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FOREWARD

In 1989, 1 joined the Cost Analysis and Research Division at the Institute for
Defense Analyses (IDA). [ spent a very fulfilling 10 years at IDA before moving on to my
current position as Director of the Cost and Acquisition Program at the CNA Corporation
{the parent organization for the Center for Naval Analyses).

While at IDA, I keenly observed the practice of cost analysis among my
colleagues at IDA, as well as at various offices within the Department of Defense and
among the contractors who supported them. I was fascinated by statistical techniques,
such as lot-midpoint iteration, that were being widely used throughout the military cost-
analysis community. Given my own background in econometrics, operations research,
and statistics, 1 sought the theoretical justification for these statistical techniques. Much to
my chagrin, 1 could not find anybody who had asked — much less answered —
fundamental questions about the mathematical and statistical properties of lot-midpoint
iteration: existence of a solution, uniqueness of the solution, convergence to that solution,
and unbiasedness or consistency of the statistical estimators.

It turned out that I was not completely alone in my quest. 1 experienced something
of an epiphanv when I encountered David Lee’s monograph, The Cost Analyst’s
Companion, which was published by the Logistics Management Institute (LMI) in 1997.
Lee addressed many fundamental questions concerning the nature of leaming curves, the
differences between altemative formulations of the learning curve, and construction of
cost-estimating relationships (CERs) using principles from physics and engineering. Lee
dealt quite deftly with the mathematical underpinnings of learning curves and CERs. Lee
also touched on the statistical calibration of these models. Although I have great respect
for Lee’s work, I must say that I found his discussion of the statistical properties of these
models far less complete and less satisfying than his discussion of their mathematical
properties.

So, late in 1998, I sat down to write David Lee a letter and open up a dialogue on
improving the state of statistical practice in military cost analysis. I soon found that my
“letter” was chock-full of equations and beginning to look more like a research paper or a
journal article. I never did mail the letter, instead redoubling my effort toward writing a
research paper for publication in one of the professional journals. By the middle of 1999,
I had drafted a 40-page paper on statistical estimation of learning curves and CERs.

Then 1 expenienced a second epiphany — [ met Anduin Touw. IDA hired Anduin,
a promising young research analyst with a graduate degree in statistics from UCLA and
prior work expenence at Hughes Space and Communications Corporation. [ introduced
myself to Anduin, and asked her to peer-review my 40-page paper. Anduin’s immediate
reaction to my paper was, “If you can’t prove all of these results from theory, why not
investigate them using Monte Carlo analysis?” Having been hit between the eyes with the
obvious, I invited Anduin to actually perform the Monte Carlo analysis, and join me as a
co-author on what was now looking more and more like a book. Stephen Balut, Director
of IDA’s Cost Analysis and Research Division, generously arranged for financial support,
and off we went.



Many friends and colleagues read portions of this work or otherwise educated me
at various points along the way: Robert Book, Stephen Book, Jino Choi, Henry Eskew,
Bruce Harmon, David Hunter, Ted Jaditz, and Philip Lurie. Two colleagues reviewed an
early, near-complete draft of this book: Vadim Kutsyy, who had recently completed a
Ph.D. in Statistics from the University of Michigan; and Robert Trost, Professor of
Economics (and senior econometrician) at George Washington University. Linda Garlet
provided editorial assistance on the complete draft that we first submitted for publication.

Anduin and I presented our preliminary findings during two seminars at George
Mason University. We extend our thanks to participants in the Statistics Seminar
(organized by James Gentle), as well as the Operations Research Seminar (particularly
Andrew Loerch and Roman Polyak).

As previously mentioned, financial support was provided by my former Division
Director at IDA, Stephen Balut, who also rekindled my long-standing interest in
operations research. Financial support was sustained by my current Division Director at
the CNA Corporation, Samuel Kleinman, along with the CNA Corporation’s Senior
Vice-President and Director of Research, David Kelsey.

The idea of publishing the manuscript in the INFORMS Topics in Operations
Research senies was first broached by Thomas Frazier of IDA, who was then the series
editor. During the lengthy process of completing the manuscript, the editor’s job rotated
to Professor Keith Womer of the University of Mississippi, himself one of the leaders in
the field of cost analysis. Keith shares my interest in the nexus of econometrics,
operations research, and statistics; his review comments and shepherding of the project
have been invaluable.

The views that Anduin and I express in this book are solely our own; they do not
represent official positions of the Institute for Defense Analyses, the CNA Corporation,
the Department of the Navy, the Department of Defense, Hughes Space and
Communications Corporation, or Boeing Corporation. Indeed, we persist in some of our
views over the objections of a few of our aforementioned colleagues.

Finally, I must thank a pair of feline companions, first Snowy and now Murphy,
for keeping my lap warm during many laborious hours at the computer.

MSG.
Alexandna, Virginia
March 2003



For me this project began as a result of my sometimes beneficial and sometimes
tragic habit of leaping into projects before I fully know the scope or even whether I am
welcome. Luckily for me, I found a supportive leader, and although the project grew
beyond our initial expectations, it has been well worth the effort. I believe that it has been
a great example of why statisticians should venture out to explore fields in which
statistics and mathematical models are used, but statisticians are not commeonplace. And
of why statisticians, not just statistical seftware, are needed on projects.

I would like to thank Matt for the opportunity to work on such an interesting and
fundamental project in cost analysis. I also thank my husband, Brian Jackson, for his
support and understanding during my foray into this field. I will always be in debt to
Dr. Tony Lin for his advice and insight on this project, on Mente Carle analysis, and on
statistics in general. I would also like to express my appreciation to Dr. Lynne Butler,
who guided me inte this career, and to my parents, who have always encouraged me to
seek out unusual perspectives on and applications of mathematics.

AET.
El Segundo, Califorma
March 2003
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1. INTRODUCTION

In this chapter, we first discuss statistical methods for estimating “cost progress”
or “learning.” We use these two terms interchangeably to describe a reduction in unit
production cost as more items have been cumulatively produced over the course of a
manufacturing program. Some older works defined the term “learning” in a much
narrower sense, to encompass only the reduction in manufacturing labor hours as workers
learn to perform repetitive tasks faster or with fewer errors. Most modern authors have
expanded the concept of “learning” to include redesign of the production process itself,
perhaps changing the tasks that workers perform or complementing those workers with
improved automation. In addition, as a production program unfolds, manufacturers may
find cheaper suppliers, or enter into long-term contracts under which they enjoy quantity
discounts from suppliers. We retain the older term “learning” without much concern for
whether the source of the unit cost reduction is confined to production workers
performing repetitive tasks, or extends to some other economic or technological factors.
We also use the term “learning curve” to describe the mathematical relationship betwecn
unit production cost and the cumulative quantity produced.!

Next, we tum our attention from the learning curve to the cost-estimating
relationship (CER), a regression equation to predict the development or production cost
of a system based on performance and technical characteristics such as weight, speed,
and composite materials content. We define a class of statistical models known as
multiplicative regression models. Many CERs, as well as a particular representation of
the learning curve, fall into this class of models. We discuss two specialized statisticai
techniques for calibrating learning curves. We also discuss several general-purpose
statistical techniques that apply to all multiplicative regression models, including CERs

as well as learning curves.

We attempt to kecp the level of mathematics to 2 minimum throughout this
introductory chapter. Only a few of the equations we display should appear difficult to
most readers, and these few we have simply copied into the current chapter without a full

I The various definitions of “learning” are surveyed in Yelle (1979) and Dutton, Thomas, and Butler
(1984). The seminal papers are Asher (1956) and Conway and Schultz (1959).



derivation. In subsequent chapters, we provide the derivations of the few difficult
equations. Our intention is for the reader to grasp the major content of our work from the
current chapter, and defer the more difficult mathematics until later.

1.1 Data on production lots

Large hardware items are often purchased not as individual units, but rather as
lots. For example, the U.S. Navy might sign a contract to purchase 1,200 tactical missiles,
to be delivered 100 per month over a period of one year. Or, the U.S. Air Force might
sign a contract to purchase 36 fighter aircraft to be delivered 3 per month over a period of
one year. Further, a production run often extends over several consecutive years. So,
expanding on the second example, the U.S. Air Force might purchase 12 aircraft during
the first year, 24 aircraft during the second year, 36 aircraft per year during several years
of peak production, and finally 12 aircraft during the final year of production. In each of
these cases, the units comprising a single year’s purchase are considered as one lot.

Two of the fundamental defining features of a lot are the number of units that
comprise the lot and the total price of the lot. A perhaps surprising aspect of large
hardware purchases is that individual units within each lot are not separately priced. This
point may, at first, seem trivial or even wrong. If the initial lot consisting of 12 units of
some hardware item costs a total of $18.75 million, isn't the average cost simply
$18.75+ 12 or $1.56 million per unit?

The average cost per unit can always be computed by simple division, for a fixed
number of units. That is not to say, however, that all of the units in the lot are equally
costly. If the buyer were to renegotiate the number of units in the lot (the “lot size™), the
seller would likely adjust the total lot cost in a non-proportional manner; i.e., adjust the
average cost. Figure 1.1 illustrates the situation. The 12 units within the lot exhibit a trend
of decreasing unit cost due to learning. Although the average cost of all 12 units is indeed
$1.56 million, the average cost of only the first 8 units is higher — $1.64 million. Thus, a
renegotiation that reduced the lot size from 12 units to only 8 units would yield an
increase in the average cost.

The challenge for the data analyst is to deduce the trend in learning, given only
data on lot size and total lot cost, but nor the cost of individual units. One possibility
would be to ask the seller for alternative price quotes corresponding to various lot sizes.
Abstracting from profit margins that drive a wedge between cost and price, one could



attempt to estimate the learning curve from the knowledge that an 8—unit lot costs $1.64
million per unit, whereas a 12—unit lot costs only $1.56 million per unit.
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Figure 1.1. Unit Costs within the First Lot

This approach is generally unsatisfactory because the historical data do not
always comntain price quotes corresponding to alternative lot sizes. Instead, the huyer may
ask the seller for a single price quote corresponding to a single delivery schedule. In
effect, there would be only one data point, precluding estimation of the learning curve. In
addition, even when multiple price quotes are available, they are only hypothetical and do
not represent the actual or historical costs of production. Finally, multiple price quotes
would confound pure learning with the so-called rate effect that arises from bunching
various numbers of units in a single year; we discuss the rate effect in a later section.

A better approach uses only the actual data from production programs, as opposed
to hypothetical price quotes. The key is simply to compare the average costs of
successive lots from the same production program. For the remainder of this monograph,
we use as our primary example the time-series data originally reported by Lee (1997) on
lot sizes and lot costs for a tactical missile program. We reproduce those data here as
Table 1.1.

The second and third columns of Table 1.1 give the unit numbers for each lot in
the production sequence. For example, the initial lot runs from unit #1 to unit #218, and
contains 218 units; the second lot runs from unit #219 to unit #1,158, and contains 940
units; and so on. The incremental Iot cost is the cost of a particular lot, not the cunmlative

3



cost of the entire production program. Finally, the lot average cost is computed as the
ratio of the incremental lot cost and the lot size. Interestingly, unlike in the notional data
shown previousty in Figure 1.1, most of the learning in the actual data for the tactical
missile program occurs between the first and third lots. Moreover, lot average cost
actually increases slightly from lot #4 to lot #5 and again from lot #6 to lot #7. Later in
this chapter, and again in Chapter 4, we discuss the fit of the smooth learning curve to
these data.

Table 1.1. Data for a Tactical Missile Program

Incremental Lot average
Lot number Lot stari Lot end Lot size lot cost (M) cost (M)
1 1 218 218 102.765 0471
2 219 1,158 940 212.158 0226
3 1,159 3,200 2,042 321.819 0.158
4 3,201 5,900 2,700 333.720 0.124
5 5,901 7,591 1,691 212.558 0.126
6 7,592 10,011 2,420 227238 0.094
7 10,012 11,668 1,657 157.912 0.095
8 11,669 14,436 2,768 171.339 0.062

Source: Lee (1997), p. 50. Although he leaves the matter ambiguous, we presume that the final
two columns are measured in millions of dollars (e.g., by the eighth lot, the average cost of a
missile has fallen to $62,000 in some base year’s dollars).

Unlike tactical missiles, military aircraft typically follow a 3-year production
cycle. As illustrated in Figure 1.2, a contract that delivers aircraft within a particular
fiscal year may involve costs during the two previous fiscal years as weil. Conversely, the
costs incurred in a particular fiscal year may be attributable to as many as three distinct
aircraft lots. When dealing with multi-year production cycles, we interpret the
incremental lot cost as the sum across fiscal years of all the costs attributable to a
particular lot. This interpretation necessarily involves an allocation of plant-wide
overhead costs among the various lots in progress during a particular fiscal year (as well
as overhead aliocations to other systems — presumably other aircraft inodels — being
produced concurrently in the same plant). In Figure 1.2, we would horizontally (rather
than vertically) sum the costs attributable to a particular lot.2

2 Balut, Gulledge, and Womer (1989) thoroughly discuss the costs associated with multi-year
production, including the allocation of overhead costs across concurrent programs. Womer (1984)
describes the biases from ignoring multi-period production (actuaily, using monthly rather than annual
data)
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Figure 1.2. Distinction between Fiscal-Year Costs and Lot Costs

Much of this monograph is devoted to estimating the trend in learning from data
on lot sizes and lot costs. One of the statistical methods we develop, when applied to
Lee’s data, results in the learning curve previewed here as Figure 1.3. The height of each

data point represents the average cost of the lot. The horizontal coordinates are the “lot

midpoints,” a concept we discuss in the next section. The figure shows the fitted learning
curve, as well as the +2 standard deviation (“sigma”) confidence band around the
learning curve. The formula for the confidence band is not widely known and is seldom

used by cost analysts. We develop this formula in Chapter 2.
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Figure 1.3. Learning Curve Fit to Tactical Missile Data



A few cautions are in order before proceeding further. In defense procurement,
the actual execution of a production program almost always deviates from the initial
delivery schedule. Increases in total quantity (or accelerated delivery of a fixed total
quartity) could result in retooling, capacity expansion, and overtime labor costs, possibly
offset by reduced overhead burdening. Decreases in total quantity could result in penalty
clauses, severance and shutdown costs, and increased overhead burdening. In addition,
technical upgrades {e.g., enhanced aircraft radars) during the course of a production
program may make it difficult to compare the later units with the earlier units, unless
some adjustment is made. We ignore these complications and assume that,
notwithstanding any trend in lot average costs, the items produced are all observationally
equivalent from the final customer’s (e.g., the aircraft squadron’s) perspective. Stated
more directly, our notion of learning is the manufacturer’s ability to produce successive,
observationally equivalent units at declining unit cost. We refer the reader to the
published literature for a discussion of adjustments for quantity deviations, technical
upgrades, and so on.?

1.2 A learning-curve model

Let Q denote the sequence number of a particular unit in the production run. The
learning curve is most often specified so that the cost of unit () — the marginal cost — is
a power function of (-

MCQ) = ¢ (1.1

for O > 0, where T) > 0 and b are parameters to be estimated.

The “learning slope™ is defined as the ratio of marginal costs between unit 20 and
unit -

p = MCQO)/MCQ) = 2. (12)

Marginal cost is presumed to decline with increasing quantity. However, as we argue in
Chapter 2, it ts implausible that marginal cost would decline by as much as 50% when
quantity doubles. The plausible range of 2 < p < 1 for the learning slope translates into a
comresponding range —1 < b <0. For example, with p=09 or a 90% learning slope

3 A good recent example of this literature is Harmon, Touw, and Woolsey (2000),



(which equates to b= —0.152), the second unit costs onty 90% as much as the first unit;
the fourth unit costs 90% as much as the second unit, or 81% as much as the first unit;
and so on,

If we take the logarithms on both sides of equation (1.1), we appear to have a
model that can be estimated using ordinary least squares (OLS}):

In[MC(Q)] = InT, + bxInQ, (1.3)

where “In” denotes the natural logarithm. The difficulty, however, is that we are given

only data on lot size and total lot cost, siof the cost of individual units. Thus, the left-hand
side of equation (1.3) cannot be computed for the individual units 0 =1,2,3,....

Instead, the most common solution is to find a “typical unit” within each lot, use
the sequence number of that unit in place of O on the right-hand side of equation (1.3),
and use the average cost of the entire lot in place of MC((Q) on the left-hand side. The
lot average cost is computed simply as the ratio of total lot cost and lot size, both of
which are observable. The “typical unit” is traditionally called the “lot midpoint.” The
regression analysis is then conducted on the lot midpoints (one per lot) rather than on the
individual units. Letting 0, denote the midpoint of the i lot and LAC, the lot average

cost, OLS is actually applied to the following model:
In(LAC,) = In7; + bxInQ,(4), (1.4)

for lots i=1,..., n. We explicitly write the lot midpoint as O.(b), a function of the
exponent . We do so because, as we will see in a moment, the lot midpoint cannot be
computed without knowledge (or at least an estimate) of the exponent b (or the
corresponding learning slope}).

The following simple example illustrates the calculation of lot midpoints.?
Consider a production process with b=-0152 (or p=09) and 7, =2.0. Suppose the
initial lot consists of two units. The first unit costs 7, =$2.00, and the second unit costs
2.0x2°"2 = $1.80 (with a 90% learning slope, the second unit costs only 90% as much

as the first unit). The average cost of the entire lot is $1.90, the average of $2.00 and

This example is adapted from Eskew (2000). This is not exactly the conventional lot-midpoint
calculation, but it serves to illustrate the concept using a minimum of mathematics. We report the
conventional lot-midpoint calculation later in this chapter, and more fully derive and critique it in
Chapter 2.



$1.80. The lot midpoint is defined as the (generally non-integer) quantity whose marginal
cost (left-hand side of the following equation) is equal to the lot average cost (right-hand
side):

20x07*" = $1.90. (1.5)

The solution to this equation is , =1.40. Thus, in the regression analysis on the lot

midpoints, the midpoint for the first lot would be “unit” 1.40. The midpoints of the later
lots would be computed in a similar fashion.’

Note, however, the circularity in this procedure. We had to assume a 90%
learning slope in order to compute the lot midpoint. But if we already knew the learning
slope, we would not have to proceed with the regression analysis. On the other hand, if
we did rot already know the learning slope (or the corresponding exponent; in this case,
b=-0.152), how would we apply equation (1.5) to compute the lot midpoints?

One solution 1s to iterate: start with an initial guess of the learning slope, and then
alternate between the two steps of estimating the regression exponent in equation (1.4)
and updating the lot midpoints in equation (1.5). The iteration ends when (and if) two
successive iterations yield the same value for the regression exponent, within a pre-
specified numerical tolerance. We refer to this procedure as lot-midpoint iteration.

1.3 Estimation of the continuous learning-curve model

In Chapter 2, we review the theory of continuous learning curves, which leads to

the following expression for the lot average cost:

e < 6T, T,

= 1 +05 16 ~ 05 140 ) 16
o T GG @09 - @+ 09™] (1.6)

In this notation, the i lot runs through unit Q.. Similarly, the preceding lot (i—1) ran
through unit O _,. Thus, the i lot begins with umit (.., +1 (the unit affer the one that
completed the preceding lot) and runs through unit Q.6 The variable TC, is the

5 The preceding calculations are based on a discrete leamning curve. In Chapter 2, we develop the more
common, continuous approximation to the leaming curve. In contrast to the midpoint of Ql =140 we
Jjust computed for the initial lot, the continuous approximation yields a slightly smailer midpoint of

g =136.

6 For example, in the data of Table 1.1, the second lot contains units Q, +1=219 through ¢, =1,158.



cumulative total cost of the production program through the /* lot, so that TC, -7C,,
represents the incremental cost of the i/ lot. Finally, (. — ., represents the lot size, and

lot average cost is computed as the ratio of incremental lot cost and lot size.

The midpoint of the 7" lot, {.(b), is defined as follows:

[(Q + 05)1+b _ (Q + 05)1+b] lib
_, b — i i=1 J , 17
o® [ 1+5)x(Q, - 0.) -

for —1 < b < 0. A comparison of equations (1.6) and (1.7) shows that the marginal cost of
the lot midpoint is equal to the lot average cost, LAC, = T x[(, (b)]b. Taking logarithms
we recover equation (1.4), In(LAC,) = InT, + bxInQ ().

[terative estimation of equation (1.4), or lot-midpoint iteration, has been the norm
in cost analysis for nearly half a century, since the days of Asher {(1956). This practice
was necessitated by the lack of either computer hardware or software capable of
estimating non-linear least squares (NLS), as opposed to OLS regression. The definition
of lot midpoint, along with the logarithmic transformation, resulted in equation (1.4)
which looks tantalizingly close to OLS regression. In fact, given the technology of the
day, equation (1.4) could be estimated only by alternating between the two steps of OLS
regression and updating the lot midpoints.

We consider it extremely unlikely that a modern statistician, confronted with this
problem, would advocate lot-midpoint iteration. If one insisted on retaining the artifice of
lot midpoints, then equation (1.4) could be estimated in a single step using NLS. The
right-hand side of equation (1.4) is a non-linear function of the exponent b, which pre-
multiplies the lot midpoint and, from equation (1.7), is also embedded within the
definition of the lot midpoint. Despite the two roles that & plays on the right-hand side, an
estimate of b is still readily available. Simply choose & to minimize the sum-of-squared
errors between the (non-linear) right-hand predictor and the actual values of the
logarithmic lot average cost:

2 2

> (In(ZAC) - In(%) - bxIn[Q,®)))

i=1

(1.8)



where 7 is the number of lots in the data sample and Q () is the lot midpoint as given

previously in equation (1.7).7

Statistical software to minimize expression (1.8) is widely available. The
statistical properties of this problem, such as regression standard errors, confidence
intervals, and significance tests, are well known. The convergence properties of various
algorithms (such as Gauss-Newton) for locating the minimum are equally well known,3
To clarify our earlier statement, the minimization algorithms require only a “single step”
in the sense that the user need only specify the right-hand predictor (the right-hand side
of equation (1.4)) once, as a parametric function of the unknown values 7} and 6. This
situation contrasts with lot-midpoint iteration, during which the user must manually
update all » lot midpoints from equation (1.7) af every iteration.

As yet another alternative, one could jettison entirely the artifice of lot midpoints,
and simply treat equation (1.6) as a non-linear predictor of the lot average cost (nof its
logarithm). An estimate of » is available by minimizing the sum-of-squared errors
between the right-hand predictor and the actual values of the lot average cost:

2
4 I
LaC, - L x[(Q +05)"** - (Q._ +05)'+") . (1.9
;’[ (H+5)x(@ - ) [ ! ]
It turns out, from the definition of lot midpoints, that expression(1.9) is
equivalent to:
n 2

> (L4C, - TxIQBN°)

i=1

(1.10)

Thus, in one sense, expression (1.8) represents NLS applied to lot-midpoint data after a
logarithmic transformation, whereas expression (1.10) merely omits the logarithmic
transformation. However, we can equally well arrive at expression (1.9) without ever
considering or even being aware of the notion of lot midpoints. We postulate that our

Lee (1997, p. 56, equation 79) contemplates exactly this minimization problem. However, rather than
advocating direct (aibeit non-linear) minimization via NLS, Lee veers into a discussion of lot-midpoint
iteration,

8 Two large treatises, concentrating on the statistical properties of NLS, appeared in the late 1980s:
Gallant (1987) and Seber and Wild (1989). The algorithmic convergence properties of NLS are
discussed in Dennis and Schnabel (1996), a reprint of an earlier monograph first published in 1983. An
even earlier book by Bard (1974) quite thoroughly addressed both the statistical and algorithmic
convergence properties of NLS.
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modern statistician, upon viewing the model for lot average cost in expression (1.6),
would immediately jump to expression (1.9) and apply NLS. The right-hand predictor, as
we show in Chapter 2, is just the area under the continuous approximation to the learning
curve, divided by the size of the # lot. The notion of lot midpoints is completely
superfluous to this development. Our statistician might gravitate toward expression (1.8)
only if the error terms appeared ill-behaved, and a logarithmic transformation was
applied in an attempt to restore a normal error distribution or to stabilize the variance.
However, we demonstrate several other estimation methods in Chapter 3 that can be used
to restore normality or stabilize the variance, again without the artifice of lot midpoints.

1.4 What’s wrong with lot-midpoint iteration?

Although NLS estimation of expression (1.9) may seem compelling, what harm is
done by continuing to apply lot-midpoint iteration, as remains the norm in cost analysis?
The harm is that neither the mathematical nor the statistical properties of lot-midpoint
estimation are known. Indeed, a major motivation of the current research was to ascertain
these previously unexplored properties.

In Chapter 2 we attempt to answer the following seven questions regarding lot-
midpoint estimation:
1. Is lot-midpoint iteration equivalent to (i.e., does it yield the same point
estimates as) NLS?

2. Is there a distributional assumption under which lot-midpoint iteration is
equivalent to maximum-likelihood estimation (MLE®)?

3. Does lot-midpoint rteration maximize or minimize any continuously
differentiable function of the parameters 77 and 5 (if not a sum-of-squares
or a likelihood function, perhaps some other function)?

4. Is lot-midpoint iteration guaranteed to converge, or might the iteration
continue forever?

5. If lot-midpoint iteration does converge, is the solution unique; or might the
fteration converge to two {or more) distinct solutions depending upon the
starting values?

9 MLE is probably the most widely used estimatian technique in all of statistics. For example, under the
appropriate distributional assumptions, the use of sample moments {means, variances, and s0 an) to
estimate their population counterparts is equivalent to MLE. Similarly, least-squares regression
methods are often equivalent to MLE. In Chapter 3, we discuss MLE in the context of learning curves
and CERs.
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6. If a particular lot-midpoint iteration has two distinct solutions, on what basis
do we choose one over the other?

7. If lot-midpoint iteration does converge, how accurate are the standard errors
from the final regression step?

We consider it quite remarkable that cost analysts have blithely applied lot-
midpoint iteration for nearly half a century without the answers to or, to our knowledge,
even having asked these questions. Moreover, both the mathematical and statistical
properties of NLS have been well established and disseminated at least since the
publication of Bard (1974). Computer hardware and software capable of estimating NLS
may have been scarce back in 1974, but they have been widely available and reliable for
easily the past 15 years and arguably the past 20 years.

We found it surprisingly difficult to answer the seven questions regarding lot-
midpoint iteration. However, we were able to establish the following theoretical
properties:

e Lot-midpoint iteration is not equivalent to either NLS or MLE.

» Lot-midpoint iteration does not maximize or minimize any continuously
differentiable function of the parameters 7} and 5.

o There is no universal guarantee that a solution pair 7' and b exists to balance
equation (1.4); that a solution, if it exists, is unique; or that a solution can be
approximated by a finite number of steps of lot-midpoint iteration. The
standard sufficient conditions that guarantee existence, uniqueness, and
convergence may or may not hold for the lot-midpoint problem.

* Lot-midpoint iteration may still converge, despite the failure of the standard
sufficient conditions, because these conditions are not actually necessary.

¢ Ina maximization problem, we can always compare the value of the ohjective
function at two distinct local maxima, disposing of the smaller value because
it cannot be the global maximum. But because lot-midpoint iteration does not
maximize any continuously differentiable objective finction, we have no basis
to choose between two distinct solutions.

Our theoretical analysis of lot-midpoint iteration does not provide a compelling
motivation to use that technique. Although we were unable to develop any theoretical
guarantee that lot-midpoint iteration converges, our Monte Carlo analysis in Chapter 5
suggests that it does converge. Nor have we encountered multiple solutions in practice, at
least when using reasonable starting values. However, we are still reluctant to endorse an
estimation technique whose theoretical properties remain largely unknown.
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1.5 Moultiplicative regression models

We are generally accustomed to regression models in which the stochastic error
term is additive to the model prediction:

y, = f(x,p) + u, (1.11)

where y; is the observed response variable, x; is an observed vector of k predictor
variables, f is a vector of m coefficients to be estimated, and u; is the unobserved error

term for the i** observation. The regression model is linear (as distinct from additive) in
the special case where f(x,8)=) x,B8,. The error terms are often assumed to be
j

statistically independent with zero mean and finite variance, and are often further
assumed to be normally distributed. However, none of these properties (including
linearity) are essential to the definition of an additive regression model.

Even assuming that f(x,, £) is the correct model, we face two types of errors in

attempting to predict the value of y; for a new observation outside the original estimation
sample {(e.g., the cost of a new weapon system). First, we have only an estimate of £ and
not its true value. Second, the actual value of y; will deviate from the model prediction
Sf{x,,p) in light of the error term, u;. Because the error term is additive to the model
prediction, we may state roughly that the predictions of the additive regression model are
accurate within + x units (e.g., dollars).

By contrast, a multiplicative regression model has the form:

y, = Jx. Py xu; , (1.12)

where now #; has mean 1.0. Once again, the assumptions of linearity, finite variance, and
normal distribution are common, but not essential to the definition of a muliiplicative
regression model. 10 Because the error term is multiplicative to the model prediction, we
may state roughly that the predictions of multiplicative regression model are accurate

10 Lee (1997, p. 55-56) assumes that the error term u; is normally distributed. A more common

distriburional assusnption for the multiplicative regression model replaces the factor u; with exp(v, ),
where v; is normally distributed. We contrast these two assumptions in Chapter 2. There we
demonstrate that the two assumptions are nearly equivalent when the variance of the random error term

is small. However, Lee’s assumption is, strictly speaking, incompatible with certain estimation
methods that are available under the alternative assumption.
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within * x%. For example, a random draw of u, =1.30 implies that y =1.30x f(x,, £).

The actual response variable is 30% larger than the model prediction; equivalently, the
model underpredicts the actual response by 23% [ f(x;,8)=0.77x y,]. When comparing

the model prediction to the actual response, it may seem more natural to treat the actual
response as “truth” and, therefore, the base of the percentage difference. However, we
shall more often treat the model prediction as the base of the percentage difference, viz.,

y=fx.p) _ [130x/G. B -f(x, ) _
S, ) J(x, )

0.30 . (1.13)

We follow this approach because two of the estimation methods that we explore —
maximum likelihood and minimum percentage error — involve (at least approximately)
minimizing the sum over all the observations of the squares of the percentage differences
as defined in expression (1.13).

We have described three possible regression models for estimating the trend in
learning: lot-midpoint iteration in equation (1.4}, NLS applied to lot-midpoint data after
a logarithmic transformation in expression (1.8), and NLS applied to lot-midpoint data
without the logarithmic transformation in expression (1.10). In none of these instances
have we specified the form in which the stochastic error enters the model. In principle,
one could append additive, muliiplicative, or even some other type of error term to any of
the three regression models, yielding a multitude of possibilities.

An appealing specification would be to append a multiplicative error term to the

predictor of lot average cost:
LAC, = T,x[Q,(5))° xu, . (1.14)

Taking logarithms, we can transform this multiplicative model into an additive model for

the logarithm of lot average cost:

In(LAC)) = In(T,) + bIn[0()] + Iy, (L.15)

where In(#,) represents the additive error term.

The logarithmic transformation is tempting because, holding Q(b) constant
during the regression step of lot-midpoint iteration, equation(1.15) is linear-in-
parameters and thereby amenable to OLS. In order that the usual confidence intervals and
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significance tests for OLS be exact in small samples, we require the additional
assumption that the transformed error term, In(u,), is normally distributed. This will be

the case only if the original error term, , , is log-normally distributed. Data analysts are
often too quick to transform equation (1.14) into equation (1.15), obtaining a linear-in-
parameters model but not checking whether the transformed error term In(u,) is indeed
normally distributed. Only through serendipity does a single transformation both linearize
a model and restore a normal error distribution. We note, however, that even if the
transformed error term is non-normal, tbe usual confidence intervals and significance
tests for OLS may still be valid in large samples.!!

1.6 Rate effects in learning-curve models

Learning curves are sometimes augmented to include the rate of production in the
current period in addition to the cumulative number of units produced (as typically
measured by the unit number of the lot midpoint). The theory is that, leaming
notwithstanding, increases in the current rate of production could entail overtime labor
costs, might drive up the short-run price of materials, or might increase the failure rate of

manufacturing equipment.

In the multiplicative representation of lot average cost, the augmented learning-
curve model would appear as follows:

LAC, = T x[D(5)]" x Rate* x u, . (1.16)

Difficulties arise in attempting to measure the production rate. When using annual
data aggregated to the entire system level (as in the U.S. Department of Defense’s
Selected Acquisition Reports (DoD SARs)), practitioners often equate production rate
with the current lot size, Rate, =Q, — (O, ,. For example, in the tactical missile data of

Table 1.1, the column labeled “Lot size™ might be used as a proxy for production rate.

In practice, the introduction of production rate has met with mixed success; see
the discussion in Chapter 3 of Lee (1997). Many have argued that attempts to include the

1T Schmidt (1976, pp. 55-64) showed that the OLS confidence intervals and significance tests are valid
asymptotically if the emror terms are independently and identically distributed, with finite variance
(constant across all of the observations), and if certain other technical conditions hold; he does not
require a normal distribution. White (1980} extended this result by deriving adjusted standard errors
that yield asymptotic confidence intervals and significance tests under non-constant variance or
heteroscedasticity.
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production rate are doomed to failure because the current lot size is mechanically
positively correlated (collinear) with cumulative quantity. For example, Large et al.
(1974) state:

In general, however, we must conclude that for predicting the overall
effect of production rate on aircraft cost, generalized estimating equations
[ie., including current lot size] based on statistical analyses of our sample
of military aircraft would be too unrehable to be useful.

Although we are not necessarily advocates of including the current lot size in the
model, and although it magy fail due to collinearity in particular instances, it is nof
mechanically correlated with cumulative quantity. Those who claim mechanical
correlation are confusing the level of a time series with its rate of change. While the two
concepts are clearly mathematically related, they are not linearly related, and cormelation
is a measure of linear association.

This confusion is compounded by the common practice of equating the current lot
size with the theoretical production rate. Recalling Figure 1.2, when dealing with multi-
year production cycles, several lots may be in progress concurrently at the same plant.
The question arises of what exactly we are attempting to measure with production rate. If
we believe thatl costs are driven by all activity in a plant, then we would vertically sum
the number of units across all lots in progress during each fiscal year. In Figure 1.2, we
would measure production rate in fiscal year 2000 as the sum of the quantities ordered (in
DoD parlance, “authorized™) in fiscal years 1998 (these units would be in their third and
final year of production by 2000), 1999 (units in their second year of production), and
2000 (units in their initial year of production).

On the other hand, during the notional 3-year production cycle for military
aircraft, a large portion of the elapsed time involves manufacturing sub-systems at
subcontractors’ plants. Final assembly at the prime contractor’s plant may ail occur
during the final year of the production cycle. Activities that precede final assembly may
be incidental to the prime contractor’s plant, and might not drive overtime labor costs or
failure rates of manufacturing equipment (at least, not at the prime contractor’s plant,
though possibly at the subcontractors’ plants). By this argument, the prime contractor’s
production rate is perhaps better measured by the number of units in final assembly. The
current lot size provides a serviceable approximation to this concept, although it too is
somewhat flawed due to time lags. For example, an aircraft that completes final assembly
and 1s delivered in the first month of DoD)’s fiscal year (October) would certainly have
begun final assembly during the previous fiscal year.
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We have developed a series of six charts, with these two objectives:

o [llustrate the complications in measuring production rate using aggregate
annual data, and

¢ Debunk the assertion that production rate (however measured) and
cumulative quantity are mechanically correlated.

To address the correlation issue in the simplest possible context, consider a
production situation in which final assembly of each unit takes place within a single
month. (One example might be assembly of full-up artillery rounds from existing
components already in the inventory.) Thus, we temporarily avoid the problems of multi-
year production and time lags across fiscal years. We can then safely equate production
rate with the current lot size, because plant activity during each month involves only units
that will be delivered during that month; by extension, plant activity during any fiscal
year corresponds to that year’s lot size. With these simplifying assumptions, we can
concentrate on the correlation between production rate and cumulative quantity.

Figure 1.4 illustrates a production program with an oscillating production rate.
The oscillating production rate is essentially uncorrelated with the steady increase in
cumulative quantity; the correlation equals only 0.038. Figure 1.5 illustrates a production
program with a steadily declining production rate. In this case the correlation is strongly
negative, —0.969, contrary to the presumed positive mechanical correlation.
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Figure 1.4. Production Program with Oscillating Production Rate
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p=-0.969
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Figure 1.5. Production Program with Steadily Declining Production Rate

The situation is somewhat more complex if we reintroduce multi-year production,
but the conclusion regarding the correlation remains essentially intact. We modify
Figure 1.4 to reflect an assumed 3-year production cycle. The horizontal axis in
Figure 1.6 now measures not the lot number, but rather the contract year. Thus, plant
activity during the first contract year involves only the 10 units that are authorized and
for which production begins that year. Plant activity during the second contract year
involves those same 10 units, now in their second year of production, plus 20 new units.
Plant activity during the third contract year involves all 40 units that were authorized
during that year and the preceding two years. From that point forward, units in-process
are measured over a three-year moving time window.

6¢ T | =R Annuat units P= -0.022 T 240
—o— Cumulative units

Units in-process
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1 2 3 4 5 8 7 & 9 10 11 12 13 14 165 18 17
Contract year

Figure 1.6. Muiti-Year Production with Oscillating Production Rate
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Apart from the ramping up and down at the two extremes, units in-process follow
an oscillating pattern. Whereas the correlation in Figure 1.4 was 0.038, the correlation in
Figure 1.6 is —0.022. In both instances, the alleged mechanical correlation between
production rate and cumulative quantity is negligible.

We next modify Figure 1.5 to reflect a 3-year production cycle. In Figure 1.7 we
again observe a ramping-up phenomenon, with 15 units in-process during the first
contract year, followed by 29 units in-process during the second contract year, and 42
units during the third contract year. The ramping-up serves to dampen the negative
correlation somewhat; the correlation is —0.742 in Figure 1.7 versus —0.969 in Figure 1.5.
Nonetheless, even a correlation of —0.742 contradicts the assertion of a positive
mechanical correlation.
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Figure 1.7. Multi-Year Production with Steadily Declining Production Rate

Finally, in case our examples appear contrived, Figure 1.8 displays the actual
production program for the U.S. Air Force F-15E fighter. The figure covers the entire
production program, for which production lots were authorized (with some breaks)
between fiscal years 1986 through 2001. Figure 1.9 displays the units in-process, again
assuming a 3-year production cycle. With this assumption, the final units will be
delivered in fiscal year 2003. The correlation in Figure 1.9 equals —0.592, moderate in
magnitude and opposite from the presumed positive direction.
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Figure 1.8. F—15E Production Program: Annual Units Authorized
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Figure 1.8. F-15E Production Program: Annual Units in-Process

We conclude that, although production rate and cumulative quantity may be
correlated, precluding estimation of their separate effects, they need not be correlated. 1f
production rate effects are thought to be important, it is worth the effort to attempt to
include production rate in the learning-curve model. Moreover, even if collinearity
proves to be a problem in a particular instance, there are statistical techniques that may

overcome this problem and still allow estimation of the separate learning and rate
effects.1?

12 See Judge, Griffiths, Hill, Lutkepohl, and Lee (1985), particularly their discussion of ridge regression.
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1.7 Cost-estimating relationships

The leamming curve is one of the two most pervasive models in cost analysis. The
other is the cost-estimating relationship, a regression equation to predict the development
or production cost of a system based on performance and technical characteristics such as
weight, speed, and composite materials content.

A typical CER for production cost might take the form of the foliowing
non-linear, multiplicative regression model:

Unit cost = b, x Weight® xSpeed® x pRemanuficuured , (1.17)

i

where the dummy variable “Remanufactured” equals 1.0 for remanufactured production
items and 0.0 for those newly manufactured. Note that a dummy variable results in a
proportional scale factor, rather than an additive factor as would be the case in a linear
regression model. ! If, for example, the coefficient b5 in equation (1.17) were estimated
as 0.9, we would infer that a remanufactured production item costs only 90% as much as
a newly-manufactured item. Although the particular dummy variable for remanufacturing
might not appear in most cost analyses, other dummy variables could reflect technical or
programmatic characteristics such as multi-year contracting or follow-on systems
(e.g., the U.S. Navy’s F/A-18 C/D fighter/attack aircraft is a follow-on to the earlier
F/A-18 A/B series).

The learning curve and the CER are two different “slices” of the same undertying
data. Figure 1.10 shows hypothetical data from four different systems. The data from any
one system indicate a trend in learning as we move horizontally from left to right. The
data can also be compared vertically to study the differences in cost between systems.
The latter comparison makes sense only if the systems under comparison are similar
enough that the cost differences can reasonably be explained using regression variables
such as weight, speed, and so on. For example, it is quite common and sensible to
compare the eosts of various fighter aircraft models. However, it would be folly to use
weight and speed in an attempt to understand why an aircraft carrier costs more than an
F/A-18C/D.

13 The relevant property here is non-linearity (the manner is which the dummy variable enters the
regression prediction), not additive versus multiplicative regression models (the manner in which the
error term is appended to the regression prediction).
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Figure 1.10. Distinction between Learning Curve
and Cost-Estimating Relationship

Even when comparing like systems to estimate a CER, it is important to
normalize the cumulative quantity in order to separate learning effects from true cost
differences between systems. In Figure 1.10, System#1 has higher unit cost than
System #4 at any common value of cumulative quantity. However, a crude comparison
that did not normalize for quantity might grossly exaggerate the cost difference. At the
10™ unit, System #1 costs 77 percent more than System #4 (point B versus point A). But
if we compared the 4" unit of System #1 to the 10™ unit of System #4 (point C versus
point A), we would report a 159-percent cost difference. The latter difference is
misleading because System #4 has benefited from much more learning before reaching
the 10™ unit.

In practice, CERs are estimated at a common quantity that lies well within the
range of data for all the systems under comparison. Moreover, the cost of the initial
production lot is often contaminated by non-recurring costs for items that the customer
purchases in addition to completed production units: specialized tooling, test equipment,
ground support equipment, and so on. Therefore, it is generally preferable to choose a
common quantity that lies beyond the initial production lot. A typical point of
comparison might be the 100” unit for aircraft systems, but the 1,000™ unit for missile
systems.
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1.8 Estimation of multiplicative regression models

The CER in equation(1.}17) is a multiplicative regression model, as is the
learning-curve model for lot average cost in equation (1.16). Lot-midpoint iteration is a
specialized technique for estimating power-function learning curves, with no counterpart
for estimating CERs. However, there are several general-purpose estimation techniques
that apply to all multiplicative regression models, including CERs as well as learning
curves.

Both lot-midpoint iteration and lot-midpoint NLS (i.e., explicit minimization of
expression (1.8)) are attempts to minimize the sum-of-squared errors in predicting the
logarithm of lot average cost. Recently, Book and Young (1995, 1997) and Lee (1997)
have proposed an alternative estimation method for multiplicative regression models.
Their method minimizes the sum-of-squared percentage errors in predicting the /evel (not
logarithm) of lot average cost. Accordingly, their method is known as Minimum
Percentage Error (MPE). We show in Chapter 4 that the logarithmic and percentage
fitting criteria are equivalent up to a first-order Taylor series approximation, but differ in
the higher-order terms. Thus, the two fitting criteria generally lead to distinct estimates of
the regression parameters. 14

The choice of estimation method should be guided by the statistical properties of
the resulting estimators, not the intuitive appeal of the fitting criterion being optimized.
First, we seek an estimation method that requires minimal distributional assumptions. For
example, we would almost certainly be willing to assume that the error term #; in
equation (1.12) has finite variance. However, we might not be nearly as willing to assume
that the error term is normally distributed.

Another desirable property is that the estimator be unbiased. To understand this
concept, suppose we repeated the estimation process on many different random samples
(of the same, finite size) drawn from the same underlying population. We would want the
average of the parameter estimates from these samples to equal the true (unknown)
parameter value. We could tolerate (indeed, we would expect) an estimation error in any
single sample, hut we would want this error to equal zero on average. The difference
between the average of the parameter estimates and the true parameter value is known as
the bias. An unbiased estimator has zero bias.

14 Young (1999) also investigated the distinction between these two fitting criteria. As we argue in
Chapter 4, however, his analysis was somewhat incomplete,
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Some estimators are known to be biased, but the bias vanishes in large samples.
This leads to the concept of consistent estimators. Suppose we select a small interval
around the true parameter value, and we also specify a probability just short of 1.0. If an
estimator is consistent, then we can find a sample size large enough so that the parameter
estimate from the sample falls within the small interval with probability at least as large as
the probability we pre-specified. Intuitively, a consistent estimator “approaches™ the true
parameter value in large samples. It can be shown that a biased estimator is consistent if
both the bias and the standard error of the estimator approach zero in large samples. 13

Two other desirable properties of an estimator concern its sampling distribution.
First, there should be a formula available to compute the standard errors of the estimates
and, more generally, their entire covariance matrix.!6 It is preferable to have an “exact”
formula (i.e., one that is accurate even in small samples). If an exact formula is not
available, we must sometimes settle for an asymptotic formula whose accuracy is, strictly
speaking, guaranteed only in large samples. The use of asymptotic standard errors is
somewhat problematic in cost analysis, because the sample sizes are often so small as to
diminish the applicability of asymptotic properties. For certain estimation methods,
however, there is no alternative because the exact standard errors are not known (e.g., this
is the case for NLS).

Finally, in addition to having their standard errors, we require the sampling
distribution of the estimates. It is convenient to divide a single coefficient by its standard
error and label the result a “+—ratio” or “t—statistic.” However, the mere computation of
the “z~ratio” does not guarantee that its percentile points can be read off a published table
of the r—distribution. Thus, to conduct statistical inference (e.g., to compute confidence
intervals or significance tests), we need to know the sampling distribution of the
estimates. Again, it is preferable to know the exact sampling distribution, but we must
sometimes settle for the asymptotic sampling distribution.

15 Conversely, however, it is possible to construct a consistent estimator that has neither finite mean nor

finite variance in large samples. The archetypical example was provided by Sewell (1969),
and reproduced in the econometrics textbooks of Dhrymes (1974, pp. 87—89) and Johnston (1972,
pp. 270-273).

16 The diagonal terms in the covariance matrix are the variances of the estimates (i.e., the squares of their
respective standard errors). The off-diagonal terms are the covariances among the estimates.
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Several other estimation methods, common in the statistical literature but
unknown to most cost analysts, possess desirable statistical properties. For example, we
show in Chapter 3 that the quasi-likelihood function for a multiplicative regression model
is defined as follows:

q(B,4) = H—Z[f( ﬁ)+ln(f(x,,ﬁ))} (1.18)

where A denotes the variance of u; in equation (1.12). It turns out that by maximizing the
quasi-likelihood function with respect to 3, the resulting estimator of 3 is consistent.
Moreover, the covariance matrix of this estimator follows a known formula, and the
estimator is asymptotically normally distributed even though the regression error itself
(#;) need not be normally distributed.

When advocating quasi-likelihood estimation at professional conferences, we

have been asked the question, “Why would you want to maximize such a non-intuitive
function as ¢q(3,4) 7 First, to reiterate our opinion, the choice of estimation method

should be guided by the statistical properties of the resulting estimators, not the intuitive
appeal of the fitting criterion being optimized. Second, we show in Chapter 3 that quasi-
likelihood estimation of multiplicative regression models is equivalent to the better-
known technique of iteratively reweighted least squares (IRLS). Indeed, the quasi-
likelihood expression (1.18) provides tbe function that is implicitly being maximized
when IRLS is performed.

1.9 Summary of comparisons among estimation methods

In the remainder of this monograph, we compare a total of six estimation
methods:

e Lot-midpoint NLS,

¢ Lot-midpoint iteration,

¢ Minimum percentage error (MPE),

e Maximum likelihood,

o Iteratively reweighted least squares (IRLS), and

¢ Maximum quasi-likelihood.
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The first two methods involve lot midpoints, thus these methods have little
application outside the narrow realm of learning-curve models. However, the remaining
four methods apply to the much broader class of multiplicative regression models,
including multiplicative CERs as well as learning-curve models. We compare all six
estimation methods with respect to all of the statistical properties described above.

Although the statistical properties of some of these methods can be derived
theoretically, little could be proved theoretically about the others. To compare the
statistical properties of all the methods, we conducted a series of Monte Carlo
experiments. We generated data on lot average cost using known error structures and
parameters values. Because the parameters values were known, we could directly
compare the estimates produced by the different methods to the “truth.” When assessing
possibly biased estimators, we considered not only the variance of the estimates around
the average estimate at any sample size, but also the bias in the estimate (ie., the
difference between the average estimate at any sample size and the true parameter value).
We could also assess the rate at which the various estimates approach the true parameter
values (i.¢., the required sample size). In addition, in most cases, even if a formula for the
covariance matrix is available, the matrix produced is only an asymptotic covariance
matrix. The Monte Carlo experiments allowed us to compare the variances over a
spectrum of sample sizes, ranging from very small (unfortunately, the typical situation in
cost analysis) up to asymptotically large.

Most estimation methods are developed under a particular set of assumptions.
Estimation methods are called robust if they continue to produce good estimates even
when those assumptions are violated. None of the methods we compared rely on any
particular assumption about the true learning slope, the number of units in a lot, or the
standard deviation of the error term. However, it is still of interest to inquire whether the
methods perform as well under a range of values for these parameters. Some of the
methods rely on a particular distributional assumption, such as normally distributed
errors. Thus, it is also of interest to inquire about the performance of the methods under
alternative (non-normal) error distributions.

IRLS and lot-midpoint NLS produced unbiased estimates under all of the
simulation excursions. The performance of these two methods was essentially unaffected
by the substitution of either uniform or r—distributed errors for the normal errors found in
the baseline experiment. Naturally, however, the parameter estimates became less precise
during the excursion for which we doubled the standard deviation of the error terms.

26



The estimates produced by lot-midpoint iteration and lot-midpoint NLS are
numerically distinct. However, with just one exception, the numerical differences
between the two sets of parameter estimates (e.g., between the estimated learning slopes)
were essentially negligible. Consequently, both of these methods produced unbiased
estimates even for small numbers of lots. The one exception is that the parameter
estimates from lot-midpoint iteration (though not lot-midpoint NLS) became much less
precise under first-order serial correlation. The introduction of serial correlation led to a
drop in precision nearly equal to that engendered by doubling the standard deviation of
the error terms (but without serial correlation). None of the other estimation methods
exhibited any sensitivity to serial correlation.

Notwithstanding this case, the performance of lot-midpoint iteration was much
better than we had expected. Prior to the simulation experiments, there was no tbeoretical
basis for lot-midpoint iteration and little was known about the behavior of its estimates.
We show m Chapter 2 that lot-midpoint iteration does not minimize any contmuously
differentiable function. In a sense, that finding further undermines the theoretical basis
for the method. Its apparently satisfactory performance characteristics, at least in the
absence of serial correlation, remam a theoretical mystery.

The MPE estimates of T were biased high, even in large samples, under every
one of the simulation excursions. Similarly, the MPE predictions of lot average cost were
also biased high. Moreover, the biases increased both when we doubled the standard
deviation of the normal errors, and (unique to this method) when we substituted
t—distributed errors for the normal errors. The latter result illustrates that the performance
of MPE degrades when there are more outlier observations (in statistical parlance, the
error distribution has “thicker tails™) than would be expected under a normal error
distribution. Because of these biases and sensitivities, we recommend against the use of
MPE.

In light of the latter result, as well as the sensitivity of lot-midpoint iteration to
serial correlation, we recommend either IRLS or lot-midpoint NLS as the estimation
methods of choice. We sketched the concept of lot-midpoint NLS previously in this
chapter (expression (1.8)); we give more details, including formulas for the standard
errors of the parameter estimates, in Chapter 2. We give a full exposition of IRLS,
including formulas for the standard errors, in Chapter 3. NLS is already available as an
option in most statistical software packages. IRLS is becoming increasingly availahle as a
built-in feature in many statistical packages, and the equivalent method of quasi-
likelihood can be programmed quite easily using any computational software or even a
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simple spreadsheet. There is no longer any excuse for cost analysts to use methods that
produce inconsistent parameter estimates.
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2. LEARNING CURVE MODELS

In this chapter, we first demonstrate the equivalence, under reasonable conditions,
of two learning-curve models that are widely thought to be distinct. We then develop the
concept of lot midpoint, which is often used as a single measure of cumulative quantity
for production lots that span a range of units. We compare two methods for estimating
learning-curve models using lot midpoints: non-linear least squares and lot-midpoint
iteration. Among the issues that arise in this comparison are cumulative data versus data
on individual production lots, admissible error distributions, computation of standard
errors, and retransformation bias.

2.1 Two learning-curve models

Lee (1997, p. 11) distinguishes two learning-curve models: the Crawford model
and the Wright model. The Crawford model expresses the marginal cost of unit O as a
power function:

MCQ) = T,0° @.1)

for O > 0, where 7} > 0 and b are¢ parameters to be estimated. Under this model, the ratio
of marginal costs for any two units depends only on their relative (not absolute) position
in the production sequence:

MC(¢x Q) MC(Q) = ¢, (22)

which is independent of Q.

In particular, the “learning slope” is defined as the ratio of marginal costs when

g=2:
p= MCQQ/MCQ) = 2. (2.3)

Lee (1997, p. 41) argues that the plausible range for the learning slope is Y2 < p<1 or,
correspondingly, —1 < b < 0. (We confirm Lee’s argument in due course.)
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By contrast, the Wright model expresses the cumulative average cost of the first O
units as a power function:

ACQ) = 4,07 (24)

for O > 0, where 4y > 0 and f are parameters to be estimated. Note that Lee actually uses
the same symbol for the exponents in equations (2.1) and (2.4). However, we use two
different symbols to maintain, temporarily, Lee’s apparent distinction between the two
learning-curve models.

Lee treais the production quantities as discrete units, and uses arithmetic
summation to compute the incremental cost of a lot or the cumulative cost of an entire
production run. On the other hand, most cost analysts treat the production quantities as a
continuum, and use integral calculus to approximate the incremental or cumulative cost.
We mostly follow the continuous approach, while recognizing the ramifications of
choosing one approach or the other.

2.2 Recurring, fixed, and variable costs

Whether using the discrete approach or the contmuous approach, it is imperative
to first define the universe of costs being modeled. One important distinction is between
non-recurring costs and recurring costs. Non-recurring costs are paid only once, usually
at the beginning of the production run. These costs are associated with such activities as
designing the production process, recruiting the initial work crew, and purchasing or
building specialized facilities and tooling. Recurring costs are paid in connection with
each successive lot and in varying amounts, depending on the lot size and the cumulative
amount of learning.

In studies of the learning curve, the response variable is often taken to be direct
labor hours. One rationale behind this choice is an attempt to remove one-time activities
that are not subject to learning. However, the focus on direct labor hours assumes that the
industrial engineers who design the production process, and the personnel specialists who
recruit the mitial work crew, charge their time indirectly (i.e., charge to a corporate or
plant-wide overhead account, rather than to a particular production program). In practice,
the cost of the initial production lot is often contaminated because some of these
non-recurring labor costs are charged directly to the production program. The large
decline in average cost from the initial lot to the next few lots reflects, in part, the
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payment of non-recurring costs in the initial lot. The degree of learning would be
overstated if the entire decline were attributed to leamning.

An extreme example of this effect is the case of naval ship construction. There,
the “lead ship” (first unit) of a class is burdened with the full design costs of the class
plus certain other non-recurring costs. For that reason, analysts virtually never include the
lead ship in the database from which learning curves are estimated. Similar reasoning
might motivate either exclusion of the first production lot, or use of a dummy variable to
identify that lot, in the analysis of systems other than ships.

The cost analyst’s distinction between non-recurring and recurring costs is
somewhat different from the micro-economist’s distinction between fixed and variable
costs. The micro-economist defines fixed costs as costs that are independent of the
number of units produced during a given time period (typically one year). More
emphatically, fixed costs are paid even if zero units are actually produced during the time
period.17 Fixed costs might include rental or mortgage payments on land, buildings, and
equipment that are not easily disposed of during a single time period.

The fundamentai distinction is that the micro-economist’s fixed costs are paid
repeatedly in every time period, independent of the number of units produced during that
period (including possibly zero units), as long as the firm maintains the product line.
Thus, the cost analyst’s recurring costs might well include some costs that the micro-
economist would consider as fixed (e.g., the annual rental or mortgage payments), as well
as other costs that the micro-economist would consider as variable. These cost categories
are illustrated in Figure 2.1.

Fixed Variable

Non-recurring : * Design production process
» Recruit initial work crew

+ Rental or mortgage payments + Production labor

Recurring "~ land . Materials
- buildings : - aluminum
- equipment — cables & wires

Figure 2.1. lllustration of Various Cost Categories

17 See, for example, Henderson and Quandt (1980, chapter 4) or Varian (1992, chapter 5).
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2.3 Equivalence between the two learning-curve models

We now return to the Crawford and Wright learning-curve models. We
demonstrate that the two models are equivalent if:

+ We use integral calculus to continuously approximate the incremental and
cumulative costs; and

¢ Either non-recurring costs are equal to zero, or we are modeling only the
recurring costs.

We begin with the Crawford model. The cumulative average cost of the first
Q units is obtained by dividing the cumulative total cost by the cumulative number of

wmits:

Il

i “ 1 T NRC TxQ*
N = _— b —_— _I . L+é = — ...l....._._..- . 2.5
AC(O) J':qz dz [NRC+{l+b] 0 ] + b (2.5)

where the constant of integration, NRC, may be interpreted as the non-recurring cost paid

th,,

prior to the “zero ” cumulative unit. If NRC = 0, the cumulative average cost reduces to:

4CQ) = [H/a+p)]x Q" . (2.6)

Conversely, starting with the Wright model, the cumulative total cost is obtained
by multiplying the cumulative average cost and the cumulative quantity:

TC(Q) = ACQxQ = 40", (2.7)

and the marginal cost is the derivative of total cost with respect to cumulative quantity:

d TC(Q)

- A
20 = A x(1+HxQ". (2.8)

MC(Q)
Now compare equations (2.1) and (2.8) for marginal cost, and equations (2.4) and

(2.6) for cumulative average cost. The two learning-curve models are rendered equivalent
by setting b= f and 7, = A, X (1+b). Thus, Lee was correct to use the same symbol for

the exponents in equations (2.1) and (2.4}. However, his use of two different symbols for
the intercepts (77 and A;) gives the impression that the two learning-curve models are
distmct. Under the assumption of zero non-recurring costs, and using the continuous
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approximation, the two models are actually equivalent.!® If non-recurring costs are
positive and are included in the model, it is more appropriate to use equation (2.5) from
the Crawford model. The corresponding expression for cumulative average cost from the
Wright model in equation (2.4) is incomplete because the term NRC (non-recurring cost)
is absent.

To be precise, although the two learning-curve models are mathematically
equivalent under the stated assumptions, their statistical properties may be different in

small samples. For example, depending on the precise method of estimation employed,
there is no guarantee that the ratio of the estimates of 7| and (1+5) from equation (2.6)

will exactly equal the estimate of 4} from equation {2.4). However, this equality will hold
if the sample sizes are large enough and if consistent estimators are employed.

We can also see why Lee argues for the restriction -1 <b<0or %2 <p<1. The
cumulative average cost in equation (2.5) involves the following definite integral:

0
IT, zdz . In the borderline case of b=-1, the anti-derivative of z™' is the natural
[\]

logarithm. The definite integral requires evaluation of the anti-derivative at the lower
limit, 7, x lim[In(z)], which diverges. When b <—1, we encounter instead the expression
z—+0*

[7,/(1+ b)} xlim z**', which diverges because the exponent is negative, b+1<0. The
z—»0*

power-function model simply makes no sense absent the constraint —1 <5 <0. Learning
slopes smaller than 0.5, although theoretically possible, cannot be accommodated by this
particular functional form.

An apparent discrepancy arises in evaluating the cost of the first unit produced
(colloquially called the “Tj—cost™). Ignoring any non-recurring costs, the cumulative
average cost and the marginal cost should be equal at the first unit. However, our
equation (2.1) evaluates as MC(1)=7, but equation(2.6) evaluates insicad as
AC(1)=T,/(1+b). To resolve this discrepancy, recall that we are applying a continuous
approximation to the learning-curve model. The incremental cost of a “lot” consisting of
1.0 units is given by the integral under the (Crawford) marginal cost curve,

18 | ee (1997, pp. 41-42) did not use continuous approximation, He correctly demonstrated that, when
output is measured in discrete units, the two leaming-curve models are equivalent only asymptotically.
However, contrary to our analysis, other authors such as Loerch (1999} have treated the two models as
distinct even when using the continuous approximation. Importantly, these and other authors who have
argued for a distinction between the two leaming-curve models did not do so on the basis of non-
recurring cosis; they implicitly assumed that non-recurring cosis were equal to zero.
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1
j?} 2 dz =T /(1+b), which indeed equals 4C(1). Simply evaluating the marginal cost
0

curve at the argument 1.0 is inexact because only the integral under the marginal cost
curve is meaningful, not the curve’s height.

Figure 2.2 illustrates this principle for a production process with b=-0.152
(implying, from equation (2.3), a 90% learning siope) and T, =2.0. The height of the
average cost curve at the argument 1.0 is 2.359. The height of the marginal cost curve is
2.000, but this value is not meaningful. Instead, the integral under the marginal cost
curve (the shaded area in Figure 2.2) is meaningful and is equal to the earlier value 2.359.
Strictly speaking, it is incorrect to interpret the parameter T as the cost of the first unit.
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Figure 2.2. Proper Interpretation of First-Unit Cost

To better understand this principle, it may help to contemplate the analogous
distinction between discrete and continuous probability density. When asked to interpret
the height of a continuous probability density, even analysts with moderate amounts of
statistical training might reply, “The height is just the probability [of occurrence for the
event in question].” However, consider a continuous uniform density defined over the
interval [0.0,0.5]. The height of this density function must be 2.0 over the interval, to
ensure that the entire probability (i.c., the area of the entire rectangle, both shaded and
unshaded) in Figure 2.3 equals 1.0. Because probability is bounded above by 1.0, clearly
the height of the density function here is not mterpretable as a probability. Instead,
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probability can be computed only as the area under a continuous density function. For
example, the probability in the sub-interval [0.0, 0.2] is given by the shaded area, or 0.4.

P —

-
o

Probability density
5

Probability = 0.4
0.5 §
0.1 a.1 0.4 0.1 0.1 0.1
0.0 - I
0.00 0.10 0.20 0.30 0.40 0.50

Figure 2.3. Discrete and Continuous Versions
of Uniform Probability Density

The hypothetical analyst’s reply, “The height is just the probability ...,” is based

on a discrete (vs. continuous) approach to the problem. For example, a discrete uniform
density could be defined over the 10 points 0.025,0.075,0.125,...,0.475 lying within the

interval [0.0, 0.5]. In that case, the heights of 0.1 at each picket are indeed interpretable
as probabilities; further, the probability of occurrence in a subinterval may be computed
by arithmetically summing those heights. But when using the continuous approach, only
the areas (i.e., the integrals) are meaningful, not the heights. Similarly, in our learning-
curve model, only the area under the marginal cost curve is meaningful, not its height.

2.4 Cumulative data versus data on individual production lots

Given that the two learning-curve models are equivalent, which one should be
used in estimation? One argument is that it makes no difference; use the Crawford model
when the data are presented in terms of unit cost, and use the Wright model when the data
are presented in terms of cumulative average cost. However, statistical estimation of a
regression model, and estimation of an exact functional transformation of that model, do
not necessarily yield identical parameter estimates {e.g., learning slopes), because the
error terms have different properties after transformation.
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First, we establish that it is always possible to transform one type of cost data to
the other. It is obvious that a series of lot quantities and lot average costs can be

transformed into a series of cumulative average costs. Conversely, suppose the analyst is
presented with the cumulative quantities of k production lots, (,...,(,, where

0<@ <@ <...<Q,, and the corresponding series of cumulative average costs,
AC(0)), ..., AC(Q, ). We can recover both the incremental cost of the * lot:

IC,-TC,, = ACXQ, - AC,, %0, 2.9)
and the lot average cost (LAC) of the /" lot:

L = T6-TC,, _ ACXQ, - AC, xQ,,
' Qa - Q‘-l Q;' - Qi-l

. (2.10)

for i =1,..., k (with the convention that (), =0).

The data analyst might be tempted to work with the cumulative average costs
because they are smoother than the lot average costs. In Figure 1.3 we plotted Lee’s
tactical missile data from Table 1.1. The height of each point in that figure represents the
observed lot average cost. The horizontal coordinate represents the lot midpoint at
convergence of the lot-midpoint NLS method. In Figure 2.4 we plot both the lot average

costs and the cumulative average costs. The latter are plotted not at the lot midpoints, but
rather at the lot endpoints, 4C(Q,) = A4, Q7. Comparing the two series, the cumulative

average costs are much smoother because the effect of an apparent outlying lot (¢.g., the
fifth or eight lot) is averaged with all of the preceding lots.

The difference in fit is also reflected in the R-squared statistics. The logarithmic
regression of lot average costs (equation 1.4) has a respectable R-squared of 0.951.

Alternatively, we may take logarithms in equation2.4 to obtain a regression of
cumulative average costs, ln[AC(Q,.)] = InA,+ BxInQ.. The latter regression has a

nearly perfect R-squared of 0.9986.

Although the R-squared statistics seem to favor using cumulative average costs, a
deeper analysis of the statistical issues actually implies a preference for using lot average
costs (i.e., the Crawford model rather than the Wright model). A series of cumulative
average costs is almost certain to be serially correlated. For example, if the 4¢4 lot is
particularly expensive, the cumulative average cost of the first 4 lots will tend to lie
above the regression curve. Unless the 5t lot is sufficiently cheap and contains
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sufficiently many units, the cumulative average cost of the first 5 lots will also lie above
the regression curve. Indeed, the anomaly in the cost of the 4tk lot will likely persist in
the cumulative average cost of several subsequent lots. OLS regression estimation is
inefficient (i.e., yields larger than the minimum possible standard errors) when applied to
serially correlated data. A common remedy for serial correlation is to difference the
data — essentially the procedure indicated in equation (2.9), which returns us to the
Crawford model.1?
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Figure 2.4. Cumulative and Lot Average Costs for Tactical Missile Data

Estimation using cumulative average costs may also lead to problems of
non-constant variance or heteroscedasticity, again causing inefficiency in OLS
estimation. The series on lot average costs and the series on cumulative average costs
cannot both have constant variance — if one has constant variance, the other cannot. The
lot average costs are more likely to have constant variance, in which case the cumulative
average costs will tend to have decreasing variance as more lots are included in the

cumulative average. To see this point, write the cumulative average cost as follows:

19 See Womer and Patterson (1983) for a more thorough discussion of serial correlation in estimating
models of incremental lot cost. Well aware that the series on 1ot average costs and the series on
cumulative average cogts cannot both be serially uncorrelated, they stated on p. 266, “Serial correlation
of the residuals from one of the specifications is therefore expected.”
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4C, = TC,[Q, = 3 LACX(Q,-0.)/Q, @11)

It is immediately obvious that even if the series LAC(Q,),..., LAC(Q,) is serially
uncorrelated, the series AC(Q)),..., AC(Q,) will be serially correlated (e.g., the
expansions for 4C, and AC,, share the first j terms in common.) Turning to
heteroscedasticity, if the series LAC(Q)),..., LAC(Q,) is serially uncorrelated with
constant variance o, the variance of ACj turns out to be:

i1
Var(AC) = 0* — (20°/Q))x 2 0 x(Q.,—Q), (2.12)

which tends to decrease as more lots are cumulated. For example, if every lot contains the
same number of units, Q. —Q, |, =g, the variance of cumulative average cost reduces to

the familiar formula for the variance of a (non-weighted) average:
Var(4AC)) = 6[j = Var(LAC)/j . (2.13)

Again, statistical considerations tend to favor estimation using lot average costs, not
cumulative average costs.20

2.5 Lot midpoints

Some authors represent the incremental cost of the i lot as the sum of the discrete
marginal costs:

2 2
TC,-TC_, = > MC(j)=Tx ». j°, (2.14)
=0+ F=2_

where the i lot begins at unit Q_, +1 (the unit after the one that completed the preceding
lot) and ends at unit Q.. However, this representation is inconvenient because it is not
differentiable in the number of units, (.. Instead, the incremental lot cost is generally
approximated by the integral under the marginal cost curve. Moreover, a comtinuity
correction is generally applied that extends the range of integration by 0.5 units to the left

20 This result is probably what Loerch (1999, p. 259) had in mind when he stated, “The cumulative
average theory is used when the production environment is unstable, or when there is substantial
variation in the costs of consecutive units, In a more stable environment, the unit {Crawford] theory
variant is used.”
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of O, +1, or the point [(Q_, +1)-05] = @, +0.5; and by 0.5 units to the right of @, or
the point  +0.5. The continuity correction of 0.5 ensures that the range of integration
equals the lot size, (), +0.5)—(Q,_, +05) = Q. — Q. ; absent the correction, the range of
integration would fall short of the lot size by 1.0.

Performing the integration, the incremental lot cost is approximated by:

G, +0.5
TC -TC,, = J'T,z'-"dz =ix[(Q,. +05)™ - (9, +05)"], (2.15)
i +0.5 1+5

with corresponding lot average cost:?!

pac, = TG=T6 T,

-0, (1+5)x(@-0Q.)

x[(Q+05)" ~ (0., +05)"™]. (216)

The midpoint of the #* lot, {.(b), is defined as the quantity whose marginal cost is
equal to the lot average cost. Setting the marginal cost 7, X[ (b)] b equal to LAC, and
solving yields the lot midpoint:

o) = (2.17)

176
[(Q+05)™ - (@, +05)™]

(1+5)x(Z -Q.)) ’
for -1 <b < 0. Note the functional dependence of the lot midpoint on the unknown
coefficient, b.

The lot midpoint is illustrated in Figure 2.5 for an initial lot consisting of 20 units
with learning slope p=09. The existence of (Q_ +05) < Q(b) < (Q +05) is
guaranteed because the integrand in equation (2.14) is continuous.22 Thus, there always
exists O (b) such that 7C, — T7C,, may be written as the integrand at Q,.(b) multiplied
by the range of integration, (Q +05)-(Q_,+05) = Q0 -0_. That s,
TC - TC., = T, x[3 (5)]° %(Q —@._,), or LAC, equals the marginal cost at unit O, (b).

21 The continuity correction of £0.5 is explored by Camm, Evans and Womer (1987). They conclude that
the correction, while not exactly reproducing the discrete sum, provides a close approximation. The
exact correction always differs from £0.5, but cannot be determined in advance without knowledge of
the learning coefficient, &. Lee (1997, pp. 35-41) also investigates the accuracy of the continuity
correction, but the additional terms that he suggesis (based on the Euler-Maclaurin summation
formula) are cumbersome in praclice.

22 This result is the mean value theorem for integrals; see Taytor and Mann (1972, p. 47).
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Figure 2.5. lllustration of Lot-Midpoint Calculation

At b=0, there is no learning; thus, any point in the interval serves as a lot
midpoint. As b — -1 the anti-derivative in equation (2.14) approaches a logarithmic
function, and () approaches the polar form (Q.—Q._)/ In[(Q,+05)/(Q., +05)1.
which also can be shown to lie in the interval [((_, +05), (Q +0.5)].

2.6 Error distributions for learning curves and CERs

The error distributions for both learning curves and CERs may take a variety of
forms. Figures 2.6 through 2.8 illustrate three possibilities. Figure 2.6 depicts a CER in

which the error terms are:
e Symmetric (in fact, normally distributed), and
e Constant variance for all values of the cost driver (in this case, weight).

A mathematical expression of this CER might be:
Unit cost = b, + b x Weight + w, , (2.18)

where u; is normally distributed with mean zero.
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Figures 2.7 and 2.8 illustrate two different multiplicative regression models.
Figure 2.7 depicts a CER in which the error terms are:

e Symmetric (again, normally distributed), but
e Standard deviation proportional to the value of the cost driver.

A mathematical expression of this CER might be:
Unit cost = (4, + b x Weight)xy, , (2.19)

where u; is now normally distributed with mean 1.0. We will refer to this assumption
hereafter as the “muitiplicative normal assumption.”

Finally, Figure 2.8 depicts a CER in which the error terms are:
¢ Skewed to the right (in fact, log-normally distributed), and
¢ Standard deviation proportional to the value of the cost driver.

A mathematical expression of this CER might be:
Unit cost = (8, + b x Weight)xe" | (2.20)

where v; is zero-mean normally distributed and €'’ is, therefore, log-normally distributed.
This assumption (hereafter, the “log-normal assumption”) was made in the seminal
papers on log-linear regression by Goldberger (1968), Heien (1968), and Bradu and
Mundlak (1970), among others.

The three candidate distributions differ in two major respects:
e Additive versus multiplicative errors, and
e Symmetric versus right-skewed errors.

Figures 2.7 and 2.8, representing muitiplicative regression models, allow for
non-constant variance or heteroscedasticity. This property is probably more compelling
for CERs than for learning curves. A single CER might be estimated over a wide range of
systems that vary greatly in weight, speed, and most importantly, unit cost. The error
variance ts often larger for the heavier, faster, and more expensive systems, so that
heteroscedasticity becomes an important property to accommodate. By contrast, the
sequential unit costs for a single system, modeled with a learning curve, seldom vary by
an order of magnitude. Thus, heteroscedasticity is a less important property for learning
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curves than for CERs. In the case of CERs, the remaining issue is whether the errors are
symmetric (Figure 2.7) or skewed (Figure 2.8). Skewness reflects the common
observation that, at least for military weapon systems, large over-runs are more common
than large under-runs of the same absolute (i.e., dollar) magnitude. 23

Although both heteroscedasticity and skewness have been observed in cost data
for weapon systems, it is also tempting to argue, in light of the Central Limit Theorem
(CLT), that the error distribution must be additive and symmetric normal. The cost of a
weapon system may always be expressed additively as the sum of the costs of its sub-
systems; in turn, as the grand sum of the costs of their sub-sub-systems, etc. This
hierarchical linear structure, known as a work breakdown structure (WBS), is illustrated
in Table 2.1 for an unmanned space vehicle. The entry in the “Index” column indicates
the position of each element down to the third level of indenture in the WBS.

The elementary textbook version of CLT states that a sum of independent,
identically-distributed (iid) random variables approaches a normal distribution as the
number of terms tends to infinity. A more sophisticated version of CLT allows for non-
identical distributions, as long as each term in the sum has finite variance, and each term
contributes at most a negligible fraction to the overall variance of the sum (the latter
known as the non-domination condition; see Feller (1971, p. 262) or Rao (1973, p. 128)).
Note, however, that even the more sophisticated version of CLT apparently requires
independence among all the random variables.

23 Under the log-normal assumption, errors of (e.g.) +0.4 {or greater) and —0.4 (or greater) are equally
likely in predicting the natural logarithm of cost. A logarithmic error of +0.4 implies that cost exceeds
the model prediction by about 50 percent [{exp(+0.4)}-1.0 = 0.492 ]. However, an equally likely
logarithmic error of —0.4 implies a cost under-run of only about 33 percent. Thus, the errors in
predicting dollar costs are skewed to the right.
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Table 2.1 Work Breakdown Structure for an Unmanned Space Vehicle

Index Level | Level 2 Level 3
1. Spacecraft
1.1 Structure, Interstage / Adapter
1.2 Thermal Control
1.3 Attitude Determination
Control System
1.3.1 Attitude Determination
1.3.2 Reaction Control System
1.4 Electrical Power Supply
1.4.1 Power Generation
142 Power Storage
1.4.3 Power Conditioning &
Distribution
1.5 Telemetry, Tracking &
Command
1.5.1 Transmitter
1.5.2 Receiver / Exciter
1.53 Transponder
1.5.4 Digital Electronics
1.5.5 Analog Electronics
1.5.6 Antennas
1.5.7 RF Distribution
1.6 Propuision — Apogee Kick
.............................................. MOt e
2. Communications
Payload
2.1 Transmitter
22 Receiver / Exciter
2.3 Transponder
24 Digital Electronics
2.5 Analog Electronics
2.6 Antennas
27, REDismbmtion
3. Integration, Assembly
_______________ & System Test QA& ) e
4 Program Level
4.1 Program Management
4.2 Systems Engineering
4.3 Data




If correlations are present, it may be possible to circumvent the independence
condition by combining the random variables into aggregates that absorb the correlations,
such that there are no correlations among the aggregates. Then we would attempt to apply
CLT to the aggregates. In the example of the unmanned space vehicle, we might have the
following correlation sub-matrix for the IA&T sub-system (first column) and the three
sub-sub-systems under Program Level (second through fourth columns):

1.0 0.0 0.0 0.0
00 1.0 0871 0517
00 087t 1.0 0871
0.0 0517 0871 1.0

(2.21)

The three sub-sub-systems must be combined in order to absorb the correlations
among them. The resulting aggregate, Program Level costs, is uncorrelated with TA&T
costs (because each of the sub-sub-systems under Program Level is uncorrelated with
TA&T). However, we have reduced the number of distinct terms from 4 down to 2 in the
(partial) sum defining total system cost.

When working with uncorrelated aggregates, two questions remain:

e (i) Are there enough uncorrelated aggregates to approximate the infinite
number of terms that CLT requires?

¢ (ii) Do the aggregates satisfy the non-domination condition?

Proceeding in the other direction, simply subdividing the system under study into
sub-systems, sub-sub-systems, etc. will increase the number of terms in the sum defining
total system cost. Unfortunately, however, it will also almost inevitably increase the
correlations among the terms. For example, consider subdividing an aircraft’s wings
(typically a single cost term) into distinct left and right wings. Because the left and right
wings are manufactured {(often by a subcontractor) as a single package, they will have
identical costs and thus a correlation of 1.0. Continuing, one could further subdivide the
surface of a single wing into a large number of square-inch sub-surfaces. However, the
costs of adjacent sub-surfaces will again be highly (though perhaps not perfectly)
correlated. We see that attempts to increase the number of terms through subdivision will
violate the assumption of independence among the terms. The total cost of the aircraft’s
wings may not be amenable to subdivision, but could still be uncorrelated with the costs
of the aircraft’s other major sub-systems. But then, we again face the two issues of
number of terms and non-domination.
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The theoretical hypotheses of the CLT may not hold for military weapon systems
and, as we have already pointed out, both heteroscedasticity and skewness have been
observed in cost data for many such systems. Thus, the CLT’s conclusion of additive,
normal errors is far from inevitable.

2.7 Error distributions for multiplicative learning curves

Although additive normal errors are not inevitable, they may nonetheless be the
correct specification for many learning curves. As we argued in Chapter 1, a modem
statistician might construct an additive regression model from the leaming curve’s
prediction of lot average cost:

LAC, = d

‘ (1+b)x(lQI_ _Q_])X[(Q,-+0-5)'*" — QL +0) ]+ u, 222

and apply NLS to minimize the regression sum-of-squares:

2
E(LAC,. - (1+b)><(TEQ.«»Q. )x[(Q,+05)'+" _(Q,._1+05)'+”]) . (2.23)

In the remainder of this section, however, we will investigate instead the two
multiplicative regression models (depicted in Figures 2.7 and 2.8). We do so because
the two estimation techniques that we wish to discuss for the duration of this chapter —
lot-midpoint iteration and lot-midpoint NLS — both (at least implicitly) assume that the
error terms are additive on the logarithmic scale, thus multiplicative on the original
(dollar) scale. In addition, multiplicative regression models accommodate
heteroscedasticity which, although less compelling for learning curves than for CERs, is
still sometimes observed.

The two multiplicative CERs from the previous section can be adapted as learning
curves. Under the multiplicative normal assumption we have the following model for lot
average cost:

LAC, = Tx[Q,(0)]° xu, , (2.29)

where u; 1s normally distributed with mean 1.0 and constant variance for all lots
i=1,...,n. This model was proposed by Lee (1997, pp.55-56). A logarithmic

transformation yields:
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In(LAC) = In(T}) + 6In[Q,(6)] + Inw,) . (2.25)

Alternatively, under the log-normal normal assumption we have instead the
following model:

LAC, = T, x[Q(b))° xe", (2.26)

where v; is normally distributed with mean 0.0 and constant variance for all lots
i=1,...,n. Inthis case, ¢ is log-normally distributed and a logarithmic transformation

yields:
In(LAC) = In(%}) + bIn[Q.(6)] + v, . @.27)

Both equation (2.25) and equation (2.27) suggest the use of regression analysis to
estimate the parameters T; and £.

Lee appeals to a firsi-order Taylor series approximation, specifically
In(u)=Infl+(w, —1))~% -1, to argue that the error term in the logarithmic

equation (2.25) is approximately zero-mean nommally distributed. However, if u; is
normally distributed with mean 1.0, then the event u, <0 occurs with positive
probability, yet leaves In(u,) undefined. Strictly speaking, although equation (2.24) is

certainly an admissible representation of the lot-midpoint model, one should avoid the
logarithmic transformation to equation (2.25) because the error term is not well-defined.
This argument appears to further suggest that, under Lee’s muliiplicative normal
assumption, one should avoid estimation methods that operate on the logarithmic data
(e.g., lot-midpoint iteration or non-linear least squares applied to equation (2.25)).

This advice is a bit too severe. One should, of course, avoid any attempts to take
logarithms of measured predictor variables (x;) that can range over non-positive values.
However, statistical software can certainly execute lot-midpoint iteration or NLS
independent of the analyst’s technical assumptions on the error term. Speaking
anthropomorphically, when executing one of these estimation methods, the computer
does not “know” that there is a minor technical problem with the definition of the error
term; the computer cannot distinguish between the representations (2.25) and (2.27). We
conclude that all of the same estimation methods may, at least in a mechanical sense, be
applied under either representation of the lot-midpoint model — even though methods
that require the logarithmic transformation are, strictly speaking, incompatible with Lee’s
muitiplicative normal assumption. Of course, there is no such difficulty with estimation
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methods that avoid the logarithmic transformation and operate on equation (2.24) directly
(e.g., NLS applied to equation (2.24)).

Further, when the variance of the error term is small, the multiplicative-normal
and log-normal distributional assumptions are nearly equivalent in a numerical sense. The
solid curve in Figure 2.9 is a normal distribution with mean 1.0 and standard deviation
0.15. As we show in Chapter 4, the latter value is the standard error {at convergence) of
the lot-midpoint iteration applied to the data of Table 1.1; moreover, a 15-percent relative
error is fairly typical for learning curves. The dashed curve in Figure 2.9 is a log-normal
distribution calibrated to have the same mean of 1.0 and standard deviation of 0.15.
Although slightly skewed, it seems appropriate to describe the latter distribution as
approximately normal. In particular, the skewness and kurtosis 0f 0.45 and 3.37 are close
to the theoretical norma!l values of 0.0 and 3.0.

Normal
= = = Log-normal

L

05 06 07 0.8 08 1.0 11 1.2 1.3 1.4 1.5

Figure 2.9. Normal Approximation to the Error Distribution,
Standard Deviation = 0.15

In addition, as Figure 2.10 indicates, the skewness and kurtosis of the log-normal
approach the normal values even more closely as the standard deviation shrinks (the
normal kurtosis of 3.0 is shown as a benchmark).2* We conclude that the multiplicative
normal assumption and the log-normal assumption are nearly equivalent when the
variance of the error term is small.

24 The approximation of a log-normal distribution by a normal distribution, when the variance is small,
is sketched in Johnson and Kotz {1970, Volume 1, Chapter 14, pp. 117-118).
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Figure 2.10. Skewness and Kurtosis of Log-Normal Distribution

2.8 Non-linear least squares (NLS)

Equations (2.25) and (2.27) are not immediately amenable to linear least squares,
because ) (b) is functionally dependent on b. At least two approaches are available to
resolve this non-linearity. First, because both equations have an additive, homoscedastic
(constant variance) error structure, they are amenable to non-linear least squares. That is,
we may choose the parameters T) and & to minimize the regression sum-of-squares:

]

3 (In(LAC) - In(T) - &In[Q(5)))

=l

2

(2.28)

The log-normal assumption exactly describes equation (2.27) and, as we have
argued, approximately describes equation (2.25). Under this assumption, the NLS
estimator is consistent and asymptotically normally distributed, and its asymptotic

covariance matrix may be developed as follows.25 For the general non-linear regression
model, y, = f(x,,/), let J denote the nxm Jacobian matrix of the predictor function

S (x,, B) with respect to the m parameters 3:

25 See Bard (1974, pp. 176-179) or Seber and Wild (1989, pp. 21-25). Donaldson and Schnabel (1987)
demonstrate the superiority of this form of the covariance matrix over two asymptotically equivalent
alternatives.
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Jnxm = [af(xnﬁ)/aﬁj] E (229)

nxm

with rows J|,...,J . The m x m asymptotic covariance matrix is given by:

var(® = o*x(J7)7, (2.30)

where the dispersion ¢ is estimated by the minimized regression sum-of-squares,
expression (2.28), divided by the degrees-of-freedom, »-m. Equivalently, the

asymptotic covariance matrix may be written as:

Var(B) = alx(i[JfJ,.])_, 2.31)

where each term [JJ ] is itself an m x m outer product matrix.

Note that, in the case of lot-midpoint estimation, the predictor function
f(x,.B) = In(7)) + bInfQ,(b)] is highly non-linear in light of the definition of the lot
midpoint (equation (2.17)). The Jacobian matrix of this function is particularly difficult to
compute analytically. However, software packages that compute NLS estimates also
provide the asymptotic covariance matrix. They generally approximate the Jacobian
matrix by numerical differentiation.

As a special case, a Wald test may be used to test a single coefficient against zero,
using the result g, /[Varﬁ (ﬁ‘)]”2 — N(0,1). It may seem tempting to use the

i—distribution for testing in finite samples, because the r—test is exact in lincar models
(i.c., those estimated using OLS) and because the /—distribution tends toward normality in
large samples. However, the properties required to construct the exact /—test (i.c., E?
normally distributed, &° proportional to a y* random variable, and & independent of
Zi) are guaranteed to hold only asymptotically in non-linear regression modeis. Although
the true, finite-sample distribution of the “s—statistic” tends toward normality, as does the
—distribution, the finite-sample distribution is not necessarily a r—distribution. Some have
argued that the /—distribution is no more accurate than simply applying the asymptotic
normal distribution in finite samples.?¢ However, Gallant (1987, pp. 24-25) offers limited
Monte Carlo evidence in favor of using the —distribution.

26 See Dhrymes (1974, pp. 166-167) or Schmidt (1976, pp. 60-61).
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Alternatively, under the log-normal assumption, we can aiso apply likelihood
ratio tests. Let SSE” denote the sum-of-squares in expression (2.28) under » independent
linear restrictions, and let SSE* denote the unrestricted sum-of-squares. Then the
likelihood-ratio statistic —2xIn(L/L‘) = nxIn(SSE"/SSE") has an asymptotic 7’

distribution.2?

Hypothesis tests based on the asymptotic covariance matrix (i.e., Wald tests) and
those based on the likelihood-ratio statistic are asymptotically equivaient. The two
methods differ only in the required computation. The asymptotic covariance matrix
requires the matrix calculation indicated in equation (2.30} or (2.31). However, the
regression model need only be estimated once. By contrast, likelihood ratio testing avoids
the matrix calculation, but requires estimation of the unrestricted model as well as
separate estimation of each restricted model under test.

2.9 Lot-midpoint iteration

Lot-midpoint iteration is an alternative approach to resolving the non-linearity in
Q.(b). Begin with an initial estimate of b, denoted b Fix b=b“ in the definition of the
lot midpoint, 2 (b”), and minimize the regression sum-of-squares (expression (2.28))
with respect to b as the regression coefficient only. The minimum occurs at a new
estimate, b'". Now fix b=b'" in the definition of the lot midpoint O (b'") and again
minimize with respect to b as the regression coefficient only. In general, estimate the

following sequence of regressions:
In(ZAC) = In(T) + B¥*" In[Q.(3')] + v, , (2.32)

for p=0,1,2,.... Finally, the lot-midpoint estimator is defmed as the limit of the

sequence:

b, = lim 5", (2.33)

prx

when the limit exists. In practice, the lot-midpoint estimator is taken where the sequence
converges within a pre-specified numerical tolerance.28

27 See Goldfeld and Quandt (1972, p. 74) or Seber and Wild (1989, p. 230).

28 Although lot-midpoint iteration is ubiquitous in cost analysis, we do not know its exact origins.
However, Womer and Patterson (1983) attribute it to RAND Corporation (1971).
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Cost analysts have been using lot-midpoint iteration for nearly half a century
without questioning the theoretical basis for this method. We asked the following seven
questions regarding lot-midpoint estimation:

1. Is lot-midpoint iteration equivalent to (i.e., does it yield the same point

estimates as) non-linear least squares?

2. Isthere a distributional assumption under which lot-midpoint iteration is
equivalent to maximum-likelihood estimation?

3. Does lot-midpoint iteration maximize or minimize arny continuously
differentiable function of the parameters T and b (if not a sum-of-squares
or a likelihood function, perhaps some other function)?

4. Is lot-midpoint iteration guaranteed to converge, or might the rteration
continue forever?

5. If lot-midpoint iteration does converge, is the solution unique; or might the
iteration converge to two (or more) distinct solutions depending upon the
starting values?

6. If a particular lot-midpoint iteration has two distinct solutions, on what basis
do we choose one over the other?

7. 1f lot-midpoint iteration does converge, how accurate are the standard errors
from the final regression step?

We were able to answer some, but not all of these questions, using theoretical
analysis. That analysis, involving rather advanced mathematics, is presented in its
entirety in the Appendix and merely summarized here. We also learned more about lot-
midpoint iteration from the Monte Carlo analysis reported in Chapter 5.

We demonstrate in the Appendix that lot-midpoint iteration is not equivalent to
either NLS or MLE. In fact, lot-midpoint iteration does not maximnize or minimize any
continuously differentiable function of the parameters T and b.

The issues of existence, uniqueness, and convergence to a solution would

typically be addressed by the theory of contraction mappings. To understand that theory,
consider the elementary case of the geometric sequence b,b%,5°,.... That sequence

converges to zero if [b|<1. For example, if 5=1/2 we have the convergent sequence
1/2,(1/2)2,(1/2)3,...; or if b=-1/2 we again have a convergent sequence
~1/2,(-Y2) ,(-1/2)’,... = —1/2,1/4,-1/8,.... Conversely, the geometric sequence
diverges to infinity if |b|>1. For example, if 5=2 we have the divergent sequence
2,22.2°,....
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This elementary theory can be generalized to a non-linear, multivariate situation
such as lot-midpoint iteration. As we develop in the Appendix, there is a Jacobian matrix
associated with lot-midpoint iteration, and we may compute the eigenvalues of that
matirix. By Ostrowski’s theorem, if the eigenvalues are all less than 1.0 in absolute value
throughout a region of parameter space (or, equivalently, if the maximum absolute
eigenvalue is less than 1.0 throughout the region), then quite remarkably:

¢ there exists a pair of values T'| and b in the region that balance
equation (2.32);

o the pair 7} and & is unique in the region; and

e iteration, starting from any point in the region, generates a sequence that
converges to the unique root.

On the other hand, if the maximwm absolute eigenvalue exceeds 1.0, there is no
universal guarantee that a solution pair 7 and b exists to balance equation (2.32); that a
solution, if it exists, is unique; or that a solution can be approximated by a finite number
of steps of lot-midpoint iteration.

In the lot-midpoint problem, the maximum absolute eigenvalue may lie on either
side of 1.0. As we will see in Chapter 4, the maximum absolute eigenvalue exceeds 1.0
for Lee’s tactical missile data. Lot-midpoint iteration may still converge (and, indeed, it
does converge when applied to Lee’s data), because the eigenvalue condition is sufficient
but not necessary. That is, an iterative scheme must converge if the eigenvalue condition
is satisfied; it may still converge even if the eigenvalue condition is violated. Again, there
is no universal guarantee — existence, uniqueness, and convergence of lot-midpoint
iteration may vary from one data set to another.

The theoretical possibility of multiple solutions is particularly disquieting in light
of the failure of lot-midpoint iteration to maximize any continuously differentiable
objective function. In a maximization problem, we can always compare the value of the
objective function at two distinct local maxima, disposing of the smaller value because it
cannot be the global maximum. But because lot-midpoint iteration does not maximize
any such objective function, if two distinct solutions are located we have no basis to
choose between them.

Finally, we briefly turn to the statistical (as opposed to mathematical) properties
of lot-midpoint iteration. Under the log-normal assumption, the regression standard
errors, confidence intervals, and significance tests are apparently available from
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conventional OLS regression theory applied to equation (2.32) at convergence. However,
the lot-midpoint variable Q,(b) is unknown even at convergence, and is replaced with the
estimate ((b,). The conventional approach does not recognize this additional

uncertainty, thereby leading to an underestimate of the standard error of .
More ominously, Schmidt (1976, pp.93-96) reports that even if the

correct standard errors were known, the “i—statistics” would not necessarily follow a
i—distribution. This difficulty arises because the errors in the final lot midpoints propagate
into the estimated siope parameter (5) such that the latter is no longer normally
distributed. In addition, the usual theoretical guarantees of consistent OLS estimates no
longer apply. The lot-midpoint estimates may still be consistent, but that determination
would require either a special theoretical investigation or an exhaustive Monte Carlo
analysis.

In fact, our Monte Carlo results presented in Chapter 5 suggest that lot-midpoint
iteration is consistent. However, those results also show that among all the estimation
methods we consider, only lot-midpoint iteration is sensitive to serial correlation in the
error terms. Serial correlation is ubiquitous in cost analysis although, as we argued in
Section 2.4, serial correlation can often be reduced by transforming the data series from
cumulative average cost to lot average cost prior to estimation. Nonetheless, both the lack
of a theoretical foundation and the sensitivity to serial correlation conspire to render lot-
midpoint iteration an unattractive statistical procedure.

2.10 Retransformation bias

The issue of retransformation bias arises regardless of whether the lot model is
estimated by NLS or by lot-midpoint iteration. Either approach yields estimates of the
parameters in equation (2.26). But with v; normally distributed in equation (2.27), "' is
log-normally distributed in equation (2.26). Letting & denote the standard error of the
logarithmic Jot-midpoint regression, the mean of e is consistently estimated by
exp(c’ /2) > 1. Unless this factor is accommodated, the predictions of lot average cost
from equation (2.26) will be systematically too low. One way to accominodate the log-
normal mean is to replace the estimated intercept 7, for that equation with
T xexp(62/2).

This correction factor is commonly used, and is advocated in a well-known paper
by Miller (1984) among others. However, alternative retransformation factors are
available that do not rely as heavily on distributional assumptions. The following method
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relies only on the logarithmic nature of the transformation, without reference to the

distributional assumption at all.2% Suppose a random variable X has known mean g and
standard deviation o. Consider an exact transformation V= f(X). We can expand ¥

around g in a second-order Taylor series approximation:

2 n
Y=aﬂX)zfuo+<X<mxfun+‘X‘”;f“”. (2.34)

Taking the expectation of both sides of equation (2.34) yields:

0.2 "
ED = sy + T 235)
In our situation, we have estimated the mean (# = 0) and the standard deviation (&)
of v; in equation (2.27). Our objective is to estimate the mean of ¢”' in equation (2.26). The
transformation ¥ = f(X) is now the exponential function. Specializing equation (2.35) to
the exponential function (and recalling that 1 = 0) yields:

E@E)y=1+(c"/2) ’ (2.36)

which is itself a first-order approximation to the log-normal correction factor,
exp(c’/2). Along similar lines, all of the other correction factors in Miller (1984)
(e.g., roots and powers) can be reproduced using only the form of the transformation,
without reference to the distributional assumption.

The use of correction factors may affect not only the intercept 7y, but also its
standard error. Two different cases must be distinguished. Using lot-midpoint NLS, we
can parameterize the model to estimate 7y directly rather than its logarithm. Using lot-
midpoint iteration, however, we estimate the intercept as In(7}) . The statistical software
generally provides a standard etror for this quantity, but not for T itself. Moreover, we
are ultimately interested in the standard error of Zﬁ x exp{c”’ /2). The composite effect of
the anti-logarithmic transformation and the log-normal correction factor will now be
calculated.

29 See Seiler (1987) or Lurie, Goldberg, and Robinson (1993, p. 6).
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Before proceeding, we must collect a few results on non-linear regression.3¢ We
have an estimate of @=In(7)) from lot-midpoint iteration, its sampling variance
V, =Var(a), and the residual variance &° . The residual variance itself has asymptotic
sampling variance Var(6°)— 20*/n, where n is the sample size; moreover, 4 and &°
are asymptotically independent. Thus, the asymptotic covariance matrix of the two
parameters is given by:

Cov(a,6%) - o 0 (2.37)
0 20'/n

We are interested 1in computing the asymptotic variance of
T' =T xexp(6*/2) =exp[d + (6 /2)]. The gradient of T* with respect to the two

parameters is:

. 8T T
= — = R 2.
vT 57 [ - /2) (2.38)

The asymptotic variance of the transformed intercept follows from a first-order
Taylor series approximation:

4
Var(T") - (VT') Cov(a,6°) VT = [V,,+;—}x(7‘*)% (2.39)
n

Of course, remember that the entire formula may represent an underestimate because the
sampling variance from lot-midpoint iteration ¥}, is itself underestimated.

Duan (1983, p. 608) extends this result to compute the asymptotic variance of the
prediction of lot average cost for any observation, again assuming estimation by (in our
terminology) lot-midpoint iteration and use of the log-normal correction factor.3! Our
prediction is LAC . =expl[a + bln 0, +(6%/2)], and its asymptotic variance is given by:

30 These results are found in Seber and Wild (1989), sections 2.1.2, 2.2.1, and 5.1; or Gallant (1987),
pp. 47 and 260-261.

31 The details of Duan’s derivation are found in Appendix B to Duan, Manning, Morris, and Newhouse
(1982).
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4
Var(LAC) — [w‘.ij' + %—]x(LAC,)Z, (2.40)
n

where w, = (1, InQ,) and ¥ is the 2x2 covariance matrix of (4, 5) at convergence.32

Using the same methods as Duan, we can compute the asymptotic variance of the
prediction assuming estimation by lot-midpoint NLS (parameterized in terms of T

directly) and use of the log-normal correction factor. In this case our prediction is
LAC =exp [lnf] +bIn Q + (6 /2)], and its asymptotic variance is given by:

4
Var(LAC) - [0'2 xw,(J7J) 'wj' + g—]x(LAC,)Z, (2.41)
R

where we redefine w, = (l/f;, an)

We close this chapter with a reminder that the sample sizes in cost analysis are
often quite small, making the usefulness of asymptotic properties somewhat problematic.
Unfortunately, when working with highly non-linear combinations of random variables,
asymptotic properties are often the only analytical tools we have available for statistical
inference. More empirically based methods such as bootstrapping, though not
traditionally applied in cost analysis, are also worthy of consideration.3

32 Qur prediction is consistent, but may be biased in small samples. Eskew and Lawler (1993, 1994)
propose  an  alternative  prediction, which they argue has a  smaller bias:

LAC, =expfé+bIn O, +(6° /2)—(w, ¥ w /2)]. They also cite Bradu and Mundlak (1970) for an

unbiased prediction. However, the latter involves a cumbersome, infinite series expansion that must be
truncated for practical application.

33 See, for example, Efron and Tibshirani (1993) or Davison and Hinkley (1997).

57



This page intentianally left blank.



3. ALTERNATIVE ESTIMATION METHODS

We discuss four estimation methods in this chapter. We frame much of the
discussion in terms of a particular distributional assumption, namely multiplicative
normal errors. Some distributional assumption (though not necessarily this one} is
required for one of the estimation methods, maximum likelihood. The other three
methods are minimum percentage error, iteratively reweighted least squares, and
maximum quasi-likelihood. We conclude the chapter with a comparison of the four
estimation methods, extending the comparison to include the two estimation methods
(lot-midpoint NLS and lot-midpoint iteration} that apply to learning curves but not to
CERs.

3.1 Definitions and assumptions

A multiplicative regression model has the form:

Y. = J(x, Byxu,, (3.1)

where y; is the observed response variable, x; is an observed vector of & predictor

variables, 8 is a vector of m coefficients to be estimated, and u; is the unobserved error
term for the /* observation. At this juncture, we assume only that the error terms {u,}

have finite variance, are statistically independent of each other, and statistically
independent of the predictor variables {x,}. However, we make no particular

distributional assumption on the {u,}.

In this model, we note that y; has mean:

E(y) = f(x, By E(u,), (3.2)

which equals f'(x,, ) if u; has mean 1.0. Also, y; has variance:

Var(y,) = [f(x, B <V (x,). (3.3)
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This chapter differs from the previous one in that the predictor function f(x,, )

may take on a wider variety of forms. Recall that, in the discussion of lot-midpoint
estimation, the predictor function was f{(x,,3) = In(T}) + bIn[Q (h)]. As we noted in

Section 2.9, that formulation is somewhat problematic because the lot-midpoint variable

O (b) is unknown — and has an unknown random distribution — even at convergence.

In the current chapter, we return to the multiplicative regression model of
equation (3.1). In the learning-curve context, f(x,, ) would equal expression (1.6) for

lot-average cost, repeated here for convenience:

_ I
I+5)x(Q, - Q)

f(x,8) = LAC, x[(©,+0.5" - (0, +0.5"]. (3.4)

Thus, we are directly estimating the parameters 7 and £ in the non-linear model for lot-
average cost obtained by integrating under the (Crawford) marginal cost curve. We are
eschewing the device of lot midpoints and the logarithmic transformation (ie.,

equations (2.24) and (2.25)). Moreover, unlike the lot midpoints, the predictor variables
in equation (3.4) (i.e., the lot endpoints @, and Q,_,) are known and non-random.

In the CER context, f(x,p) would simply be the CER iiself, e.g.,
equation (1.17), repeated here for convenience:

J(x, ) = Unitcost = bOxWeight""' ><Spef:cl'§'2 . (3.5)

Hence, the methods of this chapter apply equally to both of the primary models used in
cost analysis.

3.2 Minimum percentage error

Lee (1997, pp. 47-49) investigated estimation of equation (3.1) when the error
terms u; are statistically independent, and normally (rot log-normally) distributed with
mean 1.0 and variance 8 The likelihood function for this model may be written as:

b EAT (NN
e"p{ze?;.[ fGB) ]]
LB - . (3.6)

(2:1_9)»!2 xljf(x,,ﬂ)
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The log-likelihood function is equal to:

I(B.6)

]

n[L(5,6)]

n

—_ __l J’,—f(x,-sﬁ)z_ﬁ _n _ 2
i 292[ f(x,-,ﬂ)) M@~ 3@ = 2 inS %,

(3.7)

Ignoring @ for the moment, one is tempted to estimate the parameter vector 3 by
minimizing the sum-of-squares that appears in the numerator of equation (3.6),
or equivalently, by minimizing the same sum-of-squares that appears as the first term on
the final line of equation (3.7). Lee (1997, p. 48) explicitly advocates this approach,
asserting that, *“the exponential in the numerator of [equation (3.6)] is much more
sensitive to variations in [#] than is the denominator.” This approach is also
recommended by Book and Young (1995, 1997), who label it the Minimum Percentage
Error (MPE) procedure. The resulting estimator, which we denote /5, is characterized by:

_ . yj_f(xnﬁ) ‘
fr = areini "Z[ 7 G P ) | 6.8

The MPE estimator is different from the maximum-likelihood estimator because,
as noted by Lee, the former ignores the variation of the denominator of equation (3.6)
(or, equivalently, the final term in equation (3.7)) with respect to B. This general
approach, maximizing an approximate or truncated form of the likelihood function, is
known as pseudo-likelihood estimation. This approach might be rigorously justified if the
approximation error or the truncated terms were shown to vanish as the sample size
increased. Absent such justification, there is no general guarantee that a pseudo-
likelihood estimator behaves like the MLE. Instead, the properties of a pseudo-likelihood
estimator must be established on a case-by-case basis.

Another way to view this problem is to examine the concentrated log-likelihood
function.4 First, maximize the log-likelihood function with respect to @ by setting to zero
the derivative with respect to that parameter; then substitute the resulting estimate of &
back into the log-likelihood function to obtain a function of S alone. The first step yields
the MLE of & conditional on B (which we denote 8,):

34 See Seber and Wild (1989, pp. 37-42).
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1 < .V:"_f(xrvﬂ)T .
8, = — 2zt SR 39
nxg[ S (x,.0) 39

and the second step yields the concentrated log-likelihood function:

N

*(P 1(5,6,)

v (y_ .Y < (3.10)
—gxln(ZJre:"n) - %Xlﬂ{g(%})_ﬁ)] :l - ;lﬂf(xnﬁ)s

where ¢ is the base of the natural logarithms. Once again, the MPE estimator considers
only the variation in the middle term with respect to £, but ignores the variation in the
final term. By contrast, the full MLE of f maximizes the entire expression (3.10) with
respect to /.

The choice between the MPE estimator /3, and the full MLE of £ should hinge on
the relative statistical properties of the two estimators. The MPE estimator is intuitively
appealing because the regression model (3.1) is heteroscedastic: from equation (3.3), the
standard deviation of y; is proportional to f(x,,). The MPE estimator minimizes the
weighted sum-of-squares, correcting for heteroscedasticity by giving relatively more
weight to the less variable observations. Put differently, the MPE estimator minimizes the
sum-of-squares of relative (i.e., percentage) prediction errors.

Intuition notwithstanding, the MPE estimator is unsatisfactory because it is
inconsistent: the estimator is biased, and the bias remains even as the sample size grows
infinitely large.3* To understand the bias, consider again equation (3.8). The optimization
that defines MPE has two avenues for minimizing the sum-of-squares. First, accurate and
unbiased predictions will bring the f(x,, ) in line with the y,, thereby minimizing the
numerator of equation (3.8). However, simply inflating the predictions f(x,,5) in the

denominator will tend to deflate the percentage errors, albeit at the expense of worsening
the fit in the numerator. The net result of these two effects is that the predictions f(x;, 8)

tend to be somewhat inflated, leading to biased parameter estimates. In particular, when
modeling lot-average cost as f(x,,8) = T| x[Q.(b)]b , the T} parameter tends to be biased

upward. As we demonstrate in the Monte Carlo results in Chapter 5, the bias in 7, tends

353 See Seber and Wild (1989, pp. 88-89), especially the discussion immediately following their
equation 2.183.
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to increase with the variance & The logic behind this result is explored later in this
chapter, during the discussion of iteratively reweighted least squares.3¢

The covariance matrix of the MLE is estimated by the negative inverse Hessian of
the log-likelihood function. This matrix is not always available in closed-form, but
numerical approximation is geuerally feasible. However, the covariance matrix of the
MPE estimator has never been derived.

The MLE may be computed by numerically maximizing equation (3.7) with
respect to 4 and & An alternative is to numerically maximize the concentrated jog-
likelihood function, equation (3.10), with respect to £, then compute the MLE of & from

equation (3.9). The latter method presents a slightly lower-dimensional maximization
problem, because the estimate of & conditional on £ (i.e., 8,) is known in closed form.

Under the current assumption of multiplicative normal errors, the likelihood-ratio

statistic differs from the expression given earlier in the case of log-normal errors, which
was nxIn(SSE"/SSE"). Let 8, and @; denote the restricted and unrestricted variance

e
r

I

estimates, and let and ﬁ“ denote the corresponding model predictions for

observations i=1,...,n. Then under the multiplicative normal assumption, the
likelihood-ratio statistic is given by: —2xIn(L/*) = nxIn(g;/8!) + 2x 3 In(f [ /).
i=l

This statistic has an asymptotic x> distribution.3?

3.3 Iteratively reweighted least squares

IRLS differs from the MPE estimator in a subtle but important way. Begin with
an initial estimate of 8, denoted §‘”. In the minimand in expression (3.8), fix f=£ in

the denominator, and minimize with respect to £ in the numerator only. The minimum
occurs at a new estimate, §'”. Now fix =" in the denominator, and again minimize

36 One might speculate whether the bias in MPE would vanish if f(x;, ) were replaced by y, in the

, 92
denominator of equation (3.8); i.e., if the objective function were Z [(y,- —f(x,-,ﬂ));"y,-] . We
feave this question open for future researchers.

37 The likelihood-ratio statistic nust be non-negative. Suppose we apply MPE first, treat the resulting

estimates of £ as fixed values, and test the MLEs against these fixed values. The first term in the
likelihood-ratio statistic will be negative, because MPE explicitly minimizes & However, the entire
statistic will still be non-negative, because the second term (which measures the superior fit of the
MLE under the model assumptions) always dominates,
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with respect to f in the numerator only. In general, compute the following sequence of

estimators:
n 2
B = argmin 2[—3’* _f(x;;'?)} : (3.11)
ﬁ =1 f(xnﬂ )
for p=0,1,2,... . Finally, the IRLS estimator is defined as the limit of the sequence:
— 1 4]
By = lim (3.12)

when the limit exists. In practice, the IRLS estimator is taken where the sequence
converges within a pre-specified numerical tolerance.

It is best not to regard IRLS as yet another pseudo-likelihood estimator. Rather,
IRLS is a classical technique that can be motivated in many different ways without
reference to any likelihood function. In contrast to likelihood methods, IRLS does not
require any parametric distributional assumption (¢.g., normality or log-normality).

IRLS is numerically distinct from MPE estimation. Although IRLS may appear to
minimize expression (3.8), the gradient of expression (3.8) with respect to f is generally
non-zero at the IRLS solution. We will demonstrate this point later by numerical
exampie.

IRLS yields consistent estimates of regression model (3.1) under quite general
conditions: the only essential distributional assumption is finite variance. Moreover, the
covariance matrix of the estimator follows a known formula, and the estimator is
asymptotically normally distributed even though the regression error itself (u; or v;) need
not be normai, 38

IRLS has periodically been rediscovered; for example, Book and Lao (1996) and
Book and Young (1997) label it the Minimum Unbiased Percentage Error (MUPE)
procedure.3? We saw that the MPE estimator is inconsistent, and the MLE is consistent if

38 Specifically, Seber and Wild (1989, pp. 88-89) report that the asymptotic sampling distribution of the
IRLS estimator is normal with mean equal to the true (unknown) parameter vector,

3% Some references from the 1970s are: Bradley (1973), Jennrich and Moore {1975), and Charnes, Frome
and Yu (1976). Another resurgence of interest occurred during the 1980s: Jorgensen (1983, 1984) and
Green (1984). Incidentally, Seber and Wild’s {1989} analysis serves to definitize Book and Young’s
(1997, p. 13) empirical observation that the bias in IRLS/ MUPE is “apparently asymptotically zero”
for non-linear regression functions.
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the distributional assumption is valid. Remarkably, the IRLS estimator is consistent
without any distributional assumption except finite variance (though it may be biased in
small samples, so the “U” in the MUPE terminology is misleading). Despite the desirable
property of consistency, Book and Lao (1996, p. 10) criticize the IRLS estimator because
it is, “not clear that MUPE [i.e., IRLS] is optimal with respect to any relevant criterion.”
Again, Book and Young (1997, p. I3) describe IRLS as, “converging to a parameter
vector...that may or may not be optimal with respect to some appropriate criterion.”
In the next section, we exhibit the criterion under which IRLS is optimal, and argue for
its relevance.

3.4 Quasi-likelihood estimation

Quasi-likelihood is a remarkable statistical concept that yields estimators sharing
many of the desirable properties of MLEs, but without the need for precise distributional
assumptions.*® In the case of independent observations (our maintained assumption
throughout this entire work), quasi-likelihood estimation requires only:

e a mapping from the predictor variables to the mean of the response variable; and

¢ a functional relationship between the variance (assumed finite) of the response
variable and the mean, up to a scaling constant (i.e., V(y,)=Axg[E(y ) <®).

The function g[ | must be continuous, but not necessarily monotonic.

Returning to equation (3.2), and assuming that E(u,)=1.0, the first requirement

is satisfied by the equation E(y)= f(x,,/f). Assuming that V() is constant for all
observations (i =1,..., n), the second requirement is satisfied as well; setting A =V (u,),
equation (3.3) becomes ¥ (y,) = AX[E(y,)I.

Letting , = E(y,)= f(x,,/3), the contribution of the i observation to the log-
quasi-likelihood function is the solution to the differential equation:

BQI(!"A) — Yi—H; .
o, | Axg)

(3.13)

In our example of a multiplicative regression model, we have g(g,) =", so that the
differential equation becomes:

40 See McCullagh and Nelder (1989, chapter 9), or Seber and Wild (1989, pp. 42-48).
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oq. () _yi—# __y, 1 (3.14)

o,  Axu’  Axu®  Axp,’
with solution:
Y, In(x,)
(u,A) = - - . 3.15
q.(u, A) Axp 1 (3.15)

The sample log-quasi-likelihood function is given by the sum over all the
observations:

ll

983) =~ D[0u/m)+ (s,

(3.16)

I

-— 1 ,
Z{ﬂ ,,ﬂ)+ n(f(x, ﬁ))]

The maximum quasi-likelihood estimator of # is the value that minimizes the
summation in equation (3.16). The resulting estimator, which we denote f;, is
characterized by:

B, = arg;llﬂZ{f( ”mﬂn(f(x,,ﬁ))} (3-17)

Finally, quasi-likelihood estimation of 4 is separable from estimation of A. The
latter parameter is conventionally estimated by the generalized Pearson statistic:

1w n-re.801
A, = , 3.18
) g/ (5. 5] G-18)

or in our multiplicative example:

2
1 C yj_'f(x'sﬂd)
Ay = : . 3.19

"_mx;[ S (x,.B) ] ( )

We now respond to Book and Lao’s criticism and demonstrate that the IRLS
estimator maximizes the quasi-likelihood. To characterize the maximum quasi-likelihood,
we set to zero the gradient of the right-hand side of equation (3.17) with respect to the
parameter vector 4.
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3 &
- 5% ;’[f(x,., 5 +1n(f(x,,ﬁ))]

c (f(xf'sﬁ)_y:) af(xnﬁ)
2{ (f(xnﬁ))z § aﬁi :l,

(3.20)

n

i=1

for j=1,....m.

Alternatively, consider the sequence of estimators generated by IRLS. In
particular, B°*" sets to zero the gradient of the right-hand side of equation (3.11) with
respect to 3 Again, we minimize with respect to B in the rumerator only, fixing f= 8"

in the denominator;

0= 9 "[y:—f(x,-,ﬁ)]z

aﬁj i=l f(xnﬁ{p))
| BT 3 ar 80
Al (") o8, |

(3.21)

p+D)

for j=1,...,m. Note that we replace g by A" in the numerator, to indicate that the

{p+1}

gradient vanishes at the new estimate, 77" . At convergence, however, 87 =" so

equation (3.21) reduces to:

o | (f (xvﬁ“”)‘y')xaf(x,,ﬁ"”)

0=12x ) (f(x”ﬁ(p}))z aﬁj »

(3.22)

which is identical to the condition for maximum quasi-likelihood.4!

We may also use this analysis to gain some understanding into the bias in the
MPE estimator and, in particular, its sensitivity to the variance. Referring back to
equation (3.8), the MPE estimator minimnizes the sum-of-squares with respect to Sas it
appears in both the numerator and denominator, whereas IRLS fixes 4 in the denominator

41 Under certain conditions, IRLS can be used to maximize the likelihood (not quasi-likelihood) function
as well, rendering all three estimators (IRLS, maximum quasi-likelihood, MLE) identical. The main
regularity condition is that the density function belongs to the exponential family; see Bradley (1973),
Jennrich and Moore (1975), and Chames, Frome and Yu {1976). Lee’s multiplicative normal density
{our equation (3.6)) does not belong to this family and, as we will see in the numerical examples, the
MLE is quite distinct from the IRLS/maximum quasi-likelihood estimates.
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and minimizes with respect to /3 in the numerator only. The gradient equation that defines
MPE may be decomposed into two terms: the first term represents the gradient with
respect to 3 in the numerator only, as in equation (3.22) (i.e., IRLS); the second term
represents the bias away from the IRLS solution. Thus, the gradient of the minimand in
equation (3.8) may be decomposed as:42

S (f.B)) 2B, 3B, n\ f(x,)

2
S f G- 3) 6f(x,-,ﬁ)] _ %Xilaln fG.8) L[y: -f(r:--ﬁ)} ] (3.23)
i=1
Comparing the variance estimator in equation (3.9), the second term here is more
important, roughly speaking, when the variance is larger. Thus, the bias in MPE is more
severe for large-variance problems. We confirm this finding in the Monte Carlo results in
Chapter 5.

Because IRLS and quasi-likelihood estimation are identical, they share the
properties of consistency and asymptotic normality under the minimal assumptions of
finite variance and continuity of the variance-to-mean function. To quote Seber and Wild
(1989, p. 46):

An attractive aspect of quasi-likelihood theory...is the following. When
the data analyst is fairly confident that the mean function and the
relationship between the mean and variance has been modeled fairly well,
but is unsure of the other aspects of the parametric distribution used,
quasi-likelihood theory assure him or her of the asymptotic correctness of
the resulting inferences. In this way it is a generalization of the asymptotic
applicability of least-squares theory beyond the restrictive assumption of
normally distributed errors.

The asymptotic covariance matrix of the estimator may be developed as follows.
Again let J denote the »x m Jacobian matrix of the mean function with respect to the m
parameters (8. Also, let G denote the diagonal matrix of relative variances of the
observations:

G = diagig(), . 8(1,)} . (3.24)

The mxm asymptotic covariance matrix is given by:

Var(B,) = Ax(J7GI)7, (3.25)

42 This equation is essentially the same as equation (2.183) on p. 89 of Seber and Wild (1989).
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where the dispersion estimate A, was given previously in equation (3.18). Specializing to
our situation with g(,) = #,°, the asymptotic covariance matrix may be written as:

il

, -1
Var(8,) Ay % (Z[.LTJ,- ]/ [f (x,-,ﬁa)]zj

2 -1
1 3 yi_f(xpﬁ-t) x c T 2
n—mxg[ FxB) J (Swralrer)

(3.26)

where each term [J]J,] is again an mXx m outer product matrix.

Although the calculations here appear formidable, they are in one sense simpler
than the corresponding calculations under lot-midpoint NLS. In the latier situation,
the Jacobian matrix had to be computed for the predictor function
f(x,,8) = In(T)) + bIn[Q.(b)], which is highly non-linear in light of the definition of
the lot midpoint. Under IRLS, the predictor function generally takes a much simpler
form. In the learning-curve context, the predictor function is the non-linear model for lot-
average cost obtained by integrating under the (Crawford) marginal cost curve,
equation (3.4). The calculation is even simpler in the CER context, in which case the
predictor function is simply the CER itself, equation (3.5).

3.5 Comparison of the six estimation methods

Table 3.1 summarizes our comparison of the six estimation methods considered in
this monograph. Lot-midpoint regression assumes a log-normal error distribution. The
NLS estimator is consistent and asymptotically normally distributed. The covariance
matrix is available as equation (2.30) above. A closely related method is lot-midpoint
iteration. Although widely used m cost analysis, the asymptotic properties of this
estimator are not currently known. In particular, the conventional formula is an
underestimate of the standard error of b. Moreover, there are no theoretical guarantees of
existence or uniqueness of the solution, or of convergence even when a solution does
exist.

We cannot endorse MPE because it is biased and inconsistent, and its covariance
matrix has not been derived in the literature. Maximum iikelihood is probably the most
ubiguitous estimation method in statistics, but it requires a particular distributional form.
In addition, although the MLE covariance matrix follows a well-known formula,
evaluation of that formula may require numerical approximation.
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Table 3.1. Comparison of Six Estimation Methods for Leaming-Curve Models

Estimation method Distributional assumptions  Asymptotic properties Covariance matrix
Lot-midpoint non-finear log-normal consistent and formula availabie
least squares (NLS) asymptotically normal
Lot-midpoint iteration log-nomnal unknown comventional formula,

an underestimate
Minimum perceniage error  multiplicative model, biased and unknown
(MPE) finite variance inoonsistent
Maximum likelihood particular distributional consistent if correct weil-known formula,
estimation (MLE) form distributional form may require numerical
approXimation
Iteratively reweighted multiplicative model, consistent and formula available
least squares (IRLS) / finite variance, asymplotically normal
Minimum unbiased continuous variance-to-
percentage ermor (MUPE) mean function
Maximum quasi-likelihood —multiplicative model, consistent and formula available
finite variance, asymptotically normal

continuous variance-10-
mean function

Finally, as we (and others) have shown, the IRLS (recently renamed MUPE) and
maximum quasi-likelihood estimators are identical, thus they share all of the same
properties. In particular, these estimators are consistent and asymptotically normally
distributed. The covariance matrix is available in closed-form as equation (3.26) above.

Reviewing Table 3.1, IRLS appears to produce the best estimates for the fewest
assumptions. It does not require a log-normal or any other particular distributional form,
only finite variance. Moreover, its asymptotic properties are the best that can be hoped
for in a non-linear model, and its covariance matrix is easily computed.

Some would question our harsh assessment of the MPE method. Book and Young
(1997, especially pp. 6-7) observe that the minimized sum-of-squares is generally lower
for MPE (our expression (3.8)) than for IRLS / MUPE {our expression (3.11) evaluated at
convergence). They engage in a rather lengthy discussion of the tradeoff between MPE,
which is biased and inconsistent but has a smaller sum-of-squares, and IRLS/MUPE,
which is consistent (though possibly biased in small samples}) but may have a
considerably larger sum-of-squares. In our view, reducing bias should always be a higher
priority than reducing the sum-of-squares. First, the sum-of-squares can always be
artificially reduced to zero by regressing a times series of lot costs on a sufficiently high-
order polynomial in any single predictor such as calendar time or lot size. However, such
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a polynomial equation, with multiple points of ianflection or even non-monotonicities, is
of virtually no value in forecasting the cost of future lots.43

Further, a common use of regression models in cost analysis is to forecast the
growth in unit cost due to a deviation from baseline assumptions (e.g., an increase in
system weight or a smaller production run). These exercises require “good” estimates of
the weight coefficient in a CER or the learning slope. A “good” estimate is one
possessing both low bias and low variability (i.e., a small standard error). Although Book
and Young make claims for MPE based on its smaller regression sum-of-squares, they
have not demonstrated that the parameter vector estimated via MPE has smaller standard
errors than the one estimated via IRLS/MUPE. As we have pointed out, the covariance
matrix of the MPE estimator is unknown. Hence, there s currently no basis for claiming
that the MPE estimator has lower variability—it may well have higher variability.

3.6 Correction for serial correlation

Our maintained assumption throughout this entire work has been that the costs of
successive lots are statistically independent. In particular, the derivations of the various
estimation methods have all assumed the absence of serially correlated errors. In the
Monte Carlo analysis of Chapter 5, we measure the loss of precision that occurs when
serial correlation is present, despite the modeling assumption to the contrary. We show
there that all of the methods considered, except for lot-midpoint iteration, are robust to
serial correlation. Moreover, as we argued in Chapter 2, serial correlation can often be
reduced by transforming the data series from cumulative average cost to lot average cost
prior to estimation (equations (2.9) and (2.10)).

Nonetheless, we want to give the reader some indication of the estimation
technique when serial correlation is present and perceived as a serious problem. We do
not pursue this extension for either lot-midpoint iteration or MPE, because we do not
recommend these methods even under the best of circumstances. The extension of MLE
to serially correlated errors is covered in many sources; Womer and Patterson (1983)
apply this method, and Seber and Wild (1989, Chapter 6} explicitly give the estimating
equations. Therefore, we restrict our discussion to NLS estimation in the presence of
serial correlation.

43 Lee (1997, pp. 79-81) gives an excellent example of the pitfalls that arise when attempting to forecast
using models that were sclected solely on the basis of in-sample goodness-of-fit.
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We consider the particular case of first-order serial correlation, or so-called AR(1)
errors. For this analysis it is convenient to zero-out the mean of the error term, thus we
write the mode] as:

Y = fx, Byx(l+u,), (3.27)

where now E(u,) =0. However, the errors now have the AR(1) structure:

U = pxu,, +e, (3.28)

where |p|<1 and the error terms {£} independent normal, &~ N (0,02). The

correlations between successive values of {u,} decline geometrically with their distance

If'-’|

on the time scale, Corr (v,,u,) = p

It can be shown that Var (u,) = Var(e,)/(1— p*) = 6°/(1- p*). Thus, we have

the variance of each observation:

Var(y,) = [f(x, B xV(u) = f*c’/(1-p%), (3.29)

where we have used the shorthand notation f = f(x,fS). We can also derive the

covariance between any two observations:

Cov(y,y,) = p' f f,0°[0-p%) . (3.30)

We can array all of the variances and covariances ito a matrix:

SR /¥ /SR A
Vo= Covirirny) = atfa=pty x | PEA L AT (3.
P Phfe S

We can also find the lower-triangular »x» matrix L such that V =L"'(Z")"

or V™' = 'L, where the superscript “7” indicates the matrix transpose:44

44 The matrix L generalizes the standard factorization of a serially-correlated covariance matrix that was
first derived by Kadiyala (1968) and reproduced in many places including Seber and Wild (1989,

p. 276). Our generalization introduces the weights {7} that account for heteroscedasticity.
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]}p 0 - 0
, 2 1 4 of- (3.32)
L =0 x 5 5
-p 1
foa T,

Conventional NLS estimation of equation(3.27) would minimize the
untransformed sum-of-squares, Z( yi—f(x, ,B))2 . However, the covariance matrix of

the observations, ¥V, exhibits both heteroscedasticity (unequal diagonal elements) and
serial correlation (non-zero off-diagonal elements). Thus, conventional NLS estimates are
consistent but not efficient (i.e., do not have the minimum sampling variance among all
consistent estimates),

Efficient estimates may be obtained by applying non-linear generalized least
squares (NGLS). We minimize instead the weighted sum-of-squares, which is
represented in matrix form as:

[y-1xB] V' [y-1xB)] = [y -1 /] Dy -1z, )]
= [Lx{y -1x. )] [Lx(y - 1x. $))] (3.33)
= [Lxy - Lxt(xB)] [Lxy - Lxf(x, )],

where y is the nx 1 vector of response variables and f(x, ) is the nx1 vector of model

predictions. Expression (3.33) differs from the untransformed sum-of-squares by the
insertion of the weighting matrix, ¥~'. However, we also see from the final line that
NGLS is achieved by transforming both the response variables and the model predictions

by the matrix L prior to estimation. That is, expression (3.33) reduces to the sum-of-
squared differences between the transformed response variables Lxy and the

transformed model predictions L x f(x, 8) (both nx1 vectors).

The matrix L contains the unknown parameters p and o, as well as the parameters
J that are embedded in the model predictions {f}. This situation suggests an iterative
procedure in which we first estimate all of the parameters (most likely by conventional
NLS), use those estimated parameters to form the L matrix, estimate the transformed
model, then possibly continue iterating until convergence (i.e., until the parameters £ and
perhaps also p and o stabilize). However, several points must be noted here. First,
Gallant and Goebel (1976) reported that the NGLS estimates obtained after a single
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round of transformation have the same asymptotic distribution as the estimates obtained
by iterating until convergence. Except for some very special cases that have been studied
in the literature, the justification for NLS is based solely on its asymptotic properties.
Thus, there appears to be little gain from continuing beyond the first round of
transformation.

Second, when estimating the transformed model, we must hold the L matrix fixed
and minimize the sum-of-squares with respect to the parameters /3 only as they enter the
model predictions f(x, ), not as they feed back through the L matrix. This distinction is
quite analogous to the one we emphasized in Chapter 3, where IRLS sought the minimum
sum-of-squares in the prediction errors alone, expression (3.11), but MPE allowed the
same parameters to vary in the weights as weil as in the prediction errors,
expression (3.8). We saw there that the latter approach leads to biased parameter

estimates. 4’

To make it absolutely clear that the weights {f} are fixed in the L matrix, we
re-write that matrix with the notation {w,} replacing {f}; we regard the weights {w },

like p and &, as fixed elements during the minimization that yields the estimate of £.
Moreover, we can suppress ¢ because (as is easily demonstrated) doing so does not affect
the estimate of B. Instead, 0° may be recovered in the usual way at the end of the
process, as the minimized regression sum-of-squares divided by the degrees-of-freedom.
Thus, without any loss of generality, we re-write the L matrix as:

Lind AP 0
W,
2 1 4 ot (3.34)
L= W w,
0 o =2 L
wn-l w!l

Returning to equation (3.33), we can now explicitly display the transformations
applied to the response variables and the model predictions prior to estimation (both nx 1

vectors):

45 By contrast, MLE treats all of the parameters (including pand o) on an equal footing, wherever they
may appear in the likelihood function. For the case of AR(1) errors (though without the additional
complication of heteroscedasticity), see Seber and Wild (1989, section 6.2.2).
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1-p* yl/wl

Lxy = (.szwz) “:p()ﬁ/“ﬁ) , (3.35)
(yn/wn) - )o(ynwl/w —l)
and
=07 1 B w
L x f(x,ﬁ) — (f(xbﬁ)/wz) _ p(f(xpﬁ)/wl) . (336)

(f G B w,) = p(f (5o BYW,1)

We have not yet indicated the procedure for estimating p. Inverting
equation (3.27), we can estimate the individual error term u, as the percentage prediction

error, &; = [y, - f(x,, D}/ f(x,, B). Goldberger (1964, p. 243) gives the expression for

the first-order serial correlation coeflicient:

n
Zu:' Ui
=2

(337

We give an example of the NGLS procedure in the next chapter. However, we

must alert the reader to one oddity before ending this discussion. When first forming the
vector L x £(x,f), we set w, = f(x,,0”) where B is the estimate obtained by

conventional NLS (i.e., by simply minimizing Z( yi—f(x;, ;'3’))2 ). Thus, the terms
{f,/w,} reduce to unity and the vector L x f(x, #) numerically computes as:

i-p°
Lxfxpy=| 7P |. (3.38)
1-p

However, when programming the NGLS algorthm, it is imperative to write the
terms {/,} functionally (vs. numerically) in terms of the coefficient vector £, as we have

done in equation (3.36) with the explicit notation f, = f(x, ). The NGLS algorithm

75



will adjust g, and thus adjust the numerators of the ratios {f/w,}, in an attempt to
minimize the weighted prediction errors. If the vector L x f(x, £) is revisited at the end

of the process, it will be seen to differ numerically from expression (3.38). That
difference reflects the improvement due to the single NGLS step.
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4. APPLICATION OF THE ESTIMATION METHODS
TO LEE’S DATA

In this chapter, we apply the various estimation methods to Lee’s (1997) dataon a
tactical missile program, reproduced earlier as Table 1.1. This exercise reinforces several
of our theoretical results and illustrates the magnitudes of the differences among the
various estimation methods. In particular, we show that lot-midpoint iteration converges
on Lee’s data, even though the eigenvalue 35" /9b” evaluates as —1.041 at the
starting poimt. This example confirms our theoretical finding from Chapter 2 that an
absolute bound of 1.0, while sufficient for convergence, is not necessary. We also
directly compare two fitting criteria: the sum-of-squared errors in predicting the
logarithm of lot average cost, and sum-of-squared percentage errors in predicting the
fevel (not logarithm) of lot average cost. Contrary to Young's (1999) somewhat
ambiguous assessment, we show that for a symmetric data set with no extreme outliers,
the logarithmic sum-of-squares is generally larger than the percentage sum-of-squares.

4.1 Non-linear least squares

Lee presents only a single set of numerical estimates. He applied NLS to a
regression of incremental lot cost, as in our equation (2.15). That is, Lee minimized the
following quantity:46

1]

T . 1)
Z[[TC:—TQ-,] - H—‘bx[(Q,-+05)“’ = (@, +05) ”]] : 4.1

=

There is some evidence of heteroscedasticity in the data (i.e., lots containing more
units also exhibit greater variability in incremental lot cost). To restore variance
homogeneity, we also applied NLS to a regression of lot average cost, as in our
equation (2.16). That is, we minimized, instead, the following quantity:

46 More precisely, Lee (1997, pp. 35-41) replaced the right-hand side of our expression (4.1) with a more
exact expression for incremental lot cost, based on the Euler-Maclaurin summation formula. However,
his procedure yields a leaming coefficient () that differs from our estimate by only 107~".
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2
E(LAC,. - (1+b)><g:Q.-Q. )x[(Q,.+05)“"’ -(Q,._,+05)'”‘]] . (42

i=1

These two sets of estimates appear in the first two rows of Table 4.1.

Using the definition of the lot midpoint, the latter estimate is exactly what one
would obtain by applying NLS directly to equation (2.26). However, equation (2.26) has
multiplicative error structure, whereas NLS implicitly assumes an additive error structure.
Thus, NLS would more appropriately be applied to equation (2.27), which indeed has an
additive error structure. We label this method “Lot-midpoint NLS” in Table 4.1; it is the
non-linear estimator that minimizes expression (2.28). The resulting estimates appear in
the third row of Table 4.1. We adjusted the intercept by the log-normal correction factor,
exp(0” /2), to enable consistent predictions of lot average cost (rather than its natural
logarithm). Note that the first three rows of Table 4.1 all use different response variables:
incremental lot cost (expression (4.1)), lot average cost (expression (4.2)), and the natural
logarithm of lot average cost (expression(2.28)), respectively. Thus, although the

parameter estimates are compatable, the sums-of-squared errors are not.

Figure 4.1 compares the intercepts and learning slopes for these and all of the
other estimation methods considered in this chapter. Methods that yield higher intercepts
for this particular data set compensate with “steeper” (numerically smaller) learning
slopes, else the fitted learning curve would bypass the centroid of the data. Within the
small ranges of slopes in this example, the relationship between slope and intercept is
remarkably linear. The NGLS estimates do not appear in Table 4.1, but are highlighted
for discussion in a later section.

@ NGLS

§ ?95% —.,,,.,,.,‘-,‘,..,‘h.gﬁ; ...............................................................................
< QSN
D 700%, e e et et e et ce e et T Nra rr e et e et bene ittt aanr e e
£ iot midpoint, T~ _
g NLS, IRLS T

78.5% t, .,.,,,..,,.,,,,,,,,.,,,,,,,.,,,,,,,,,,,,,....,,,,.,,,.,,,,,,,,..,,,,,,.,,,.,,,,,,.,,,,..,,,..,,..,,.,,,,.,,._.,....,.,,:,‘:'r..._,..,,.

: Non-inear least squares,
incremental lot cost
?ano’& — . —_— ——— e ————— - .
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Figure 4.1. Comparison of Intercepts and Slopes for Various Estimation Methods
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Table 4.1. Alternative Leaming-Curve Estimates using Lee’s Data for a Tactical Missile Program

Quantity Standard error Learning

Sum-of-squared errors

Standard error

Log-

Log-quasi-

Estimation method Intercept exponent of exponent slope  Arithmetic Logarithmic Percentage of estimate (pct.) R-squared likelihood _likelihood
Non-linear least squares, 2.2319 -0.3496 0.038F 78.48% 5,085.6 — — — 20.842  —50.6320
incremental lot cost

Non-linear least squares, 1.8593 -0.3254 00118 7981% 0.00102 — — — 21226 -50.6296
lot average cost . e e e o _
Lot-midpoint NLS 20256 -0.3366 0.0300 79.19% — 01328 0.1218 0.1425 0.951 21.155 -50.6289
Lot-midpoint iteration 20301 03369 00312 79.18%  — 01328 0.1188 0.1407 0951 21150 -50.6289
Minimum percentage 1.8921 -0.3265 notavailable 79.75% — 0.1394 1153 0.1386 ' 21.178 -50.6301
error (MPE)

Maximum likelihood 1.8663 —0.3266 0.0248 79.74% — 0.1358 01170 0.1396 21,236 -50.6292
estimation (MLE) e

IRLS / MUPE/ 1.9649 03331 00283 7938%  — 0.1336  0.1180 0.1402 21202 -50.6287
Maximum quasi-

likelihood

Note: entries in italics represent minimum sum-of-squared errors, or maximum likelihood or quasi-likelihood.



We next compute the fitted learning curve that results from lot-midpoint NLS, as
well as the +20 confidence band around the fitted curve. Because the formula for the
confidence band is not widely known by cost analysts, we present most of the details
behind this calculation. Table 4.2 summarizes some of the key ingredients required for
the calculation,

Table 4.2, Parameter Estimates from Lot-Midpoint NLS

Parameter Estimate
Sunt-of-squared errors 0.1328
Sample size (1) 8
Number of parameters () 2
Degrees of freedom (rr — &) 6
Standard error of regression () 0.1488
T, pre-adjustment 2.0033
Log-nermal correction factor 1.0111
T, post-adjustment 2.0256
Exponent (b) —0.3366
Learning slope 79.19%

The formula for the asymptotic variance of the prediction was given previously in
equation (2.41). We repeat that formula here, except that we subsume the 2x2

-1, .
covariance matrix of the NLS parameter estimates ¥ = ¢~ (J TJ) " into the single term ¥/

that is available directly from the regression output:

4

Var(LAC) — [w,.wa' + %-]x(u&c,.)?, (4.3)
n

where w, = (1/ T, In Q) . Only two terms in this formula vary across the observations:

InQ, and LﬁC,.. We present these terms in Table 4.3, In particular, the middle column
gives the logarithmic lot midpoint (In(,) for each lot, and the final column gives the
predicted lot average cost (LHC,.).
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Table 4.3, Terms that Vary Across the Observations

Logarithmic Actual lot average Predicted lot

Lot number Lot midpoint lot midpoint cost ($M) average cost (M)
1 67.6 4214 0.471 0.490
2 606.4 6.408 0.226 0.234
3 2,066.6 7.634 0.158 0.155
4 4,459.3 8.403 0.124 0.120
5 56,7223 B.813 0.126 0.104
6 8,764.3 9.078 0.094 0.095
7 10,8259 9.290 0.095 0.089
3 13,019.7 9.474 0.062 0.083

Considering, for example, the second lot, the asymptotic variance of the
prediction Var (LﬁCz) would be calculated as follows:

(0499 6.408)x 0.2355 -0.0142 y 0.499 . (0.1488)°
' ‘ -0.0142 0.0009 ) | 6.408 2x8

Note that we invert the pre-adjustment value of 7,, 1/T =1/2.0033=0.499.
Expression (4.4) evaluates as (0.0162)*, so the standard error of the prediction for the

]><(0.234)2 . 4

second lot equals 0.0162.

Figure 4.2 illustrates the close fit of the two-parameter learning-curve model to
the tactical missile data. Each data point represents the computed lot midpoint (second
column of Table 4.3) and the actual lot average cost (fourth column of Table 4.3). The
solid curve represents the siooth model prediction of marginal cost (i.e., the Crawford
model). The data points would ideally fall along the solid curve, because the lot midpoint
is calculated such that its marginal cost (the height of the solid Crawford curve) equals
the predicted lot average cost (the predicted height of the data point). Although the figure
is drawn for the lot-midpoint NLS estimates, all of the aiternative estimates are
numerically close and the visnal representations are indistinguishable.

The 20 confidence band reveals two minor outliers at the fifth and eight lots.
However, these outliers are departures from the two-parameter learning-curve function
and cannot be resolved by mere recalibration of that function. The analyst’s only choices
are to:

e Review the data for possible errors,
¢ Expand the two-parameter functional form,

e  Add more predictor variables (e.g., production rate), or
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e  Simply live with the two minor outliers.4”

Unit cost ($M)
e o o
8 R B

0 2,000 4,000 6,000 8.000 10,000 12,000 14,000
Cluantity

Figure 4.2. Learning Curve Fit to Tactical Missile Data
The prediction errors in Figure 4.2 do not show any indication of seriai

correlation. We again use Goldberger’s (1964) expression for the first-order serial
correlation coefficient:

#

Zer' €.

=2

»
n A
2 2

S S
=2 2

(4.5)

where e; is the prediction error for the i lot. The serial correlation among the errors in
predicting lot average cost (rof its logarithm) is only 0.054.

Recall our previous assertion that serial correlation is more likely in a series of
cumulative average costs (i.e., the Wright model) than in a series of lot average costs
(i.e., the Crawford model). To test this assertion, we used the same lot-midpoint NLS
estimates to predict the cumulative average cost for each lot, as in equation (2.5) (with

47 We also computed the nearly unbiased predictions suggested by Eskew and Lawier (1993, 1994).
The two sets of predictions differed by 0.3% on average, with a maximum difference of 0.8%. Thus,
our consistent predictions appear to be essentialty unbiased even in a sample containing only eight lots.
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non-recurring cost set equal to zero). We then computed the prediction errors and, finally,
the serial correlation among these errors. In this instance, the serial correlation coefficient
evaluates much higher, 0.884,

The confidence band is useful not only for displaying the model fit within the
estimation sample, hut also for predicting the next observation beyond the current
sample. For example, suppose we had applied lot-midpoint NLS to Lee’s data after
observing only seven lots, not all eight lots, and we attempted to predict the average cost
for the (as yet unobserved) eighth lot. Table 4.4 summarizes the model estimates from the
sub-sample consisting of the first seven lots.

Table 4.4. Parameter Estimates from Lot-Midpoint NLS,

Sub-Sample of Seven Lots

Parameter Estrnate
Sum-of-squared errors 0.0250
Sample size (n) 7
Number of parameters (A} 2
Degrees of freedom (n— k) 5
Standard errer of regression (o) 0.0707
Ty, pre-adjustment 1.7173
Log-normal correction factor 1.0025
T, post-adjustment 1.7216
Exponent (&) —0.3112
Learning slope 80.60%%

Now we are asked to predict the average cost for eighth lot, consisting of 2,768
units beginning with unit #11,669 and ending with unit #14,436. We estimate the

midpoint of the eighth lot as unit #13,020, and we predict the lot average cost as
1.7216 x13,020%3!"2 = 0.0903 (ie., $90,300). The asymptotic variance of the

prediction Var (L;ICE) would be calculated as follows

- 4
[(0'5823 9.4,',4»{0.0431 0.0031}{0.5823) . (0.0707)

x (0.0903)%. (4.6)
-0.0031 0.0002 ) { 9.474 2x7

Expression (4.6) evaluates as (0.0035)?, so the standard error of the prediction for

the unobserved eighth lot equals 0.0035. Thus, the +2¢ prediction interval for the
average cost of the eighth lot is 0.0903 + 2x0.0035 = (0.0833, 0.0973), or $83,300 to

$97,300. However, the actual average cost of the eighth lot is only $62,000. This
situation is illustrated in Figure 4.3, where that actual average cost (square data point) lies
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not only below the predicted average cost (diamond), but actually below the entire
prediction interval (range between the two dashed curves). The relatively low cost of the
eighth lot would have come as a surprise to the cost analyst who had observed only the
first seven lots.
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Figure 4.3. Prediction Interval for Eighth Lot from Sub-Sample of Seven Lots

4.2 Lot-midpoint iteration

We next applied lot-midpoint iteration to equation (2.27), following the algorithm
outlined in equations (2.32) and (2.33). This procedure converged in four iterations,
starting from the NLS estimates of incremental lot cost (i.c., starting from the first row in
Table 4.1). The eigenvalue 86" /9b'” evaluates as —1.041 at the starting point,
illustrating that an absolute bound of 1.0, while sufficient for convergence, is not
necessary.

We again adjusted the intercept by the log-normal correction factor, exp(c” /2).
Using equation (2.39), the adjusted intercept of 2.0301 has a standard error of 0.512. We
also report the standard error of the learning coefficient &, recalling our earlier claim that
the standard error is underestimated because the true lot-midpoint variable is unknown
even at convergence. Even the underestimated standard error from lot-midpoint iteration
is larger than the standard error from lot-midpoint NLS (0.0312 versus 0.0300); the true
standard error from lot-midpoint iteration must be larger still. Thus, although the
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numerical estimates are virtually identical, lot-midpoint iteration appears to be a less
efficient estimation technique than lot-midpoint NLS. Moreover, there is no longer any
computational advantage to using lot-midpoint iteration. Commercial spreadsheet
programs now contain non-linear solvers that can easily perform lot-midpoint NLS
(i.e., minimize eXxpression(2.28)). Further, most statistical software packages
automatically provide the NLS standard errors as well as the point estimates. Thus,
manual calculation of the standard errors (i.e., evaluation of equation (2.31)) is no longer
necessary.

We have argued rather vociferously against lot-midpoint iteration. In addition, as
we show in Chapter 5, among all the estimation techniques that we compare, only lot-
midpoint iteration is sensitive to serial correlation in the error terms (though that problem
is not present in Lee’s data). The lot midpoints themselves have the sole (and rather
modest) virtue of providing plot points for each lot, as in Figure 4.2 above. Indeed, Lee
(1997, p. 35) first introduces the lot midpoints merely as plot points. He then (pp. 55-56)
goes on to describe lot-midpoint iteration, though he concludes rather pessimistically by
stating that:

While this procedure [lot-midpoint iteration] may appear to make the
wealth of information that is known about linear regression available to
the estimation of cost-progress curve parameters, the dependence of
[the lot midpoint on the unknown exponent] is a complication whose
consequences seem not easily seen. Today’s practitioners almost always
have more straightforward means of estimating cost-progress curve
parameters.

4.3 Other estimation methods

The two lot-midpoint estimators attempt to fit equation (2.27) directly; that is,
they attempt to minimize the differences between observed log-average cost, In(LAC)),
and predicted log-average cost, ln(L}iC,.). Put differently, the two lot-midpoint

estimators attempt to minimize the quantity:

i[ln(LAc,) ~ In(LAC))? i[ln(LAc, / LAC))?

- 2

4.7)

i=1 i
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The logarithmic sums-of-squares reported in Table 4.1 are the minimized values of
expression (4.7).

By contrast, the next three estimators operate on the percentage sum-of-squares:

2
Z[yi_f(xi’ﬁ)) s (4.8)
=i f(xpﬁ)

where y,=LAC, and f(x,0) is the non-linear predictor for LAC, given in
equation (3.4). Put differently, these three estimators operate on the quantity:

~ 2
3 LAC, _LAC, (4.9)
LAC,

i=t ;

To compare the quality of estimators based on expression (4.7) with estimators
based on expression (4.9), we must establish the mathematical relationship between these
two measures of fit. We recall the second-order Taylor series approximation,
In(l+2) = z~2*/2 < z. Letting z, =(LAC, ~LAC,)/ LAC,, the two measures are first-
order equivalent. However, their second-order relationship is theoretically indeterminate
in sign. If LAC, > L,:IC} >0, then we have:

(LAC, - LAC))

0 < In(LAC/LAC) < 4.10
(LAC,/ LAC) 1ic (4.10)
and
LAC - Lic Y
[In(LAC / LAC)]? < (;) . 4.11)
LAC,
But if 0 < LAC, < L}iC,., we have:
In (LAC,/LAC,) < (L4C, —LAC) _ (4.12)
LAC,
and
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4.1
Lic (4.13)

i

~ 2
[In{LAC,/ LAC)]* > (M] .

This indeterminacy cannot be resolved theoretically and, in fact, the ordering
between expresstons (4.7) and (4.9) depends on the particular data set. To make a fair
comparison, consider a case in which Zz;. =, as nust be true for any reasonable

i=1
estimation procedure. As indicated by inequalities (4.11) and (4.13), the squared
percentage error exceeds the squared logarithmic error when z, >0 (i.e., for a data point

lying above the model prediction — a positive outlier), but the relationship is reversed
when z, <0 (a negative outlier).

The circles in Figure 4.4 represent a hypothetical data set containing a large
positive outlier (i.e., a point lying far above its model prediction), yet balanced by four
points lying slightly below their model predictions so that Zz‘. = 0. The positive outlier

i=l

evaluates much higher on the function z° than on the function [ln (1+z)]2 in the right-

hand side of the figure, dominating the other terms in the summation. Thus, for this data
set, the percentage sum-of-squares is larger than the logarithmic variant (1.025 > 0.698).
Conversely, the squares in Figure 4.4 represent a hypothetical data set containing a large
negative outlier. For the latter data set, the negative outlier evaluates much higher on the
function []n(1+z)]2, dominating the other terms and causing the logarithmic sum-of-

squatres to be larger (5.473 > 1.025).

[In(1+2)]° :
. 104
. 0.9 4
0.8 4
07 4
06 4
0.5 4
04
03 ]
0.2

0.1 4

— T T T T T " T T T T T 99—
10 09 -08 07 -08 -05 04 03 02 D1 00 G171 02 03 04 0S5 06 O0F 08 09 19Q

Figure 4.4. Two Measures of Fit, Hypothetical Data
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For a symmetric data set with no extreme outliers, the logarithmic sum-of-squares

will generally be larger than the percentage sum-of-squares. To see why, consider a data
set containing n/2 under-predicted points {z,,...,z,,>0} and, symmetrically,

n/2 over-predicted points {-z,,...,—z,,, <0}. Put differently, the percentage deviations

in the data set are {tz,...,z,,}. The percentage sum-of-squares over the entire data

set is simply:

nil nil ni2

sz + Z(—:f:j)2 = Zszf. (4.14)

Again using the second-order approximation In(l1+z) ~ z—z%/2, the logarithmic sum-

of-squares over the entire data set is larger:

Sina+z)f + Sna-2)p » Siz-@/2F + TG F
i=] i=1 i=1 i=1 (4'15)

niz ni2 nil

s Zszf + Z(zf/Z) > 2szf.
=l i=1 i={

Young (1999) also compared the logarithmic and percentage sums-of-squares.
However, he did not notice our inequalities (4.11) and (4.13); more importantly, he did

not impose the symmetry condition Zz!. =~ 0, Figure 4.5 shows the values of z

i=1

3
for Young’s two examples.*® His Example 1, depicted as circles, has Dz =0.4 in our

i=1

notation, with two positive outliers. His Example 2, depicted as squares, has

3
er' =—0.99 with two large (but symmetrical) outliers as well as one extremely large
i=1

negative outlier. The value z, =(y, - ;)/p; =—0.99 implies that y, =100x y,, so the
prediction error is hundred-fold. The prediction errors for the two symmetrical outliers

are ten-fold. In either case, the condition sz ~0 is clearly violated, thus Young’s
i=1

examples shed little insight on the general relationship between the logarithmic and
percentage sum-of-squares.

48 Note that Young’s variable z corresponds to z — 1 in our notation. We will use our notation throughout
the discussion of his examples.
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Figure 4.5 Two Measures of Fit, Young’s Data

Finally, Figure 4.6 results when lot-midpoint NLS is applied to Lee’s data set.
The values of z are simply the percentage errors from Figure 4.2. We again observe two
minor outliers at the fifth (y;=0.821xy;) and eight (y, =1.334x),) lots. The
logarithmic sum-of-squares is larger than the percentage sums-of-squares (0.1328 >
0.1218). Indeed, this ordering holds not only for the lot-midpoint NLS estimates, but for
all of the estimates reported in Table 4.1. This pattern is consistent with inequality (4.15),
because the data set is fairly symmetric, the errors sum to approximately zero

8
(D, 2,=0.064 ), and the two outliers are modest.

i=l

[In@+ )’ 014

* 0.12 +
L]

-0.30 025 020 £.15 010 005 0.0c 0.05 Q.10 015 G20 0.25 0.30

Figure 4.6 Two Measures of Fit, Lee’s Data
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We also computed the standard error of the estimate, dividing the percentage
sum-of-squares in expression (4.8) by the degrees of freedom (»—m), then taking the
square root. This procedure is suggested by the quasi-likelihood dispersion estimate in
equation (3.19). Because the standard error, so computed, is monotone in the percentage
sum-of-squares, these two measures provide identical rankings of the various estimators;
the standard error is simply a more familiar metric.

The MPE, MLE (assuming multiplicative normal errors, as in equation (3.7)), and
IRLS estimators round out Table 4.1. All of these estimators avoid the logarithmic
transformation and operate directly on the lot-average cost, equation (3.4). The MLE is
suggested, but not actually applied to this data set, by Lee (1997, pp. 4749). We
computed the covariance matrix of the MLE as the negative inverse Hessian of the
concentrated log-likelihood function; we approximated the Hessian via numerical second
differencing in the neighborhood of the maximum.4%

Finally, the IRLS (MUPE) estimates are identical to maximum quasi-likelihood.
The IRLS estimates converged in three iterations, starting from the first row in Table 4.1.
As previously remarked, IRLS does not minimize the percentage sum-of-squares (0.1180

versus 0.1153 at the MPE solution). The gradient of the percentage sum-of-squares
(expression (4.8)), evaluated at the IRLS estimate, is: 8/8(7,,b) = (-0.120,-2.163) = 0.

Although all of the alternative estimates are numerically close, a few interesting
differences emerge from Table 4.1. Because the two lot-midpoint estimators attempt to
predict log-average cost directly (equation(4.7)), they score the best in terms of
logarithmic sum-of-squares. By contrast, the MPE estimator explicitly minimizes the
percentage sum-of-squares (equation (4.9)), thus MPE scores the best in terms of this
metric as well as the monotonically-related standard error of estimate. Book and Young
{1997) report a bias in their MPE estimates as high as 29%, though typically closer to
8%. While we do not know the true parameter values, the MPE estimates for Lee’s data
lie within the range of the other estimates that are known to be unbiased. Thus, we find
no evidence of bias when MPE is applied to this particular data set. However, the Monte
Carlo experiments reported in Chapter 5 reveal considerable bias in the MPE estimates.

We also report the log-likelihood and log-quasi-likelihood values not only at their
respective maxima, but also evaluated at each of the other estimates in Table 4.1. The
log-likelihood function, again assuming multiplicative normal errors, is relatively flat in

49 Numerical differentiation is covered by Dennis and Schnabel (1996, p. 80 and pp. 103-106).

90



the neighborhood of the MLE, with most differences among the estimates appearing in
the 4th significant digit. The log quasi-likelihood function is even flatter, with most
differences appearing in the 5f4 significant digit. Thus, there is little basis for
distinguishing the alternative estimates for this particular data set.

The results of this chapter, though illuminating, are not definitive because we do
not know the true parameter values that generated Lee’s data. Therefore, we supplement
Lee’s data with a series of Monte Carlo experiments, in which we know the true
parameter values. We report the results of these Monte Carlo experiments in Chapter 5.

4.4 Correction for serial correlation

When using lot-midpoint NLS, we found sertal correlation of only (.054 among
the errors in predicting lot average cost. However, the serial correlation coeflicient will
vary somewhat with the method of estimation. Moreover, for the sake of completeness,
we want to illustrate the correction for serial correlation under NLS. To make the
problem more interesting, we consider NLS applied directly to a regression of lot average
cost, without the artifice of lot midpoints. Thus, we return to expression (4.2) and the
corresponding estimates that appear in the second row of Table 4.1. For that estimation
method, the serial correlation coefficient evaluates as —0.257.

Expression (4.2) is consistent with our conjecture, back in Chapter 1, that a
modern statistician would simply apply NLS to the model for lot average cost based on
the area under the continuous approximation to the learning curve. However, we must
correct those estimates for serial correlation. In addition, we must also correct for
heteroscedasticity if we make the now-familiar multiplicative error assumption:

LAC, = d
(A+byx(Q, - Qi)

x[(Qj+0.5)'+b - (Q!_,+0.5)l+b]xu,. . (4.16)

Table 4.5 shows the weights w, = f(x,8)Y=L4AC(Q,, O, ,; T'™,b'"), where
(T, b} are the starting estimates obtained by conventional NLS applied to the model
for lot average cost. Table 4.6 shows the starting estimates (repeated from the second row
of Table 4.1) and the final estimates after a single step of non-linear generalized least
squares. In this instance, NGLS produces an almost imperceptibly steeper learning slope.
The NGLS intercept is 3.7 percent higher than the NLS imtercept, an apparently large
difference. However, referring back to Figure 4.1, the NGLS parameters appear almost
exactly on the line that interpolates between the various other sets of parameter estimates.
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The higher intercept compensates for the steeper slope, ensuring that the NGLS learning
curve passes through the centroid of the data.

Table 4.5. Weights for NGLS Estimation

Actual lot Predicted lot
Lot number average cost average cost {w,)
1 0.4714 0.4708
2 0.2257 0.2311
3 0.1576 0.1551
4 0.1236 0.1208
5 0.1257 0.1057
6 0.0939 0.0970
7 0.0953 0.0905
8 0.0619 0.0852

Table 4.6. Comparison of NLS and NGLS Estimates

NLS NGLS
Intercept 1.8593 1.9281
Quantity exponent —0.3254 -0.3298
Learning slope 79.81% 79.57%
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5. SIMULATION EXPERIMENTS

As shown in the previous chapter, there are limitations to comparing the
effectiveness of the different estimation methods when using an actual data set, such as
Lee’s data on tactical missiles. The “true” values of the parameters are unknown, so it is
impossible to say which of the methods’ estimates are closest to “truth.” The different
methods minimize different functions, and comparing the relative merits of these
functions is subjective. Nor is it possible to fully compare the estimation errors, because
the theoretical form of the covariance matrix for some of the methods is unknown.,

These difficulties motivated a series of Monte Carle simulation experiments.
Because the simulated data were generated using known parameters, the estimates
produced by the different methods could be directly compared to “truth.” The bias and
random error in the parameter estimates could be separately measured, even for methods
where theoretical values were unknown. In addition, in most cases, even if a formula for
the covariance matrix is available, the matrix produced is only an asymptotic covariance
matrix. The simulation experiments allowed us to compare the variances over a spectrum
of sample sizes, ranging from very small (unfortunately, the typical situation in cost
analysis) up to asymptotically large.

Because actual data sets do not always have normally distributed random errors,
we examined several alternative error structures. By varying the error structure, we could
determine how robust the methods are even if their assumptions are incorrect. We also
varied the underlying parameter values, because it was unclear from theory alone how the
parameter values affected the covariance matrix of the lot-midpoint iteration and MPE
estimates.

5.1 Basic methodology

We compared four of the estimation methods previously discussed. We did not
include maximum likelihood because this method requires the most computation to
converge, and because its properties (at least, asymptotically) are already well known.
Each simulation is defined by the assumed values of the “true” parameters, the magnitude
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of the random error, the structure of the random error, the number of lots, and the method
of estimation.

We first conducted a baseline experiment under the following conditions:

e the true learning slope equals 80%,

each lot contains 50 units,

the error term #; is normally distributed with standard deviation o =0.15, and

the error terms {u,} are statistically independent.

We then conducted the following excursions, varying one assumption at a time
relative to the baseline experiment:

e the true learning slope equals 90%;

e each lot contains 10 units;

e the error term is normally distributed with standard deviation o =0.30;
o the error term is uniformly distributed with standard deviation o =0.15;
+ the error term is /—distributed with standard deviation o =0.15; and

o the error term is normally distributed with standard deviation o =0.15,
but suffers from first-order seriai correlation.
Once we selected parameter values and error structures, we calculated “true”™ lot
average costs using the “true” parameter values and the theoretical formula from the
Crawford model:

AC, = f
A+56)x(Q, - Q.

x[(@+0.5" - (0, +0.59"]. @

We generated observed lot average costs by applying random error to the true lot average
cost using a pre-determined error structure, discussed in each experiment below. The
estimation method of interest was then applied to these observed costs to estimate the
parameters 77 and b. Finally, the estimated parameters were compared to the true
parameters.

In each simulation experiment, and for each method of estimation, we varied the
number of consecutive lots from 5 to 200. The number of lots represents the sample size,
n, from the previous chapters. The range in sample size enables us to examine both the
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stnall-sample and the asymptotic properties of each estimation method. For each sample
size, we ran 3,000 repetitions of the simulation experiment. Thus, for each case, we
produced 3,000 sets of estimated parameters for each method.5¢

We summarized the error in the estimate of each parameter using the following
measures, First, we calculated the root mean squared error (RMSE) between “true”
parameter and the estimates of that parameter:

3000 . 3000 R
RMSE, = ngx Y (b-5), RMSE; = J}éﬂmx > @-1,) (4.2)

i=1

The RMSE includes both bias and random error. We used the following formulas to
decompose the RMSE into its bias and random error components:

RMSE, = +Jbias,’ +ran_err,’ , 4.3)

where:

3000 .
bias, = Yuox O (b=b)), (4.4)
=1

2

4.5)

ran_err, = \Var (b—b,) =J[ymxw§(b—5,)2]~[}gmx 3i)[)(!;v—I;v,)]

The corresponding formulas for 7; have the same form.
Finally, we are interested in how errors in the parameter estimates propagate
when attempting to predict unit cost (ot lot average cost), T, x(°, at a given cumnulative

quantity. Therefore, we report the bias and random errors for unit cost at the following
cumulative quantities: 50, 100, and 1,000 units (i.c., 1, 2, and 20 lots).

S0 It appears that 3,000 repetitions are sufficient to capture the basic behavior of the estimation methods
we compared. As we show in some of the summary plots, additional repetitions might have controlled
the erratic behavior observed in a few of the simulation experiments. However, because of limitations
on computer time, we did not perform additional repetitions in this study.

95



5.2 Simulation experiment 1: multiplicative, normal errors,
learning slope = 80% (baseline)

For this simulation experiment, we chose the parameter values
b=-0.33 and 7,=1.8 to resemble the estimates derived in Chapter 4 from Lee’s
tactical missile data. We calculated the true lot average cost using equation (4.1). We
generated the observed lot average cost by applying a multiplicative normal error with
standard deviation o =0.15:

Obs _LAC, = LAC, x u,, (4.6)

where u, ~ N (1.0, 0.152). We generated the error terms {u,} independently, without

any serial correlation: E(u,u,)=0 forall i = j.

In Chapter 3 we reviewed the MLE under a multiplicative normal error structure,
and we showed that same error structure underlies the derivation of the MPE. The lot-
midpoint NLS and lot-midpoint iteration methods assume, instead, a log-normal error
structure. As Figure 2.9 revealed, these two error structures are quite similar for random
errors of the magnitude o =0.15. Nonetheless, we are evaluating the two lot-midpoint
methods under a slightly different error structure from the one assumed in their
derivation.

Figures 5.1 through 5.5 compare the estimation errors for the different methods.
Three of the methods-— IRLS, lot-midpoint NLS, and lot-midpoint iteration — are
consistent estimators and converge to the true parameter values at similar rates. Although
it was known from theory that IRLS and lot-midpoint NLS would produce consistent
estimates, we were surprised to find that lot-midpoint iteration performed about as well.
While the latter method does not minimize any continuous function, it nonetheless
produced consistent estimates. Moreover, the estimation errors from lot-midpoint

iteration were quite close to those found in the two mnethods having a stronger theoretical
basis.

MPE did not perform as well, producing biased estimates as predicted from the
theory. The MPE estimates of b are biased for small numbers of lots, although the bias
decrcases as the number of lots increases. However, the bias in T) remained nearly
constant even with large numbers of lots. The bias was small relative to the random error
and is therefore not obvious when examining the RMSE for the parameter estimates. But
when projections are made for unit cost, the bias is large enough to separate MPE from
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the other methodologies. For example, when the cost of the 1,000 unit is estimated
(Figure 5.5), the bias accounts for half of the total error. In contrast, none of the other
methodologies showed substantial bias.

For all methods examined, the errors m estimating the cost at the 1,000" unit are
smaller than the errors at the 50™ unit. This is true for both the absolute RMSE errors (see
Figures 5.3 and 5.5) and the percentage errors (see Figure 5.6). In general, the errors are
smaller nearest to the observed data, and increase as larger extrapolations are made. In
the percentage error plots, the errors for both the 50™ unit (1 lot) and the 1,000™ unit (20
lots) are close to 8% when only a few lots have been observed. However, the error for the
cost of the 1,000" unit declines rapidly, while the error at the 50™ unit remains nearly
constant. This difference is due to the multiplicative nature of the model. Because the
model is multiplicative, the predictor variable—cumulative quantity—should more
properly be treated on a logarithmic scale. As more lots of equal size are accumulated,
they become more tightly clustered on a loganthmic scale (see Figure 5.7). More data
points are observed near the 1,000" unit than near the SO unit, so the error at the 1,000™
unit declines. Furthermore, because of the logarithmic scale, extrapolating forward to
higher cumulative quantities will produce less error than extrapolating backward to lower
curnulative quantities. Of course, if the lots were smaller at low quantities, predicting the
cost at low quantities would involve interpolation rather than extrapolation and the errors
might be smalier.
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5.3 Simulation experiment 2: multiplicative, normal errors,
learning slope = 90%

For this experiment, we retamed 7, =20 but we changed the exponent to
b=-0.15. Thus, we increased the learning slope from 80% to approximately 90%.
Because of the way the learning slope is defined, 90% is a shallower slope and
corresponds to less rapid learning than in the previous experiment. We also retained the
multiplicative normal error structure from the previous experiment, again with o =0.15.
Hence, we again generated the observed lot average cost as:

Obs _LAC, = LAC, xu,, 4.7
where u, ~N(1.0,0.15%).

Figures 5.8 through 5.12 present our results. Again, as expected, MPE produces
biased estimates even with a large number of lots. The other methods are unbiased and all
perform about equally well. As in the baseline experiment, the ability of lot-midpoint
iteration to produce unbiased estimates is impressive thougb lacking in theoretical
foundation.

When compared to the steeper slope, the raw total error assuming a 90% slope is
considerably higher (see Figure 5.13). To understand this finding, consider tbe following
identity:

—0.3

TxQ°" =1x(0") . (4.8)

Predicting the cost of a given cumulative quantity, {0, for a 90% slope (lefi-hand side) is
equivalent to predicting the cost of the square root of that quantity for an 80% slope
(right-hand side). As already discussed, there is less error in predicting cost at higher
quantities than at lower quantities, as long as some data have been observed near both.
For a given quantity, {J, more error can be expected in the estimate using a 90% slope
than using an 80% slope, because the former is tantamount to predicting at a lower
cumulative quantity.

Figure 5.13 shows that the absolute error assuming a 90% slope is higher than the
absolute error assuming an 80% slope at the same cumulative quantity. However, the unit
cost at that quantity is also higher for the assumed 90% slope. Figure 5.14 shows that the
percentage prediction errors under the two assumptions are virtually identical. This
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finding is plausible because the two simulations use the same percentage random error
(o =0.15). Ultimately, it is the percentage random error, not the slope, that determines
the accuracy of the predictions.
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5.4 Simulation experiment 3: multiplicative, normal errors,
learning slope = 80%, lot size = 10
This experiment is similar to Simulation Experiment 1, in that we restored the
learning slope of 80%. However, we reduced the lot size from 50 units to only 10 units
each. This experiment better corresponds to some aircraff manufacturing programs,
whereas a lot size of 50 better corresponds to some missile programs.

Figures 5.15 through 5.19 show the relative errors for the different estimation
methods. Because the individual lots are smaller, there is a greater concentration of data
at lower cumulative quantities. Thus, the estimates of 7} and the predictions of cost at
lower quantities are more accurate, particulariy when only a few lots have been observed
(see Figures 5.20 and 5.21). However, because the data are concentrated at lower
quantities, the predictions of cost at higher quantities are somewhat less accurate (see
Figure 5.22).
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5.5 Simulation experiment 4: multiplicative, normal errors,
learning slope = 80%, sigma = 0.3
This experiment is identical to Simulation Experiment 1, except that we doubled the
magnitude of the random error from a standard deviation of ¢ =0.15 to ¢ =0.30. With this

one exception, we returned to the model parameters from Simulation Experiment 1,
b=-0.33 and 7, =1.8. Hence, we generated the observed lot average cost as:

Obs _LAC, = LAC, xu,, (4.9)

where u, ~ N(I.O, 0.302).

Figure 5.23 compares the error distributions. The solid curve represents the baseline
normal distribution with o =0.15, and the dashed curve represents a more dispersed normal
distribution with o =0.30.

3.0 4

Normal, sigma = 0.15
= = = Norma!, sigma = 0.30

--------

010 025 0.40 0.55 0.70 0.85 1.00 1.15 1.30 1.45 1.60 1.75 1.80

Figure 5.23. Comparison of Two Normal Distributions

Figures 5.24 through 5.28 show the relative errors for the different estimation methods.
Perhaps the most striking finding is that MPE seems to perform better than the other methods
when only a few lots have been observed. MPE appears, on the surface, to be less sensitive to
the size of othan are the other methods (see Figure 5.29). When the total error is decomposed,
it becomes apparent that the random error component of the MPE estimate is less sensitive to o
than are the other methods (see Figure 5.30). However, while other methods remain
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asymptotically unbiased, the bias in the MPE estimate is much worse under the larger value of
o.

That the bias in MPE is sensitive to the size of ¢ is not surprising. Recatl that the
parameters b and T are solutions to the minimization problem:

bY _ & 5= T
[r]‘a‘%“%‘"z[ flx. (0. T)] J | o

There are two ways to minimize this function. The first is to make small prediction errors and

thus make the numerator small. The second is simply to inflate the denominator by making
15, (b, T)] very large.

Recall that the magnitude of the random error, ¢, is estimated by:

. 12
& = [Z(y,-—f[xp(b,m)z /(n—z)] . (4.11)

i=|

When o increases, the numerator of MPE’s minimization function (the right-hand side of

equation (4.10)) necessarily grows larger. In that instance, the minimization algorithm is more
likely to just increase the size of f[x,,(b, T;)], amplifying the bias in the model predictions.

Between the two parameters b and T3, the bias is more evident in 7) because that
parameter is strictly proportional to the model prediction, f[Q,,(b,T))=T7,x(’ . A bias in
estimating b would ¢/t the estimated learning curve, but would not uniformly inflate the model
predictions that appear in the denominator of equation (4.10).

Finally, there is an ironic corollary in using MPE to predict unit cost. At unit 100, for
example, we see in Figure 5.27 that the randoin error in MPE is small regardless of the number
of lots used in estimation. Now examine Figure 5.31. Because the random error is small, the
bias component dominates and the total error in MPE remains constant even for very large
numbers of lots. Thus, our initial observation that MPE has small random error, even for large
values of ¢, is more than offset by a severe bias that does not diminish asymptotically.
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Figure 5.25. Simulation Experiment 4, Error in Intercept
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5.6 Simulation experiment 5: multiplicative, uniform-distributed
errors, learning slope = 80%

This experiment is identical to Simulation Experiment 1, except that we replaced
the multiplicative normal error term with a uniform error term having the same mean and
standard deviation. The uniform distribution does not correspond, even approximately, to
the distributions assumed in the derivation of any of the four estimation methods under
comparison. Because the uniform distribution does not have tails like the normal
distribution, the uniform distribution generates many more extreme observations or
outliers. The current experiment contrasts with the previous Experiment 4, which retained
the shape of the error distribution but merely increased the magnitude of the error term.

To generate the uniform error term, first consider the canonical uniform
distribution on the interval (0,1), denoted U(0,1}. This distribution has mean 0.5 and
standard deviation 1 / J12. We can linearly transform this uniform random variable so

that it becomes centered at a mean of 1.0 with a standard deviation of 0.15. The required
transformation s as follows:

Obs _LAC, = LAC, xu,,

where ,~[0.30x3xU(,h] + [1-0.15x3]. (4.12)

This transformed uniform error distribution has positive probability on an interval
centered at its mean of 1.0: 1.0 + 0.15x+/3 = 1.0 + 0.2598 = (0.7402,1.2598).

Figure 5.32 compares the two error distributions.

Figures 5.33 through 5.37 show the relative errors for the different estimation
methods. Comparing these figures to Figures 5.1 through 5.5 from Simulation
Experiment 1, we see that the results from uniform errors are virtually identical to those
from normally distributed errors. All four estimation methods are robust in the face of
data containing uniform errors.
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Figure 5.32. Comparison of Normal and Uniform Distributions
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Figure 5.33. Simulation Experiment 5, Error in Slope Coefficient
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5.7 Simulation experiment 6: multiplicative, /~distributed errors,
learning slope = 80%
This experiment is identical to Simulation Experiment 1, except that we replaced
the multiplicative normal error term with a s—distributed error term having the same

standard deviation and an offset to yield a mean of 1.0. The t—distribution is indexed by
the degrees-of-freedom parameter df, and approaches the normal distribution as df — .

We chose a t—distribution with df =3. This distribution has considerably thicker tails

than does the normal distribution, thus generating more extreme observations or outliers.

The standard deviation of the —distribution equals m . Multiplying the
error term by the factor 0.15x W yields a distribution with standard deviation
0.15, comparable to the normal distribution from Simulation Experiment 1. With df =3,
this factor becomes 0.15 /\3 . By normalizing the standard deviation to 0.15, we isolated
the effect of the shape of the error distribution from that of the standard deviation. Recall
that we already examined the latter effect m Simulation Experiment 4. Thus, we
calculated the observed lot average cost as:

Obs _LAC, = LAC, x (1 +1,),

4.13
whereuj~r¢=3x0.15/\f§. (+.13)

Figure 5.38 compares the two error distributions, both centered on a mean of zero.

Note that the +distribution has higher density than the normal distribution in both tails,
specifically for error values ju|>0.42 or lu|>2.80x o . For example, at the error value
u=10.50 (or u=1333x0), the tdistribution is 2.81 times as high as the normal

density having the same standard deviation. Thus, very large outlying errors are much
more likely under the /—distribution than under the normal distribution.5!

Figures 5.39 through 5.43 show the relative errors for the different estimation
methods. The most noticeable feature of these resulits is the erratic behavior of the MPE
estimates. The s—distribution has thicker tails than does the normal distribution. For the
same reasons that MPE is sensitive to the size of the standard deviation, MPE is also
sensitive to these outliers, occasionally leading to very large biases. Of course, a human

51 The differences between the normal distribution and the normalized /—distribution are discussed in
Johnson and Kotz (1970), Volume 11, Chapter 27, p. 97. A more detailed, primary reference is Weir
(1960).
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analyst seeing these outlying lot costs could choose to exclude them from the data
sample, thereby dampening their effect on the MPE estimates. Our simulation algorithm
did not exclude any lots, so it could be argued that the errors shown here are larger than
would be experienced in a real-life cost analysis. Nonetheless, there are borderline cases
in which the cost analyst does not know whether a data point is truly an outlier, because it
is not as extreme as some of those included in our simulated data. Given the typically
small samples available to cost analysts, a conservative analyst might not be willing to
discard any of these data points as outliers. These retained data points would influence
MPE more than any of the other estimation methods. Below, we discuss specific

examples of the effects of outliers on MPE.

— Norma| distribution, sigma = 0.15
= = = t-distribigion, sigma = 0.15

Figure 5.38. Comparison of Normal and ¢-distribution
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We investigated which specific cases were leading to the extremely large biases in
the MPE estimates of 77 and, thus, in the predictions of unit cost for that method. We
found that, in all cases, the results were driven by the costs of only one or two outlying
lots. Although we ran the simulation on lots of size 50, the same results were found for
lots of size 10 under r—distributed errors. For ease of interpretation, the examples below
have lots of size 10.

Table 5.1 illustrates one case in which the MPE estimate of 7} was biased high.
The observed cost of the third lot is an extreme outlier. A cost analyst would likely try
deleting this point. However, because our simulation did not have a decision rule for
outliers, the third lot was included in the sample for all four estimation methods.

Table 5.1. Data with Outlier from Simulation
Lotstat Lotend  Observed average cost

1 10 1.0670
11 20 0.7521
21 30 2.3754
31 40 0.6086
4] 50 0.4022
51 60 04123
61 70 0.4997
71 80 0.4200
81 90 0.3766
91 100 0.3463

Using the data m Table 5.1, MPE found ItJ\——~—1.18andi"=1 =69.14, and IRLS
found b = —0.48 and T, =3.76. Recall that the simulated data were generated using “true”
parameter values b =—-0.33and 7, =1.8 . Recall also that Lee (1997, p. 41) argued for the
restriction —1 <b<0. The MPE estimate violates that restriction, implying an

implausibly steep 44% learning slope. However, the reason MPE estimated an
implausible slope was to compensate for the even less plausible intercept, f, =69.14.

Figure 5.44 plots both the raw data and two fitted models. The MPE estimates
have been pulled high by the outlying third lot, to a much greater extent than have the
IRLS estimates. The reason for this difference can be seen by comparing the percentage
errors for the MPE and IRLS estimates at convergence (see Table 5.2). The MPE method
explicitly minimizes the sum-of-squared percentage errors. Thus, MPE would never
tolerate the nearly 200% error that IRLS tolerates in lot #3 in order to better fit the other
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(non-outlier) data points.52 However, the price that MPE pays for fitting lot #3 is to tilt
the learning curve toward very high levels at low cumulative quantities, This tilt is
manifested in the much more severe overprediction of the cost of the first two lots
(-94.2% and —73.7%), relative to the more moderate prediction errors under IRLS
(-45.6% and -27.1%).

influence of Outliers on MPE Method

10 7
g
5 X Observed
2 6. MPE Estimate
© 5] - —— -IRLS Estimate
z 4
3 -
2 <~ . X
14X TN i .
TR Sttt ekt et et . setet et T
0 20 40 60 80 100

Midpoint

Figure 5.44. Influence of Qutliers on Estimated Learning Curve

Table §.2. Percentage Errors for Data with Outliers

Observed N.fPE Percent error IRLS Percent error
Lot start Lot end average cost estimate for MPE estimate for IRLS
1 10 1.0670 18.3628 94 2% 1.9608 —45.6%
11 20 0.7521 2.8565 “13.7% 1.0315 -27.1%
21 30 2.3754 1.5407 54.2% 0.8069 194.4%
3] 40 0.6086 1.0343 —41.2% 0.6876 -11.5%
41 50 0.4022 0.7692 —47. %% 0.6103 -34.1%
51 &0 0.4123 0.6075 -32.1% 0.5548 =25 P%
61 70 0.4997 0.4991 0.1% 0.5125 -2.5%
71 80 04200 0.4218 —0.4% 0.4789 -12.3%
81 %0 0.3766 0.3641 3.4% 04513 -16.6%
91 100 0.3463 0.3195 8.4% 0.4280 -19.1%

52 Recall that the percentage error is calculated as (observed — predicted)/ predicted,
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In case the reader doubts that the global minimum of MPE’s criterion function
occurred at T, =69.14, Figure 5.45 shows the minimized sum-of-squared percentage

errors at various values of 7. In each case, we found the best estimate b conditional on
T,, and we calculated the criterion function at the parameter vector (b, 7;). As is clearly

shown in the figure, the minimum occurs when 7} is close to 70.

!
|
5

F R
bW

BLEhehboenbEaabisess

Figure 5.45. Minimum Squared Percentage Error as a Function of T,

It could be argued that the example presented above is too extreme, and that any
competent cost analyst would know to delete lot #3 from the analysis, thereby avoiding
the extreme bias in 3':, . However, even in inuch less extreme cases, outliers continue to

exert too much influence on the MPE estimates.

Example data are provided in Table 5.3. With this data set, MPE found
b=-068and T, =7.84, and IRLS found b =-049and T, =3.58. Again, the simulated
data were generated using “true” parameter values 6 =-033and 7, =1.8. Figure 5.46
plots the true model, the simulated data containing s—distributed errors around the true
model, and finally two fitted models. Unlike the previous example, it is difficult to say
whether the outlier is lot #1 being too low or lot #2 being too high. In fact, the minimized
sum-of-squared percentage errors is 0.21 when lot #1 is removed, and 0.11 when lot #2
instead is removed. MPE does not offer much guidance as to which of the two lots (if
either) should be removed from the analysis. Yet, inclusion of both lot #1 and lot #2
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yields an upward-biased estimate of f] And again, MPE compensates with too sieep a

learning slope, 62% versus the “true” value of 80%.

Table 5.3. Data with Smaller Outlier from Simulation
Lot start Lotend  Observed average cost

| 10 1.0586
11 20 1.7838
2] 30 0.8029
31 40 0.5139
4] 50 0.4909
51 60 0.4758
61 70 0.4549
T 80 0.4127
81 90 0.3%16
91 100 0.3542

Influence of Outliers on MPE Method
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Figure 5.46. Influence of Smaller Outliers on Estimated Learming Curve

We conclude that MPE’s sensitivity to outliers makes it a less reliable method
than the other three examined.
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5.8 Simulation experiment 7: multiplicative, normal errors with
first-order serial correlation, learning slope = 80%

This experiment is identical to Simulation Experiment 1, except that we replaced
the independent normal error term with one that exhibits first-order serial correlation. The
errors still have a standard deviation of 0.15, but now the error for the i lot is highly
dependent on the error for lot i—1. This situation may frequently arise in practice,
because successive lots are likely produced by many of the same workers using mostly
the same equipment.

Womer and Patterson (1983) found evidence of serial correlation, and devised
special methods to efficiently estimate the learning curve in the face of this problem.
They opined that (p. 268):

Since learning is measured as successive units of output are produced, one

should not be surprised at the presence of autocorrelation in the data. In

many cases, this violation of the assumption of independent error terms is

ignored or viewed as insignificant or unimportant. This is a careless

oversight.

Although we agree with Womer and Patterson, our objective is different from
theirs. The reality is that most cost analysts continue to apply estimation methods that
were not specifically designed for serially correlated data. In their defense, it may be
difficuit to detect serial correiation in the small samples that typify cost analysis. Our
objective in this section is to assess the robustness of the four estimation methods that
were not designed for serial correlation, when they are applied to serially correlated
data.’3

For this analysis it is convenient to zero-out the mean of the error term. Thus we

calculated the observed lot average cost as:
Obs _LAC, = LAC, x(1+u,), (4.14)

where:

u = pxu_ +Jl-p* xg,, (4.15)

53 Along these lines, Womer and Patterson found that maximum likelihood estimation of incremental lot
cost is particularly seusitive to serially-correlated errors. We did not independently investigate
maximum liketihood in this monograph, because it requires by far the most computation per iteration.
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with p =0.5 and £ ~ N(0,0.15%).

We generated the error terms {£;} independently, without any serial correlation:
Corr(s,,£,)=0.0 for all i# j. However, the transformation in equation (4.15) induces

serial correlation among the {u,}: Corr(u,u,_)=0.5.

Note also that, by construction, the {u} have the same standard deviation as
the {&,}:

Var(u) = o’ xVar(u_) + 1-p°Yx Var(g) . (4.16)

Because the {u,} are identically distributed, we have Var (u,) =Var(u,_). Using this fact
(and |p|<1), we can solve equation(4.16) for Var(u)=Var(s). Thus, by first
generating the {g} with o=0.15, and then applying the transformation in
equation (4.15), we were able to obtain error terms {u,} having the same standard

deviation.

Figures 5.47 through 5.51 show the relative errors for the different estimation
methods. Of the four estimation inethods compared, it appears that only lot-midpoint
iteration is particularly sensitive to serial correlation. We see in Figure 5.52 that the loss
of precision in lot-midpoint iteration due to serial correlation i1s almost as large as that
caused by doubling the standard deviation. Because the theory behind lot-midpoint
iteration is so poorly developed, we do not have a sound theoretical explanation for this
result. Perhaps the iterative nature of lot-midpoint iteration serves to compound the errors
as the procedure converges.
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5.9 Conclusions from the simulation experiments

Figures 5.53 through 5.56 compare the performance of each estimation method
under various assutnptions on the error term. We drew the following conclustons from
the simulation experiments. First, both IRLS and lot-midpoint NLS are theoretically
guaranteed to produce consistent estimates. However, these are general-purpose
estimation methods, and their small-sample properties (such as bias) are not known for
general predictor functions. In the particular case of learning curves, our simulation
experiments suggest that IRLS and lot-midpoint NLS actually produce unbiased
estimates even for small numbers of lots.

Most estimation methods are developed under a particular set of assumptions.
Estimation methods are called robust if they continue to produce good estimates even
when those assumptions are violated. None of the methods we compared rely on any
particular assumption about the true learning slope, the number of units in a lot, or the
standard deviation of the error term. However, it is still of interest to inquire whether the
methods perform as well under a range of values for these parameters. Some of the
methods rely on a particular distributional assumption, such as normally distributed
errors. Thus, it is also of interest to inquire about the performance of the methods under

alternative (non-normal) error distributions.

IRLS and lot-midpoint NLS continued to produce unbiased estimates under all of
the simulation excursions. The performance of these two methods was essentially
unaffected by the substitution of either uniform or #—distributed errors for the normal
errors found in the baseline experiment. Naturally, however, the parameter estimates
became less precise during Simulation Experiment 4 when we doubled the standard
deviation of the error terms (see Figures 5.53 and 5.54). In addition, the predictions of
unit cost became less precise when we replaced the baseline 80% learning slope with a
shallower 90% slope. However, as explained in the discussion of Simulation
Experiment 2, that loss of precision is not a bias, but rather an inevitable consequence of
the pattern of data clustering under the shallower learning slope.

The estimates produced by lot-midpoint iteration and lot-midpoint NLS are
numerically distinct. However, with just one exception, the numerical differences
between the two sets of parameter estimates (e.g., between the estimated learning slopes)
were essentially negligible. Consequently, both of these methods produced unbtased
estimates even for small numbers of lots. The one exception is that the parameter
estimates from lot-midpoint iteration (though not lot-midpoint NLS) became much less
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precise under first-order serial correlation (Simulation Experiment 7; see the summary in
Figure 5.55). The introduction of serial correlation led 1o a drop in precision nearly equal
to that engendered by doubling the standard deviation of the error terms (but witbout
serial correlation). None of the other estimation methods exhibited any sensitivity to
serial correlation. The difficulty is that serial correlation is not always detectable in the
small samples that typify cost analysis. Thus, a cost analyst might inadvertently apply lot-
midpoint iteration in a situation where it is rather imprecise. This imprecision could be
avoided by applying other estimation methods (e.g., lot-midpoint NLS) that are robust to
serial correlation.

Notwithstanding this case, the performance of lot-midpoint iteration was much
better than we had expected. Prior to the simulation experiments, there was no theoretical
basis for lot-midpoint iteration and little was known about the behavior of its estimates.
We now know from Chapter 2 that lot-midpoint iteration does not minimize any
continuously differentiable function. In a sense, that finding further undermines the
theoretical basis for the method. Its apparently satisfactory performance characteristics, at
least in the absence of serial correlation, remain a theoretical mystery.

The MPE estimates of Ty were biased high, even in large samples, under every
one of the simulation excursions. Similarly, the MPE predictions of unit cost were also
biased high. Moreover, the biases increased both when we doubled the standard deviation
of the normal errors, and (unique to this method) when we substituted
t—distributed errors for the normal errors {Simulation Experiment 6; see the summary in
Figure 5.56). The latter result illustrates that the performance of MPE degrades when
there are more outlier observations (in statistical parlance, the error distribution has
“thicker tails””} than would be expected under a normal error distribution. Because of
these biases and sensitivities, we recommend against the use of MPE.

In light of the latter result, as well as the sensitivity of lot-midpoint iteration to
serial correlation, we recommend either IRLS or lot-midpoint NI.S as the estimation
methods of choice. NLS is already available as an option in most statistical software
packages. IRLS is becoming increasingly available as a built-in feature in many statistical
packages, and the equivalent method of quasi-likelihood can be programmed quite easily
using any computational software or even a simple spreadsheet. There is no longer any
excuse for cost analysts to use methods that produce inconsistent parameter estimates,
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APPENDIX: CONVERGENCE THEORY FOR
LOT-MIDPOINT ITERATION

In this appendix, we investigate the existence of a solution to lot-midpoint
fteration, the uniqueness of any solution, and convergence to that solution.

The regression sum-of-squares is given by:

> (In(Z4C) - In(T) - bI[@®)) " . (A1)
i=|
Begin with an initial estimate of b, denoted . Fix »=5'" in the definition of the lot
midpoint, Q.(b'"), and minimize the regression sum-of-squares with respect to b as the
regression coefficient only. The minimum occurs at 2 new estimate, »"". Now fix b=5*"
in the definition of the lot midpoint (‘") and again minimize with respect to b as the

regression coefficient only. In general, estimate the following sequence of regressions:
In(LAC,) = In(T}) + ¥ m[Q,(B)] + v, , (A.2)

for p=90,1,2,.... Finally, the lot-midpoint estimator is defined as the lmit of the

sequence:

b = lim »'" (A.3)
p—bm
when the limit exists. In practice, the lot-midpoint estimator is taken where the sequence
converges within a pre-specified numerical tolerance

It can be shown that lot-midpoint iteration is numerically distinct from lot-
midpoint NLS. Lot-midpoint iteration does not minimize the regression sum-of-squares
when the functional dependence of Q.(b) on b is acknowledged. In fact, lot-midpoint
iteration does not minimize any continuously differentiable function. Letting a =In(7)),
at any iteration p=0,1,2,... , the parameter estimates satisfy the two normal equations

for linear least squares:
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a: 0= Y(InAC) - a™" - 57 In[G5")]), (A4)

=1

and

b: 0= Zm[Q(b‘P’)]x(m(LAC,) ~ a?h L pted 1n[Q.(bfP’)]). (A.5)
i=1
At convergence, however, the value of b used to define the lot midpoint (") is

identical to the OLS regression coefficient that multiplies the logarithm of the lot
midpoint (5°™"), or 57’ =b'"*"_ Thus, equations (A.4) and (A.5) reduce to:

a 0= ) (In(LAC)) — a - bIn[Q,(b)]), (A.6)

and

b 0= iln[Q(b)]x(ln(LAc,) - a — bIn[Q(®»)). (A7)

If the solution (a,b) represented an interior optimum of some continuously
differentiable function on an open set, then the gradient of that function would vanish at
(a,b). In fact, equations (A.6) and (A.7) would be precisely those gradient conditions.
Thus, there would exist a parent objective function F(a,b) such that the right-hand side
of equation (A.6) equals F (a,b), and the right-hand side of equation(A.7) equals
Fi(a,b). Because a continuously differentiable function has a symmetric Hessian matrix,
existence of a parent function would further require that the cross-partial derivatives be
equal.54 However, the partial derivative of equation (A.6) with respect to b is equal to:

OF,(a,b)/ob: —i[ln[@,(b)] + b@'@} (A.8)

i=1

and the partial derivative of equation (A.7) with respect to a is equal to:

34 This is the exactness condition for differential forms; it is both necessary and sufficient. See Kaplan
(1958, pp. 44-48).
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8F,(a,b)/oa: —iln[@,.(b)]. (A9)

These two expressions cannot generally be equal because the location of the lot midpoint
depends on the value of 4. Thus, equations (A.6) and (A.7) cannot be integrated back to a
parent objection function, F(a,b).??

It is not currently known from theory whether a value of b always exists that
balances equation (A.2); whether such a value, if it exists, is always unique; or whether
lot-midpoint iteration is guaranteed to converge to such a value. The situation would be
particularly problematic if there were multiple, distinct values of b that balance
equation (A.2). In a maximization prohlem, we can aiways compare the value of the
objective function at two distinct local maxima, disposing of the smaller value because it
cannot be the global maximum. But because lot-midpoint iteration does not maximize
any continuous objective function, we have no basis to choose between two distinct
values of b that both balance equation (A.2).

We demonstrate that the existence, uniqueness, and convergence of lot-midpoint
iteration depend upon the slopes of certain functions being less than 1.0 in absolute value.
Before examining this condition more formally, we present a simple example to illustrate
the problem in two dimensions.

Consider the following two functions: f(y)=y—)’ and g(y)=(1+¢£)xsin(y),
where we restrict our attention to the interval 0.0<y<(09. If we choose
e=[(x/4)/sin(x/4)]-1~0.1107, then the function g()) has a fixed point at
7/4 (=~ 0.7854): g(r/4)=r/4. The fixed point is illustrated by the intersection of g(y)
with the 45—degree line in Figure A.1. The function g(y) actually intersects the 45—degree
line twice for non-negative values of y. The slope g'(x/4)=r/4~ 0.7854 at the fixed
point already identified. In addition, there is a second fixed point at the origin, g(0)=0
and g'(0)=1+&~ 1.1107. Finally, the function f(y) has a single fixed point at the
origin, (=0 and f'(0)=1.0.

35 In particular, lot-midpoint iteration does not maximize the likelihood function for any continuous
probability density. Despite a superficial resemblance, lot-midpoint iteration is nof an example of an
EM algorithin because the latter always converges to a stationary point (local or global maximmum, or
saddle point) of the likelihood function. On the latter property of the EM algorithm, see McLachlan
and Krishnan (1977), especially chapter 3.
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Figure A.1. Fixed Points of Cubic and Trigonometric Functions

Now consider an iterative scheme such as y‘#*" =f(y“’]) for p=0,1,2,.... This

scheme will converge to the fixed point at the origin, albeit slowly, even for starting
values @ lying to the right of the peak of the cubic (which occurs at

y=1/ 3205774 ). However, let us turn to the less well-behaved trigonometric function
2(») and consider the iterative scheme p*#*" = g( pt# ’). This scheme will converge to the

fixed point at n/4 [where g'(x/4)<1] from any starting value 0 <y

@ <7 it will never

converge to the second fixed point at the origin [where g'(0)>1] from any such starting

value. Figure A.2 illustrates the convergence to n/4 from a starting value of 0.9, as well

as from a starting value of 0.1 which is much closer to the origin.
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Figure A.2. Convergence of lteration on Trigonometric Function
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It appears from this example that fixed points tend to attract (repel) iterative
schemes if the absolute value of the slope is less than (greater than) 1.0. Although this
basic conclusion is sound, it will not carry over exactly to higher-dimensional problems.
We show that a bounded gradient (the multi-dimensional extension of the concept of a
bounded slope), while sufficient for convergence, is not actually necessary. Indeed, we
present an example of a lot-midpoint iteration that converges despite having an absolute
gradient slightly greater than 1.0 at a starting value near the (apparently) unique fixed

point.

These issues of existence, uniqueness, and convergence may be explored more

formally using the advanced mathematics of contraction mappings. Lot-midpoint
iteration induces a mapping from the current estimates, T'”’ and 5'”, to the new

estimates, 777" and ”*". Consider the 2 x 2 Jacobian matrix of that mapping:

a;r;(.ﬁl}/aTl(p) aj}(ﬂﬂl/ab{p)
J = : (A.10)
ab(ﬂ+l)/aTl(P) ab(P*-U /ab(.ﬂ]

By Ostrowski’s theorem on contraction mappings, if the eigenvalues of J are all
less than 1.0 in absolute value throughout a region of parameter space (or, equivalently, if
the maximum absolute eigenvalue is less than 1.0 throughout the region), then quite
remarkably:

o there exists a pair of values T} and b 1n the region that balance equation (A.2);
e the pair 7 and b is unique in the region; and
¢ iteration, starting from any point in the region, generates a sequence that

converges to the unique root.>¢

In our situation, the Jacobian will reduce to a 1 x1 matrix (i.e., a scalar) because
the definition of the lot midpoint (equation (2.17)) depends on & but not 7|. Thus, we
need only consider the absolute value of the derivative 967" /9b'7 . A change in b7
affects the lot midpoints via equation (2.17), in turn affecting the updated estimate »'7*"
via the regression normal equations. We now show that, by theory alone, the absolute
derivative cannot be bounded above by 1.0. In Chapter 4 we gave a numerical example in

which the absolute derivative actually exceeds 1.0, yet lot-midpoint iteration nonetheless

56 See Ortega and Rheinboldt (1970), theorems 5.1.3, 10.1.3, and 12.1.2, These theorems require that the
iteration map a closed parameter set into itself,
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converges. We obtain convergence in that example because the eigenvalue condition is
sufficient for convergence, but not necessary. Importantly, however, with failure of the
eigenvalue condition there is no theoretical guarantee that, even when lot-midpoint
iteration converges, the root 1s unique. Thus, altemative starting values could conceivably
lead the algorithm to converge to a different root. Again, because lot-midpoint iteration
does not maximize any continuous objective function, if two distinct solutions are located
we have no basis to choose between them.

In simple linear regression, of which any step of equation (A.2) is an example, the
slope is given by:

- Sy _ 25-D(i-)

b = , Al
S, > (x,-x) A1h)

and the intercept by:
d=y-bhx. (A.12)

In this general regression notation, the Jacobian matrix becomes:

aa(wl)/aa(p) aa(pﬂ) /ab(p)
J = . (A.13)
ab(ﬁl)/aa(;’) ab(P“)/@b(P)

Now b7 acts on a”” and "™ via the definition of the lot midpoints, but &‘”
(ie., T'Y) has no such effect. Moreover, it follows from equation (A.12) that

8a'"" [9b'” = — X 9b**V [9b'”’ . Thus, the Jacobian matrix simplifies to:
0 —xab/ap”

J = , (A.14)
0 a3 /fop'?
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The matrix J is asymmetric, but the eigenvalues are nonetheless defined. Because

J is singular, one eigenvalue is zero. It is simple to show that the second eigenvalue is
ab'**" /o' with corresponding eigenvector (—% 1). Thus, as claimed earlier, the

convergence condition amounts to showing that [ab(‘”” Job ’| <157
A change in b7 affects the logarithmic midpoint of every single lot
{ln[Q(b)]|i=l,...,n}, or in the current notation {x,.|i=1,...,n}. Moreover,

differentiation of equation (A.11) yields:53
0bfox, = LW 220 7X) (A.15)

a S

xx

Thus, we have:

i

S.. (A16)

XX

by uNGT AL c ox,
Xa—b(-)

The derivative dx,/db'” is, in principle, computable from the definition of the

lot midpoint, equation (2.17). However, inserting this information into equation (A.16), it
is not at all obvious that |6>‘b“’+ "o )| is bounded above by 1.0. In fact, in Chapter 4 we

give a numerical example of an apparently well-conditioned problem (i.e., no obvious
data anoinalies) in which this expression exceeds 1.0 (akthough Iot-midpoint iteration
nonetheless converges). If it can be verified in a particular example that
]ab""” / aa‘“] < 1, then existence, umiqueness, and convergence are guaranteed by

Ostrowski’s theorem. However, our numerical counterexample proves that there can be

no universal guarantee of existence, uniqueness, or convergence; the structure of the lot-
midpoint problem does not automatically satisfy the condition |6‘b”’”’ /ab'® ’| < 1.

57 Equivalently, one could substitute equation (A.12), In(T})) = & = y - b¥, into equation (A.2), thereby
eliminating the intercept from the problem and reducing the iteration to a univariate mapping from

57 to 8b'”™" . The derivative that we have been studying, [85'7""/a5'")|, is the slope of that
mapping.
58 A similar result is found in the statistics of outliers; see Chatterjee and Hadi (1988, p. 151).
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At this point, we have learned the following:

e The standard sufficient conditions that guarantee existence, uniqueness, and
convergence may or may not hold in the lot-midpoint problem — there is no
umiversal guarantee;

e Even if the sufficient conditions fail in a particular example, lot-midpoint
iteration may nonetheless converge — the bounded-eigenvalue condition is
sufficient for convergence, but not necessary.

It remains to reconcile the ability of lot-midpoint iteration to converge when
lab"”” /ob'? ’| > 1 with the geometric intuition that we developed in Figures A.1 and

A.2. In Figure A.1, the origin is an inflection point for both the cubic and trigonometric

functions. An iterative scheme could converge to the inflection point of the cubic
function because f(0)=1, but is repelled from the inflection point of the trigonometric

function because g’(0) > 1. From this example, it may appear that a bounded gradient is

necessary as well as sufficient for convergence (i.e., violation of the bound prevents
convergence to a particular root).

This low-dimensional example is actually somewhat misleading because, for
continuously differentiable functions of a single variable, the derivative has the same
value whether approached from the left or from the right. By contrast, for continuously
differentiable functions of several variables, a particular gradient element (i.e., the first-
partial derivative with respect to one of the function arguments) generally depends upon
all of the function arguments. Thus, although the gradient element will have the same
value whether approached from the left or from the right (i.e., from the west or from the
east), it may have a different value when approached from the north or the south, or from
any other direction.

To illustrate these points, consider an iterative scheme designed to locate the fixed
point of the pair of functions f(T) and g(T,b). The iterative scheme takes the form
7 =f(T“") and 57"V =g(T*? bP) for p=0,1,2,.... We restrict our attention to
the unit circle 77 +5* <1. We assume that f(T') has a fixed point at an infinitesimal

positive value, f(T")=T" where 0<T" «1. We also assume that f(T) has a bounded
gradient | f'(T)| <1 for ali |T|<1.

We assume that g(7, &) has the following form:

g(T.b) = (3b/4) + (3b/2x)xarctan(b/T) - (3T/4x)xln[(T* +8’)/T* ],  (A.17)
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with partial derivative:
og(T,b)/eb = 075 + (1.5/x)xarctan(b/T). (A.18)

We note that g(T",0)=0, so that the pair of functions f(7) and g(7T,b) has a
fixed point at {T, &) = (T, 0). Also, the Jacobian matrix has the form:

7T 0
J = . (A.19)

og(T,b)/oT  3g(T,b)/ob

The eigenvalues of J are precisely its diagonal elements. Moreover, given our assumption
that |/ '(T)} <1, any difficulties with the maximum eigenvalue are entirely confined to the

southeast diagonal element, 8 g(7, b)/db = 0.75 + (1.5/x)x arctan (b/T).

Figure A.3 depicts the gradient element 0.75 + (1.5/7) x arctan(b/T) along the

unit circle; the gradient values at selected points along the unit circle are labeled 0.7500,
0.9375, 1.0000, and so on. Because the gradient element depends on T and b only through
their ratio, the gradient element is constant along any diameter of the unit circle. The
function g(7,b) is increasing in & throughout the unit circle, 8g(7,5)/2b 20 (with
strict inequality 8g(T, b)/db >0 almost everywhere), so the fixed point of the pair of
functions at (T, 5)=(T",0) is neither a maximum nor a minimum of g(7,#). It might

appear that convergence to the fixed point will occur only from starting points within the
unit circle where the gradient element 2 g(T, b)/3b is less than 1.0 (i.e., the two lighter-

shaded sub-regions). However, this supposition will prove false because the gradient
element may change in magnitude along a particular iterative path.

We make the example a bit more concrete by choosing the function f(T)=7T" for
all |T| <1, where 0 <T" <« 1. This function has the desired property |f '(T)|<l (in fact,

f'(T)y=0) for all |T| <1, as well as a fixed point at T=7". Note that the iterative
scheme 7= f (T””) converges to the fixed point in a single iteration from any
starting value )T“’"d. We further definitize the example by choosing 7" =107*.

Regarding the second of the pair of functions, the iteration 57" =g(T'#', 5"’} reduces
to PV =g(T",6'”) for p=1,2,3,..., effectively a univariate iteration along the
vertical line T =7T".
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Figure A.3. Gradient Values Along the Unit Circle

Figure A.4 illustrates one type of divergence. The iterative scheme begins in the
lighter-shaded sub-region in the northwest, where the gradient element 8g(7, b)/8b

equals 0.3750. However, the first iteration jumps to the poimt (7,b)=(7",0.316) at
which 3g(T,b)/0b equals 1.4998. From that point the iteration diverges northward,
exiting the unit circle by the fourth iteration. The gradient element 0g(T, b)/0b remains

approximately equal to 1.5 as the iteration diverges.

Figure A.5 illustrates one type of convergence. The iterative scheme begins in the
darker-shaded sub-region in the southwest, where the gradient element 8g(7,5)/0b

equals 1.1250. Nonetheless, the first iteration jumps to the point (7, b) =(T",—0.745) at
which 8 g(T,b)/8b equals 0.0001. From that point the iteration converges to the fixed
point, effectively reaching it by the fourth iteration. The gradient element 8 g(T, b)/3b
increases along the convergence path as the angle @ =arctan(b/T") sweeps

counterclockwise from 1.50004 x 7 (once reaching T =T after the first iteration) to 27,
but remains bounded above by (.75 (the value along the equator of the circle) and never
again exceeds 1.0.
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Figure A.5. Example of Convergent Iteration
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It turns out that, for this problem, the iteration converges from any starting point
on the unit circle in the southern hemisphere (including the equator), # <8 <2x. The
iteration diverges from any starting point on the unit circle n the northern hemisphere,
0 <& < x. The important lesson is that the value of the maximum eigenvalue at the
starting point (i.e., the shading of the sub-region) does not necessarily predict the
convergence or divergence of the iterative scheme. In particular, the second example
(Figure A.5) illustrates that the iterative scheme may converge to the fixed point by
simply jumping over the sub-region in which the maximum eigenvalue exceeds 1.0 in
absolute value. The condition of bounded eigenvalues throughout an entire region,
although sufficient for convergence, is far from necessary.
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