (repel) iterative 
schemes if the absolute value of the slope is less than (greater than) 1.0. Although this 
basic conclusion is sound, it will not carry over exactly to higher-dimensional problems. 
We show that a bounded gradient (the multi-dimensional extension of the concept of a 
bounded slope), while sufficient for convergence, is not actually necessary. Indeed, we 
present an example of a lot-midpoint iteration that converges despite having an absolute 
gradient slightly greater than 1.0 at a starting value near the (apparently) unique fixed 
point.

These issues of existence, uniqueness, and convergence may be explored more 
formally using the advanced mathematics of contraction mappings. Lot-midpoint 
iteration induces a mapping from the current estimates, T^p) and b(p\ to the new 
estimates, Tf p+l) and b(p+l) . Consider the 2x2 Jacobian matrix of that mapping:

J = (A.10)
db (p+l} /db {

By Ostrowski's theorem on contraction mappings, if the eigenvalues of J are all 
less than 1.0 in absolute value throughout a region of parameter space (or, equivalently, if 
the maximum absolute eigenvalue is less than 1.0 throughout the region), then quite 
remarkably:

• there exists a pair of values T\ and b in the region that balance equation (A.2);

• the pair T\ and b is unique in the region; and

• iteration, starting from any point in the region, generates a sequence that 
converges to the unique root. 56

In our situation, the Jacobian will reduce to a 1x1 matrix (i.e., a scalar) because 
the definition of the lot midpoint (equation (2.17)) depends on b but not T\. Thus, we 
need only consider the absolute value of the derivative db(p+l) /db(p) . A change in b(p)
affects the lot midpoints via equation (2.17), in turn affecting the updated estimate 6 tp+l) 
via the regression normal equations. We now show that, by theory alone, the absolute 
derivative cannot be bounded above by 1.0. In Chapter 4 we gave a numerical example in 
which the absolute derivative actually exceeds 1.0, yet lot-midpoint iteration nonetheless

56 See Ortega and Rheinboldt (1970), theorems 5.1.3, 10.1.3, and 12.1.2. These theorems require that the 
iteration map a closed parameter set into itself.
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converges. We obtain convergence in that example because the eigenvalue condition is 
sufficient for convergence, but not necessary. Importantly, however, with failure of the 
eigenvalue condition there is no theoretical guarantee that, even when lot-midpoint 
iteration converges, the root is unique. Thus, alternative starting values could conceivably 
lead the algorithm to converge to a different root. Again, because lot-midpoint iteration 
does not maximize any continuous objective function, if two distinct solutions are located 
we have no basis to choose between them.

In simple linear regression, of which any step of equation (A.2) is an example, the 
slope is given by:

» = ^ (A.11)

and the intercept by:

a = y-bx.

In this general regression notation, the Jacobian matrix becomes:

J =

(A.12)

db(p+l) ldb(p)
(A. 13)

Now b(p) acts on a(p+n and b (p+l) via the definition of the lot midpoints, but a(p) 
(i.e., 7](p) ) has no such effect. Moreover, it follows from equation (A.12) that 
da(p+]) /db(p) = -x db^/db(p) . Thus, the Jacobian matrix simplifies to:

J =

0 -xdb(p+l) /8b 

0 db(p+l) /db
(A.14)
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The matrix J is asymmetric, but the eigenvalues are nonetheless defined. Because 
J is singular, one eigenvalue is zero. It is simple to show that the second eigenvalue is 
db(p+l) /db(p) with corresponding eigenvector (-x l). Thus, as claimed earlier, the
convergence condition amounts to showing that \db(p+^/db(p) < 1. 57

A change in b(p) affects the logarithmic midpoint of every single lot 
jln[Q(^)]| / = !,-••>«}, or in the current notation {*, / = !,...,«}. Moreover,

differentiation of equation (A.I 1) yields: 58

^.

db/dx, = (K-JO-2* (*,-*)_ (A15)
XX

Thus, we have:

.ajjCp) Z-i ^ rlh^P} Z^L ' ' \ rlh^ p^ I ** ' OO ,=1 UXj OO ,=] UU /

The derivative dxl /8b(p) is, in principle, computable from the definition of the
lot midpoint, equation (2.17). However, inserting this information into equation (A. 16), it 
is not at all obvious that \db(p+]) /db(p) is bounded above by 1.0. In fact, in Chapter 4 we

give a numerical example of an apparently well-conditioned problem (i.e., no obvious 
data anomalies) in which this expression exceeds 1.0 (although lot-midpoint iteration 
nonetheless converges). If it can be verified in a particular example that 
\db(p+^Idb(p) < 1, then existence, uniqueness, and convergence are guaranteed by

Ostrowski's theorem. However, our numerical counterexample proves that there can be 
no universal guarantee of existence, uniqueness, or convergence; the structure of the lot-
midpoint problem does not automatically satisfy the condition \db(p+}) /db(p) < 1 .

57 Equivalently, one could substitute equation (A. 12), ln(Jj) = a = y - bx , into equation (A.2), thereby 
eliminating the intercept from the problem and reducing the iteration to a univariate mapping from
b(p} to Bb(p+l) . The derivative that we have been studying, db(p^/8b(p) , is the slope of that 
mapping.

58 A similar result is found in the statistics of outliers; see Chatterjee and Hadi (1988, p. 151).
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At this point, we have learned the following:

• The standard sufficient conditions that guarantee existence, uniqueness, and 
convergence may or may not hold in the lot-midpoint problem — there is no 
universal guarantee;

• Even if the sufficient conditions fail in a particular example, lot-midpoint 
iteration may nonetheless converge — the bounded-eigenvalue condition is 
sufficient for convergence, but not necessary.

It remains to reconcile the ability of lot-midpoint iteration to converge when 
db(p+}} / db(p) > 1 with the geometric intuition that we developed in Figures A. 1 and

A.2. In Figure A.I, the origin is an inflection point for both the cubic and trigonometric 
functions. An iterative scheme could converge to the inflection point of the cubic 
function because /'(O) = 1 , but is repelled from the inflection point of the trigonometric
function because g'(0) > 1 . From this example, it may appear that a bounded gradient is 
necessary as well as sufficient for convergence (i.e., violation of the bound prevents 
convergence to a particular root).

This low-dimensional example is actually somewhat misleading because, for 
continuously differentiable functions of a single variable, the derivative has the same 
value whether approached from the left or from the right. By contrast, for continuously 
differentiable functions of several variables, a particular gradient element (i.e., the first- 
partial derivative with respect to one of the function arguments) generally depends upon 
all of the function arguments. Thus, although the gradient element will have the same 
value whether approached from the left or from the right (i.e., from the west or from the 
east), it may have a different value when approached from the north or the south, or from 
any other direction.

To illustrate these points, consider an iterative scheme designed to locate the fixed 
point of the pair of functions f(T) and g(T, b) . The iterative scheme takes the form
r (p+1) =/(r (/)) ) and b (p+}) =g(T (p\b (p) ) for p = 0, 1, 2, .... We restrict our attention to

the unit circle T 2 + b 2 < 1 . We assume that f(T) has a fixed point at an infinitesimal 
positive value, /(71*) = 7* where 0 < T' «; 1 . We also assume that f(T) has a bounded 
gradient \f'(T)\<l for all T\<\.

We assume that g(T, b) has the following form:

g(T,b) = (36/4) + (36/2;r)xarctan(6/r) - (3r/4^)xln[(r2 +62 )/72 ], (A. 17)
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with partial derivative:

dg(T,b)/db = 0.75 + (1.5/;r)xarctan(Z>/r). (A. 18)

We note that g(T*, 0) = 0, so that the pair of functions f(T) and g(T, b) has a 
fixed point at (T, b) = (T*, 0). Also, the Jacobian matrix has the form:

J =
f'(T)

(A. 19)
Bg(T,b)/dT dg(T,b)/db'

The eigenvalues of J are precisely its diagonal elements. Moreover, given our assumption 
that |/'(T)| < 1 , any difficulties with the maximum eigenvalue are entirely confined to the
southeast diagonal element, dg(T,b)/db = 0.75 + (l.S/^xarctan^/T1).

Figure A.3 depicts the gradient element 0.75 + (1.5/^r)xarctan(6/r) along the 
unit circle; the gradient values at selected points along the unit circle are labeled 0.7500, 
0.9375, 1.0000, and so on. Because the gradient element depends on Tand b only through 
their ratio, the gradient element is constant along any diameter of the unit circle. The 
function g(T,b) is increasing in b throughout the unit circle, dg(T,b)/db >0 (with 
strict inequality dg(T,b)/db >0 almost everywhere), so the fixed point of the pair of 
functions at (T, b) = (T*, 0) is neither a maximum nor a minimum of g(T, b). It might
appear that convergence to the fixed point will occur only from starting points within the 
unit circle where the gradient element dg(T, b)/db is less than 1.0 (i.e., the two lighter- 
shaded sub-regions). However, this supposition will prove false because the gradient 
element may change in magnitude along a particular iterative path.

We make the example a bit more concrete by choosing the function f(T) - T* for 
all T < 1, where 0 < T' «: 1. This function has the desired property |/'CO| < 1 (in fact, 
f'(T) = 0) for all T <1, as well as a fixed point at T = T*. Note that the iterative 

scheme T (p+l) =f\T (- p) J converges to the fixed point in a single iteration from any
-4starting value r (0) <1. We further definitize the example by choosing 7* =10

Regarding the second of the pair of functions, the iteration b (p+l] =g(T (p\ b (p) ) reduces 
to b (p+l) =g(T*,b (p) ) for p = l, 2,3,... , effectively a univariate iteration along the 
vertical line T = T*.
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Figure A.3. Gradient Values Along the Unit Circle

Figure A.4 illustrates one type of divergence. The iterative scheme begins in the 
lighter-shaded sub-region in the northwest, where the gradient element dg(T,b)/db 
equals 0.3750. However, the first iteration jumps to the point (T,b) = (T*, 0.316) at 
which dg(T,b)/db equals 1.4998. From that point the iteration diverges northward, 
exiting the unit circle by the fourth iteration. The gradient element dg(T, b)jdb remains 
approximately equal to 1.5 as the iteration diverges.

Figure A.5 illustrates one type of convergence. The iterative scheme begins in the 
darker-shaded sub-region in the southwest, where the gradient element dg(T,b)/db 
equals 1.1250. Nonetheless, the first iteration jumps to the point (T, b) = (7*, -0.745) at 
which dg(T,b)/db equals 0.0001. From that point the iteration converges to the fixed 
point, effectively reaching it by the fourth iteration. The gradient element dg(T,b)/8b 
increases along the convergence path as the angle 0 = arctan(b/T*) sweeps 
counterclockwise from 1.50004 x ;r(once reaching T = T* after the first iteration) to 2>r, 
but remains bounded above by 0.75 (the value along the equator of the circle) and never 
again exceeds 1.0.
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It turns out that, for this problem, the iteration converges from any starting point 
on the unit circle in the southern hemisphere (including the equator), n < 9 < In. The 
iteration diverges from any starting point on the unit circle in the northern hemisphere, 
0 < 9 < n. The important lesson is that the value of the maximum eigenvalue at the 
starting point (i.e., the shading of the sub-region) does not necessarily predict the 
convergence or divergence of the iterative scheme. In particular, the second example 
(Figure A.5) illustrates that the iterative scheme may converge to the fixed point by 
simply jumping over the sub-region in which the maximum eigenvalue exceeds 1.0 in 
absolute value. The condition of bounded eigenvalues throughout an entire region, 
although sufficient for convergence, is far from necessary.
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