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Abstract 

The military is on the cusp of a major technological revolution, in which warfare is 
conducted by unmanned and increasingly autonomous weapon systems. However, 
unlike the last “sea change,” during the Cold War, when advanced technologies were 
developed primarily by the Department of Defense (DoD), the key technology 
enablers today are being developed mostly in the commercial world. This study looks 
at the state-of-the-art of AI, machine-learning, and robot technologies, and their 
potential future military implications for autonomous (and semi-autonomous) 
weapon systems. While no one can predict how AI will evolve or predict its impact on 
the development of military autonomous systems, it is possible to anticipate many of 
the conceptual, technical, and operational challenges that DoD will face as it 
increasingly turns to AI-based technologies. This study examines key issues, 
identifies analysis gaps, and provides a roadmap of opportunities and challenges. It 
concludes with a list of recommended future studies. 
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Executive Summary / White Paper 

A notable number of groundbreaking artificial intelligence (AI)-related technology 
announcements and/or demonstrations took place in 2016:1 

1. AI defeated the reigning world champion in the game of Go, a game that is so 
much more “complex” than chess that, prior to this event, most AI experts 
believed that it could not be done for another 15-20 years.2 

2. AI learnedon its ownwhere to find the information it needs to accomplish 
a specific task.3 

3. AI predicted the immediate future (by generating a short video clip) by 
examining a single photograph (and is also able to predict the future from 
studying video frames).4 

4. AI automatically inferred the rules that govern the behavior of individual 
robots within a robotic swarm simply by watching.5 

5. AI learned to navigate the London Underground by itself (by consulting its 
own acquired memories and experiences, much like a human brain).6 

6. AI speech recognition reached human parity in conversational speech.7 

                                                   
1 Most of the innovations on this list are described in the Artificial Intelligence section of the 
main narrative of this report (pp. 44-71). A few others also appear in the appendix. 

2 C. Koch, “How the Computer Beat the Go Master,” Scientific American, 19 March 2016. 

3 K. Narasimhan et al., “Improving Information Extraction by Acquiring External Evidence with 
Reinforcement Learning,” presented at EMNLP 2016, https://arxiv.org/abs/1603.07954. 

4 C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating Videos with Scene Dynamics,” 
presented at the 29th Conference on Neural Information Processing Systems, Barcelona, Spain, 
2016: http://web.mit.edu/vondrick/tinyvideo/paper.pdf. 

5 W. Li, M. Gauci, and R. Gross, “Turing learning: a metric-free approach to inferring behavior 
and its application to swarms,” Swarm Intelligence 10, no. 3, September 2016:  
http://link.springer.com/article/10.1007%2Fs11721-016-0126-1. 

6 E. Gibney, “Google's AI reasons its way around the London Underground,” Nature, Oct 2016. 

7 X. Xiong et al., “Achieving Human Parity in Conversational Speech Recognition,” arXiv, 2016: 
https://arxiv.org/abs/1610.05256. 
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7. An AI communication system invented its own encryption scheme, without 
being taught specific cryptographic algorithms (and without revealing to 
researchers how its method works).8 

8. An AI translation algorithm invented its own “interlingua” language to more 
effectively translate between any two languages (without being taught to do so 
by humans).9 

9. An AI system interacted with its environment (via virtual actuators) to learn 
and solve problems in the same way that a human child does.10 

10. An AI-based medical diagnosis system at the Houston Methodist Research 
Institute in Texas achieved 99% accuracy in reviewing millions of 

mammograms (at a rate 30 faster than humans).11 

These and other recent similar breakthroughs (e.g., IBM’s Watson’s defeat of the two 
highest ranked Jeopardy! players of all time in 2011),12 are notable for several 

reasons. First, they collectively provide evidence that we, as a species, have already 

crossed over into an era in which seeing AI outperform humansat least for specific 

tasksis almost routine (perhaps in the same way that landing on the moon was 

“almost” routine after the first few Apollo missions).13 Second, they offer a glimpse of 
how different AI is from human intelligence, and how inaccessible its “thinking” is to 
outside probes. And third, they demonstrate the power of AI to surprise us (including 
AI system developers, who nowadays are closer in spirit to “data collectors” and 
“trainers” than to traditional programmers)—i.e., AI, at its core, is fundamentally 
unpredictable. In the second game of the Go match between the AI that defeated Lee 

SeDol (an 18-time world champion in Go), the AI made a move so surprising that 

                                                   
8 M. Abadi and D. Andersen, “Learning to Protect Communications with Adversarial Neural 
Cryptography,” arXiv:1610.06918v1: https://arxiv.org/abs/1610.06918. 

9 Q. Le and M. Schuster, “A Neural Network for Machine Translation, at Production Scale,” 
Google Research Blog, 27 Sep 2016: https://research.googleblog.com/2016/09/a-neural-
network-for-machine.html. 

10 M. Denil, P. Agrawal, T. Kulkarni, et al., “Learning to perform physics experiments via 
deep reinforcement learning,” under review as a conference paper to ICLR 2017: 
https://arxiv.org/pdf/1611.01843v1.pdf. 

11 T. Patel et al., “Correlating mammographic and pathologic findings in clinical decision 
support using NLP and data mining methods,” Cancer 123, 1 Jan 2017. 

12 S. Baker, Final Jeopardy: Man vs. Machine and the Quest to Know Everything, Houghton 
Mifflin Harcourt, 2011. 

13 Unlike the Apollo program, however, AI is here to stay: Artificial Intelligence and Life in 2030: 
One Hundred Year Study on Artificial Intelligence, Report of the 2015 Study Panel, Stanford 
University, Sep 2016. 
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SeDol had to leave the room for 15 minutes to recover his composure: “It’s not a 
human move. I’ve never seen a human play this move. So beautiful.”14  

The breakthroughs listed above are also notable for a fourth reason—a more subtle 
one, but the one that directly inspired this study. Namely, they portend a set of deep 
conceptual and technical challenges that the Department of Defense (DoD) must face, 

now and in the foreseeable future, as it embraces AI, robot, and swarmrelated 

technologies to enhance (and weaponize) its fleet of unmanned systems with higher 
levels of autonomy. The subtlety lies in unraveling the true meaning of the 
deceptively “obvious” word, autonomy; indeed, as of this writing, there is no 

universally accepted definition. 

Autonomous weaponscolloquially speakinghave been used since World War II 

(e.g., the German Wren torpedo’s passive acoustic homing seeker effectively made it 

the world’s first autonomously guided munition).15 Human-supervised automated 
defensive systems have existed for decades, and aerial drones were first used more 
than 20 years ago (i.e., the RQ-1 Predator was used as an intelligence, surveillance, 
and reconnaissance platform in former Yugoslavia).16 But it was only after the 
September 11, 2001, terrorist attacks that the military’s burgeoning interest in, and 
increasing reliance on, unmanned vehicles started in earnest. In just 10 years, DoD’s 
inventory of unmanned aircraft grew from 163, in 2003, to close to 11,000, in 2013 
(and, in 2013, accounted for 40% of all aircraft).17 And the United States is far from 

being alone in its interest in drones: by one recent tally, at least 30 countries have 
large military drones, and the weaponized drone club has recently grown to 11 

nations, including the United States.18 

DoD procured most of its medium-sized and larger unmanned aerial vehicles (UAVs), 
the MQ-1/8/9s and RQ-4/11s, for the counterinsurgency campaigns in Iraq and 
Afghanistan, where the airspace was largely uncontested. Now the United States is 
withdrawing from those campaigns and the military is shifting its strategic focus to 
less permissive operating environments (i.e., the Asia-Pacific region) and to 
adversaries with modern air defense systems. Thus, there is a growing emphasis on 
developing new, more autonomous, systems that are better equipped to survive in 
more contested airspaces.  

                                                   
14 C. Metz, “The Sadness and Beauty of Watching Google’s AI play Go,” Wired, 11 March, 2016. 

15 J. Campbell, Naval Weapons of World War Two, Naval Institute Press, 2002. 

16 P. Springer, Military Robots and Drones: A Reference Handbook, ABC-CLIO, 2013. 

17 Unmanned Systems Integrated Roadmap: FY2013-2038, U.S. Department of Defense, 2013. 

18 World of Drones: Military, International Security Data Site, New America Foundation: 
http://securitydata.newamerica.net/world-drones.html. 
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Fundamentally, an autonomous system is a system that can independently compose 
and select among alternative courses of action to accomplish goals based on its 
knowledge and understanding of the world, itself, and the local, dynamic context. 
Unlike automated systems, autonomous systems must be able to respond to 
situations that are not pre-programmed or anticipated prior to their deployment. In 
short, autonomous systems are inherently, and irreducibly, artificially intelligent 
robots. In the remaining pages of this summary, we explicate the analytical 
implications of this assertion (leaving details and supporting evidence to the main 
narrative).  

To start, if and when autonomous systems, in the sense just described, finally arrive, 
they will offer a variety of obvious advantages to the warfighter. For example, they 
will eliminate the risk of injury and/or death to the human operator; offer freedom 
from human limits on workload, fatigue, and stress; and be able to assimilate high-
volume data and make “decisions” based on time scales that far exceed human 
ability. If robotic swarms are added into the mix, entirely new mission spaces 
potentially open up as well—e.g., wide-area, long-persistence, surveillance; 
networked, adaptive electronic jamming; and coordinated attack. There are also 
numerous advantages to using swarms rather than individual robots, including: 
efficiency (if tasks can be decomposed and performed in parallel), distributed action 
(multiple simultaneous cooperative actions can be performed in different places at 
the same time), and fault tolerance (the failure of a single robot within a group does 

not necessarily imply that a given task cannot be accomplished). 

However, the design and development of autonomous systems also entails 
significant conceptual and technical challenges, including:  

 “Devil is in the details” research hurdles: Developers of autonomous systems 
must confront many of the same fundamental problems that the academic and 
commercial AI and robotic research communities have struggled for decades 
to “solve.” To survive and successfully perform missions, autonomous systems 
must be able to sense, perceive, detect, identify, classify, plan for, decide on, 
and respond to a diverse set of threats in complex and uncertain 
environments. While aspects of all these “problems” have been solved to 
varying degrees, there is, as yet, no system that fully encompasses all of these 
features. 

 Complex and uncertain environments: Autonomous systems must be able to 

operate in complexpossibly, a priori unknownenvironments that possess a 

large number of potential states that cannot all be pre-specified or be 
exhaustively examined or tested. Systems must be able to assimilate, respond 
to, and adapt to dynamic conditions that were not considered during their 

design. This “scaling” problemi.e., being able to design systems that are 

developed and tested in static and structured environments, and then have 
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them perform as required in dynamic and unstructured environmentsis 

highly nontrivial. 

 Emergent behavior: For an autonomous system to be able to adapt to changing 

environmental conditions, it must have a built-in capacity to learn, and to do 
so without human supervision. It may be difficult to predict, and be able to 
account for a priori unanticipated, emergent behavior (a virtual certainty in 
sufficiently “complex” systems-of-systems dynamical systems). 

 Human-machine interactions/I: The operational effectiveness of autonomous 

systems will depend on the dynamic interplay between the human operator 
and the machine(s) in a given environment, and on how the system responds, 
in real time, to changing operational objectives, in concert with the human’s 
own adaptation to dynamic contexts. The innate unpredictability of the human 
component in human-machine collaborative performance only exacerbates the 
other challenges identified on this list. 

 Human-machine interactions/II: The interface between human operators and 

autonomous systems will likely include a diverse space of tools that include 
visual, aural, and tactile components. In all cases, there is the challenge of 
translating human goals into computer instructions (e.g., “solving” a long-
standing “AI problem” of natural language processing), as well as that of 
depicting the machine’s “decision space” in a form that is understandable by 
the human operator (e.g., allowing the operator to answer the question, “Why 
did the system choose to take action X?”). 

 Control: As autonomous systems increase in complexity, we can expect a 

commensurate decrease in our ability to both predict and control such 
systems—i.e., the “spectre of complacency in complexity.” As evidenced by the 
general nature of recent AI breakthroughs, there is a fundamental tradeoff: 
either the AI can achieve a given performance level (e.g., it can play the game 
Go as well as, or better than, a human), or humans can be able to understand 
how its performance is being achieved). 

Apart from these innately technical challenges to developing autonomous systems, 
there are a set of concomitant acquisition challenges, the origin of which is a recent 
shift in DoD’s innovation-related procurement practices. While the U.S. government 
has always played an important role in fostering AI research (e.g., ARPA, DARPA, NSF, 
ONR), most key innovations in AI, robotics, and autonomy are now being driven by 
the commercial sector,19 and at a pace that DoD’s relatively plodding stove-piped 

                                                   
19 The development of most of the UAVs used in Iraq and Afghanistan was driven not by DoD 
requirements, but rather by commercial research and development. Ref: “Microsoft, Google, 
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acquisition process is ill equipped to accommodate: it takes 91 months (7.6 years), 
on average, from the start of an analysis of alternatives (AoA) study to initial 

operational capability (IOC).20 Even information technology programsunder whose 

rubric most AI-derived acquisitions naturally fallhave averaged 81 months. By way 

of comparison, note that within roughly this same interval of time, the commercial AI 
research community has gone from just experimenting with (prototypes of dedicated 

hardware-assisted) deep learning techniques,21 to beating the world champion in Go 
(along with achieving many other major breakthroughs).  

Of course, DoD acquisition challenges, particularly for weapons systems that include 
a heavy coupling between hardware and software, have been known for decades.22  
However, despite numerous attempts by various stakeholders to address these 
challenges, the generic acquisition process (at least on the traditional institutional 
level) remains effectively unchanged. Whatever progress has been made in recent 
years derives more from workarounds instituted by DoD to facilitate “rapid 
acquisition” of systems,23 than from wholesale changes applied to stove-piped 
processes of the acquisition process itself. Some recent progress has been 

madee.g., the 2009/2011 National Defense Authorization Acts (NDAA/Sec 804), 

mandated a new IT acquisition process, which, in turn led to multiple Defense 
Science Board (DSB) Task Force (TF) studies of the acquisition process. Yet, a notable 
absence in any of these DSB/TF studies is any explicit mention of autonomy.  

Complicating the issue still further is a basic dichotomy between DoD’s existing 
directive on autonomy (DoD Directive 3000.09, issued Nov 2012) and current Test 
and Evaluation (T&E) and Verification and Validation (V&V) practices. Specifically, 

                                                                                                                                           
Facebook and more are investing in artificial intelligence: What is their plan and who are the 
other key players?” TechWorld, September 29, 2016.   

20 Policies and Procedures for the Acquisition of Information Technology, Department of Defense, 
Defense Science Board, Task Force Report, Office of the Under Secretary of Defense for 
Acquisition, Technology and Logistics, March 2009. 

21 The first graphics-processor-based unsupervised deep-learning techniques were introduced 
in 2009: R. Raina, A. Madhavan, and A. Ng, “Large-scale deep unsupervised learning using 
graphics processors,“ Proceedings of the 26th Annual International Conference on Machine 
Learning, ACM, 2009. 

22 J. Merritt and P. Sprey, “Negative marginal returns in weapons acquisition,” in American 
Defense Policy, Third Edition, edited by R. Head and E. Roppe, John Hopkins Univ. Press, 1973. 

23 Examples include: the U.S. Air Force Rapid Capabilities Office, the U.S. Army’s Asymmetric 
Warfare Group and Rapid Capabilities Office, DoD’s Strategic Capabilities Office, and, most 
recently, SecDef Ashton Carter’s Defense Innovation Unit Experimental (DIUx). Ref: B. 
Fitzgerald, A. Sander, J. Parziale, Future Foundry: A New Strategic Approach to Military-
Technical Advantage, Center for a New American Security, 2016. 
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Directive 3000.09 requires that weapons systems (italics added by author of this 
report):24 

 Go through rigorous hardware and software T&E/V&V, “including analysis of 
unanticipated emergent behavior resulting from the effects of complex 
operational environments on autonomous or semiautonomous systems.”   

 “Function as anticipated in realistic operational environments against adaptive 
adversaries.” 

 “Are sufficiently robust to minimize failures that could lead to unintended 
engagements.”  

Directive 3000.09 further requires that T&E/V&V must “assess system performance, 
capability, reliability, effectiveness, and suitability under realistic conditions, 
including possible adversary actions, consistent with the potential consequences of an 
unintended engagement or loss of control of the system.” 

Yet, existing T&E/V&V practices do not make accommodations for any of the 
italicized parts of these quoted requirements. Among the many reasons why 
autonomous systems are particularly difficult to test and validate are: (1) complexity 
of the state-space  (it is impossible to conduct an exhaustive search of the vast space 
of possible system “states” for autonomous systems); (2) complexity of the physical 

environment (the behavior of an autonomous system cannot be specifiedmuch less 

tested and certifiedin situ, but must be tested in concert with interaction with a 

dynamic environment, rendering the space of system inputs/outputs and 
environmental variables combinatorically intractable); (3) unpredictability (to the 

extent that autonomous systems are inherently complex adaptive systems, novel or 
unexpected behavior can be expected to arise naturally and unpredictably in certain 
dynamic situations; existing T&E/V&V practices do not have the requisite fidelity to 
deal with emergent behavior); and (4) human operator trust in the machine (existing 

T&E/VV&A practice is limited to testing systems in closed, scripted environments, 
since “trust” is not an innate trait of a system).  

Trust also entails grappling with the issue of experience and/or learning: to be more 
effective, autonomous systems may be endowed with the ability to accrue 
information and learn from experience. But such a capability cannot be certified 
monolithically, during one “check the box” period of time. Rather, it requires periodic 
retesting and recertification, the periodicity of which is necessarily a function of the 
system’s history and mission experience. Existing T&E/V&V practices are wholly 
inadequate to address these issues. 

                                                   
24 Enclosures 2 and 3 of DoD Directive 3000.09 (Autonomy in Weapon Systems, Nov 2012) 
address T&E and V&V issues, and generally review guidelines, respectively. 
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Defining autonomy 

“Autonomy” applies to a vastly greater range of processes than those that pertain to 

unmanned vehiclesas physical entitiesalone, including the myriad factors needed 

to describe human-machine interactions. It represents a range of context-dependent 
capabilities that may appear at different scales, and in varying degrees of 

sophistication, that collectively enable the coupled human-machine system to 

perform specific tasks. Autonomyby itselfdoes not reductively “fix” any existing 

problems; rather, it redefines, extends, and potentially opens up entirely new mission 
spaces. And its value can only be assessed in the context of specific mission 
requirements, the operating environment, and its coupling with human operators. 

A major impediment to the development of autonomous weapon systems is the 
current lack of a common language by which AI, robot, and other technology experts, 
systems developers, and program managers can communicate (in a manner 
consistent with autonomy’s multi-dimensional, context-dependent nature). There is 
not an even a single definition of the word “autonomy,” much less a universally 

agreed upon taxonomy that might be used as basis for forming a common language. 
Some taxonomies emphasize the details related to a system’s output functions (i.e., 
to its decision capability), while others focus on making detailed distinctions 
between input functions, such as how a system acquires information and how it 
formulates options. And, while sliding scales have been used to delineate between 
levels of “human control” that a given system might require (e.g., the “autonomy” of 
a system may be ranked from, say, 0, meaning that it is under complete control, to 
10, meaning it is fully autonomous, albeit, typically, without the term “fully” being 
well defined), the practical utility of these kinds of taxonomies is limited because 
they ignore critically important contextual factors. For this reason, a recent U.S. 
Defense Science Board report recommended doing away with defining levels of 
autonomy altogether and replacing such taxonomies with a comprehensive 
conceptual framework. However, to date, despite a handful of ongoing attempts, no 
useable framework yet exists. 

Ethical concerns  

The emerging use of autonomous weaponsand the spectre (if not yet the reality) of 

lethal autonomous weapon systems (LAWS), that can select and engage targets on 

their own25raises a host of ethical and moral questions. For example, “Will soldiers 

                                                   
25 Although there are a number of weapon systems in use today that depend on varying degrees 
of human supervision, there are none that are fully autonomous (with the only possible 
exception being the Israel Defense Forces Harpy, a “fire-and-forget” loitering munition 
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be willing to go to battle alongside robots?” “Will robots be able to distinguish 
between military and civilian targets, and be able to use force proportionately?” “Will 
an AI be able to recognize enemy signs of surrender?” “Who will be responsible for 
an unjustified robotic kill?” and “How does one codify an innately subjective body of 
ethical standards and practices?”  

Such questions have led to several international movements against “killer robots.”26 
For example, in July 2015, over 1,000 robotics and artificial intelligence researchers 
signed an open letter calling for a ban on offensive autonomous weapons (with 20K+ 
signatories as of Dec 2016).27 And, at the most recent United Nations Convention on 
Conventional Weapons, the 123 participating nations voted to convene a group of 
government experts to meet (during two sessions) in 2017 to formally address the 
LAWS issue, which could potentially lead to an international ban.28  

While the outcome of these upcoming meetings is uncertain, it is clear is that the 
political, cultural, and basic human-rights dimensions of this issue are only 
beginning to be explored. An analysis of the operational impact that any limitations 

on (or an outright ban of) the use of offensive autonomous weapons may entail for 
U.S. military forces obviously deserves attention. 

Transitioning to new autonomy-enabled mission areas 

Figure ES-1 illustrates, schematically, the key steps involved in extending the existing 
unmanned systems mission space (e.g., reconnaissance, route clearance, and search 
and rescue) to one that more fully embraces all that autonomy potentially offers (e.g., 
self-organized, and self-healing, adaptive swarms). Leaving aside details of the 
pipeline to the main text, the key (mutually entwined) steps include, starting from 
bottom of the figure and working our way to the top:  

 Step 1: Conducting basic AI research across multiple domains (the green-to-red 

overlay emphasizing that research in different AI arease.g., deep learning, 

                                                                                                                                           
designed to detect, attack and destroy radars). Autonomy policy for U.S. weapon systems is 
spelled out in DoD Directive 3000.09, which expressly prohibits use of lethal fully autonomous 
weapons, which it defines as weapon systems that, once activated, may select and engage 
targets without further intervention by a human. Ref: DoD Directive 3000.09, “Autonomy in 
Weapon Systems,” Nov 2012: http://www.dtic.mil/whs/directives/corres/pdf/ 300009p.pdf. 

26 M. Wareham and S. Goose, “The Growing International Movement Against Killer Robots,” 
Harvard International Review, 5 Jan 2017. 

27 http://futureoflife.org/open-letter-autonomous-weapons/. 

28 Final Document of the Fifth Review Conference, CCW, Dec 2016: http://www.reaching 
critical will.org/disarmament-fora/ccw/2016/revcon. 



 

 

 

 xii  
 

image recognition, and robotic swarmsnecessarily proceeds at different rates 

and exists, at any one time, at different levels of maturation).  

 Step 2: Understanding how individual AI research domains feed into the 

myriad components that make up autonomous systems, including their 
coupling with human operators (which further involves the understanding of 
how human-machine collaborative systems function in specific mission 
environments).  

 Step 3: Moving design, development, testing, and accreditation through the 

DoD acquisition process (and accommodating autonomy’s unique set of 
technical challenges while doing so).  

 Step 4: Interpreting and projecting the requisite levels of maturity of system 

capabilities that autonomous systems must possess for specific missions. The 
autonomous systems that are shown in figure ES-1 are characterized as 
functions of four broad categories of AI (i.e., sensing, thinking, acting, and 
teaming). Their projected capabilities are indicated as follows: shades of green 

indicate capabilities that are available now; shades of orange denote near-term 
capabilities; and increasingly darker shades of red indicate the far-term 
regime. This table is taken from the DoD’s Defense Science Board’s most recent 
study on autonomy,29 but is intended mostly as a notional place-holder for the 
kinds of conceptual, technical, and analytical considerations that must be 
taken into account as the raw capabilities of the autonomous systems that 
come out of the acquisition process are transformed into new and 
operationally meaningful missions and missions areas. 

 

                                                   
29 Table 1 in Summer Study on Autonomy, Department of Defense, Defense Science Board, 
Task Force Report, Office of the Under Secretary of Defense for Acquisition, Technology 
and Logistics, June 2016: https://www.hsdl.org/?view&did=79464. 
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Figure ES-1.  Key steps in transitioning to new autonomy-enabled mission areas 
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Gestalt of main findings 

The military is on the cusp of a major technological revolution as it enters the 
Robotic Age,30 in which warfare is conducted by unmanned and increasingly 

autonomous weapon systems, operating across all domains (air, sea, undersea, land, 
space, and cyber), and across the full spectrum of military operations. The question 
is not whether the future of warfare will be filled with autonomous, AI-driven robots, 
but when and in what form. However, unlike the last “sea change” during the Cold 

War (i.e., the so-called “2nd Offset”),31 when advanced technologies such as precision-
strike weapons, stealth aircraft, smart weapons and sensors, and GPS were developed 
primarily by DoD-sponsored research and development programs, a successful 
transition into the Robotic Age (spurred on by DoD’s recent “Third Offset Strategy” 
innovation initiative)32 will depend critically on how well DoD is able to embrace 
technologies and innovations that are now being developed mostly in the commercial 
world. And, while the human warfighter is not going away anytime soon, if ever (even 
as the depth and breadth of autonomy steadily expand), human operators will not 
suddenly lose control of existing unmanned systems. A telltale sign that DoD has 
made a “no looking back” cross-over into the Robotic Age will be when human 
operators can no longer fully understand, or predict, how autonomous systems 

behave—i.e., when, for the first time, a human operator is as stunned by some 
weapon system’s action as 18-time world Go champion Lee SeDol was by a single 
move of the AI that defeated him. 

In preparation for DoD’s cross-over into the Robotic Age, whenever it arrives, this 
study has identified four key technical gaps in developing AI-based autonomous 
systems, wherein opportunities for future analytical studies naturally arise (see 
figure ES-2). 

These gaps are:   

 Gap 1: A fundamental mismatcheven dissonancebetween the accelerating 

pace (and manner of development and evolution) of technology innovation in 
commercial and academic research communities, and the timescales and 
assumptions underlying DoD’s existing acquisition process.  

                                                   
30 Robert O. Work and Shawn Brimley, 20YY: Preparing for War in the Robotic Age, Center 
for a New American Security, Jan 2014. 

31 J. McGrath, “Twenty-First Century Information Warfare and the Third Offset Strategy,” 
Joint Forces Quarterly, National Defense University, Issue 82, 3rd Quarter 2016. 

32 C. Hagel, Transcript of Keynote speech delivered at Reagan National Defense Forum Keynote, 
Ronald Reagan Presidential Library, Simi Valley, CA, Nov. 15, 2014. 
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Figure ES-2.  Key gaps in transitioning to new autonomy-enabled mission areas 

 

 Gap 2: An underappreciation of the unpredictable nature of autonomous 

systems, particularly when operating in dynamic environment, and in concert 
with other autonomous systems. Existing T&E/V&V practices accommodate 
neither the basic properties of autonomous systems, as expected by AI and 
indicated by decades of deep fundamental research into the behavior of 
complex adaptive systems, nor the requirements they must meet, as weapon 
systems (as spelled out by DoD Directive 3000.09). 

 Gap 3: A lack of a universally agreed upon conceptual framework for 

autonomy that can be used both to anchor theoretical discussions and to serve 
as a frame-of-reference for understanding how theory, design, implementation, 
testing, and operations are all interrelated. A similar deficiency exists for 
understanding the role that trust plays in shaping a human operator’s 
interaction with an autonomous system. The Defense Science Board’s most 
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recent study on autonomy33 warns that “inappropriate calibration” of trust 
during “design, development, or operations will lead to misapplication” of 
autonomous systems, but offers only a tepid definition of trust, and little 
guidance on how to apply it. 

 Gap 4: DoD’s current acquisition process does not allow for a timely 

introduction of “mission-ready” AI/autonomy, and there is a general 
disconnect between system design and the development of concepts of 
operations (CONOPS). Unmanned systems are typically integrated into 
operations from a manned-centric CONOPS point of view, which is 

unnecessarily self-limiting by implicitly respecting human performance 
constraints. 

Recommended studies 

While not even AI experts can predict how AI will evolve in even the nearterm future 

(much less project its possible course over 10 or more years,34 or predict AI’s impact 
on the development of military autonomous systems), it is still possible to anticipate 
many of the key conceptual, technical, and operational challenges that DoD will face 
in the coming years as it increasingly turns to and more deeply embraces AI-based 
technologies, and fully enters the “Robotic Age.” From an operational analysis 
standpoint, these challenges can also be used to help shape future studies: 

Recommendation 1:  Help establish dialog between commercial research and 

development and DoD. 

Institutions specializing in operational analysis are well 
suited to act as “go betweens” linking the academic and 
commercial research communities with military culture / 

operational needs. Assuming that Secretary of Defense 

                                                   
33 Summer Study on Autonomy, Department of Defense, Defense Science Board, Task Force 
Report, Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, 
June 2016: https://www.hsdl.org/?view&did=79464. 

34 S. Armstrong, K. Sotala, and S. hÉigeartaigh, “The errors, insights and lessons of famous 
AI predictions – and what they mean for the future,” Journal of Experimental & Theoretical 
Artificial Intelligence 26, no. 3, 2014;  D. Fagella, “Artificial Intelligence Risk – What Researchers 
Think is Worth Worrying About,” Tech Emergence, 20 March 2016: 
http://techemergence.com/artificial-intelligence-risk/. For the most recent survey of expert 
opinion see: V. Muller and N. Bostrom, “Future Progress in Artificial Intelligence: A Survey of 
Expert Opinion,” in Fundamental Issues of Artificial Intelligence, edited by V. Muller, Springer-
Verlag, 2016.  
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Ashton Carter’s Defense Innovation Unit-Experimental (DIUx) 
program survives into the next administration,35 operationally 
informed and technically knowledgeable analysts can help 
stakeholders better “understand” each other. Cross-
fertilization with the Naval Postgraduate School (NPS) may 
also pay dividends.36 

Recommendation 2:  Develop an operationally meaningful conceptual 

framework for autonomy.  

For example, build on lessons learned from the National 
Institute of Standards and Technology’s (NIST’s) stalled 
evolution of its ALFUS (Autonomy Levels for Unmanned 
Systems) framework, and develop the skeleton of an idea 
proposed by DoD’s Defense Science Board’s 2012 report on 
autonomy.37 

Recommendation 3:  Develop measures of effectiveness (MOEs) and measures of 

performance (MoP) for autonomous systems.  

Develop a methodology by which the effectiveness of 
autonomous systems can be measured at all levels (e.g., 
developers, program managers, decision-makers, and 
warfighters) and across all required functions, missions, and 
tasks (e.g., coordination, mission tasking, training, 
survivability, situation awareness, and workload). 

Recommendation 4:  Use nontraditional modeling and simulation (M&S) 

techniques to help mitigate AI/autonomy-related 

dimensions of uncertainty.  

As DoD moves into the Robotic Age, M&S is moving away 
from “simulations as distillations” of real systems (for which 
M&S has traditionally been used to develop models in order 
to gain insights into the real system), to “simulation-based 
rules and algorithms as descriptions” of real (i.e., engineered) 

                                                   
35 DIUx has been established to help facilitate the discovery and development of capabilities 
and technologies outside DoD’s normal acquisition pipeline. Ref: https://www.diux.mil/. 

36 For example: NPS’s Consortium for Robotics and Unmanned Systems Education and 
Research (CRUSER: https://my.nps.edu/web/cruser), and Autonomous Systems Track 
(http://my.nps.edu/web/ast). 

37 The Role of Autonomy in DoD Systems, DoD Defense Science Board, Task Force Report, 
Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, July 2012. 
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robots and behaviors. It is here, at the cusp between exploring 
behaviors and prescribing rules that generate them (e.g., 
engineering desired swarm behaviors), that M&S can help 
mitigate some of the challenges and uncertainties of 
developing autonomous systems and robotic swarms. For 
example, while “swarm engineering” methods exist to 
facilitate the unique design requirements of robotic swarms, 
no general method exists that maps individual rules to 
(desired) group behavior.38  

Multi-agent based modeling techniques39 are particularly well 
suited for developing these rules, and, more generally, for 
studying the kinds of self-organized emergent behaviors 
expected to arise in coupled autonomous systems (e.g., “How 
sensitive is an autonomous system’s behavior to changes in 
its physical environment?”, “What new command and control 
architectures will be needed for robotic swarms?”, and “How 
will the control and behavior of a swarm scale with its size 
and mission complexity?”).  

Recommendation 5:  Apply wargaming techniques to help develop new CONOPS.   

Wargaming can be used to help identify and develop new 
CONOPS, apply lessons-learned from the experience of using 
deployed systems, explore options to counter uses of 
autonomy by potential adversaries, and assist in training (e.g., 
by exploring trust issues in human-machine collaboration). 
Wargames can also stimulate and nurture a more unified 
approach to understanding autonomous system performance 
and behavior, provided that they are conducted with the 
support and participation from across all military services 
and domains.  

                                                   
38 I. Navarro and F. Matia, “An Introduction to Swarm Robotics,” International Scholarly 
Research Notes, Vol. 2013, 2013:  https://www.hindawi.com/ journals/isrn/2013/608164/. 

39 A. Ilachinski, Artificial War: Multiagent-Based Simulation of Combat, World Scientific, 2004. 
See also: A. Ilachinski, “Modelling insurgent and terrorist networks as self-organized complex 
adaptive systems,” International Journal of Parallel, Emergent and Distributed Systems 27, 
2012; A. Ilachinski, AOEWSim: An Agent Based Model for Simulation Interactions Between Off-
Board EW Systems and Anti-Ship Missiles, CNA, DWP-2013-U-004757, 2013; A. Ilachinski and M. 
Shepko, FAC/FIAC Simulation (FFSim): User’s Guide, CNA, Annotated Briefing, 2015. 
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Recommendation 6:  Develop new T&E/V&V standards and practices 

appropriate for the unique challenges of accrediting 

autonomous systems.   

For example, help ameliorate basic gaps in testing in terms of 
accommodating complexity, uncertainty, and subjective 
decision environments, by appealing to and exploiting lessons 
learned from the development and accreditation practices 
established by the complex system theory and multiagent-
based modeling research communities. 

Recommendation 7:  Explore basic human-machine collaboration and interaction 

issues.   

As autonomy increases, human operators will be concerned 
less with the manual control of a vehicle, and more with 
controlling swarms and directing the overall mission: “What 
are the operator’s informational needs (and workload 
limitations) for controlling multiple autonomous vehicles?” 
“How do humans keep pace with an accelerating pace of 
autonomy-driven operations?” “What kinds of command-and-
control relationships are best for human-machine 
collaboration?” “How are human and autonomous-system 
decision-making practices optimally integrated?” and “What 
data practices are key to developing shared situation 
awareness?” 

Recommendation 8:  Explore the challenges of force-integration of increasingly 

autonomous systems.   

Essentially all force-integration issues are, as yet, 
undetermined. They must consider not just “low hanging 
fruit” extensions of existing CONOPS, in which the human 
component is simply replaced with unmanned systems and 
“operational value” of human performance is scaled to 
accommodate “better” performance (e.g., endurance, 
survivability), but brainstorm heretofore nonexistent tactics, 
operations, and missions that fully embrace existing and 
anticipated future autonomous capabilities. What is the 
tradeoff between large numbers of simple, low-cost (i.e., 
“disposable”) vehicles and small numbers of complex (multi-
functional) ones? 

The operationalization of robotic swarms, in particular, 
represents a heretofore largely untapped dimension of the 
mission space, and will require the development of new 
CONOPS. The swarm may be used as a radically new form of 
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precision coordinated “en masse” guided munition; as a self-
healing area surveillance network (which includes collecting 
and assimilating data on an adversary’s Internet-of-Things 
(IoT);40 or as an adaptive distributed electronic jammer.  

Recommendation 9:  Explore the cyber implications of autonomous systems.    

Explore what new features increased AI-driven autonomy 
brings to the general risk assessment of increasingly 
autonomous unmanned systems. On one hand, autonomy 
may potentially reduce a force’s overall vulnerability to 
jamming or cyber hacking. For example, communications loss 
over a jammed data link may be compensated for by the 
ability of autonomous vehicles to continue performing their 
mission). On the other hand, autonomy itself may also be 
more, not less, vulnerable to a cyber intrusion. For example, 

an adversary may gain “control,” or otherwise deliberately 
“perturb” the behavior of an autonomous system; it may also 
be more difficult to detect embedded malware. In the latter 
context, consider some future variants of incidents such as 
the Iranian capture of an RQ-170 Sentinel in 2011,41 and the 

“keylogging” virus that infected the UAV-control-computers at 
the Creech Air Force Base in Nevada.42 

Recommendation 10:  Explore operational implications of ethical concerns over 

the use of lethal autonomous weapon.    

Analyze issues of accountability, legality, and liability in 
arguments put forth by various “Ban LAWS” movements. 
Examine the possible constraints on missions (along with 
other associated impediments to the design and development 
of autonomous systems) that may result from an 
international ban (or set of limits) imposed on the 
development or deployment of LAWS, such as might come out 
of the United-Nations-sponsored government experts’ 
negotiations scheduled to take place sometime in 2017. 

                                                   
40 G. Seffers, “Defense Department Awakens to Internet of Things,” Signal, 1 Jan 2015: 
http://www.afcea.org/content/?q=defense-department-awakens-internet-things. 

41 The Iranian government announced that the RQ-170 was captured by its cyber warfare unit: 
“Iran shows film of captured US drone,” BBC News, 8 Dec 2011: http://www.bbc.com/news/ 
world-middle-east-16098562. 

42 N. Shachtman, “Exclusive: Computer virus hits U.S. drone fleet,” Wired, 7 Oct 2011. 
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 Introduction 

The industrial commercial sector is currently undergoing a dramatic transformation 
due to the rapid growth of robotics and other artificial intelligence (AI) technologies, 
from drones, to self-driving cars, to virtual reality, to wearable devices, to human 
brain-to-brain interface technologies, to deep-learning machine learning techniques.1  

Twenty years ago, in 1997, Twitter and Facebook did not yet exist,2 and Google had 
just appeared on the technological landscape.3 Back then, the human genome had not 
yet been sequenced; today, commercial genome sequencing products are available 
for individual purchase.4 In AI, IBM’s DeepBlue chess computer had just defeated 
Gary Kasparov, the (then) reigning chess champion;5 in 2016, Google’s AlphaGo 

program beat one of the highest ranked players in the world at the game of Go (a 
game that is so much more “complex” than chess as a problem for an AI to “solve,” 
that prior to AlphaGo’s victory, most AI experts believed that it could not be done for 

another 15-20 years).6 Self-driving cars were confined to basic research programs in 
1997,7 but Google’s prototype appeared in 20098 and, by the end of 2016, the total 
number of miles driven by Tesla’s first-generation commercially available Autopilot-

                                                   
1 J. Kadtke and L. Wells II, Policy Challenges of Accelerating Technological Change: Security 
Policy and Strategy Implications of Parallel Scientific Revolutions, Center for Technology 
and National Security Policy, National Defense University, Sep 2014. 

2 S. Edosomwan, “The History of Social Media and its Impact on Business,” The Journal 
of Applied Management and Entrepreneurship 16, no. 3, 2011. 

3 https://www.google.com/about/company/history/. 

4 Science Exchange lists 37 labs offering services (as of this writing): 
https://www.scienceexchange.com/services/whole-genome-seq. 

5 M. Campbell, A. Hoane, Jr., and F. Hsu, “Deep Blue,”Artificial Intelligence 143, 2002. 

6 C. Koch, “How the Computer Beat the Go Master,” Scientific American, 19 March 2016. 

7 Carnegie Mellon University's Navlab project semi-autonomously completed a 3,100 mile 
cross-country in 1995: http://www.cs.cmu.edu/afs/cs/usr/tjochem/www/nhaa/nhaa_home_ 
page.html.8 M. Harris, “How Google’s Autonomous Car Passed the First U.S. State Self-Driving 
Test,”IEEE Spectrum, 10 Sep 2014. 

8 M. Harris, “How Google’s Autonomous Car Passed the First U.S. State Self-Driving Test,”IEEE 
Spectrum, 10 Sep 2014. 
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driven cars had exceeded 300 million miles.9 And, while simple radio-controlled 
aircraft were in the hands of amateur hobbyists back in 1997,10 it was only in the last 
decade or so that today’s cheap, lightweight, quadcopters (which use advanced 
electronics for stability and flight control) entered the market.11 The market volume 
for consumer drones was over 6 million units in 2015, and is projected to increase 
tenfold to 67.9 million by 2021.12 The total global market for commercial applications 

of UAS technology is estimated to go over $125 billion by 2020 (compared with $2 
billion today).13 

A recent study of the future of robotics and AI concluded that the emergence of 
“intelligent machines” will essentially define the next industrial revolution, 
estimating that smart machines and robots will perform 45% of all manufacturing 
tasks by 2025 (compared to about 10% in 2016).14 Global spending on commercial 
and industrial robotics is estimated to be over $43 billion per year by 2018.15 A 
recent study conducted by Bank of America/Merrill Lynch projects that the total AI 
market (valued at $2 billion in 2015), will grow to $36 billion by 2020, and to $127 
billion by 2025.16 

The military is certainly a part of these recent developments. For example, even 
relatively “old” technologies such as the Predator (which entered production in 

                                                   
9 F. Lambert, “Tesla has now 1.3 billion miles of Autopilot data going into its new self-driving 
program,” Electrek, 13 Nov 2016. 

10 The first company to offer model airplane kits for sale was Radioplane Co. Inc., founded in 
1935 by Reginald Denny B. Benchoss, “A Brief history of the drone,” Hackaday, 26 Sep 2016. 

11 The personal drone movement can be traced to: (1) an online community and forum called 
DIYDrones.com, and founded in 2007 by Chris Anderson (future CEO of 3D Robotics), where 
technically minded hobbyists could meet, share ideas, and discuss building drones; and (2) the 
DJI Phantom, the first small quadcopter that was desigend specifically for consumers and put 
on sale in 2014 (C. Guillot, “Commercial drones,” Business Researcher, 18 Jan 2016). 

12 “Consumer Drone Sales to Increase Tenfold to 67.7 Million Units Annually by 2021,” Tractica, 
6 July 2016. 

13 Rise of the Drones, Allianz, 2016: www.agcs.allianz.com/assets/PDFs/Reports/ 
AGCS_Rise_of_the_drones_report.pdf.   

14 “Robot Revolution: Global Robot an AI Primer,” Thematic Investing, Bank of America and 
Merrill Lynch, 16 Dec 2015: https://www.bofaml.com/content/dam/boamlimages/documents/ 
PDFs/robotics_and_ai_condensed_primer.pdf. 

15 M. Horowitz, “The Looming Robotics Gap,” Foreign Policy, May 5, 2014: 
http://www.foreignpolicy.com/articles/2014/05/05/the_looming_robotics_gap_us_military_tec
hnology_dominance. 

16 Thematic Investing: Robot RevolutionGlobal Robot & AI Primer, Bank of America/Merrill 
Lynch, 16 Dec 2015. 
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1997)17 and Packbot18 ground robot (first deployed in 2002) have already 
demonstrated their value. However, what these technologies represent to the military 
as a whole (and the Navy, in particular)tactically, operationally, and as part of a 
roadmap that can potentially redefine how warfare is conducted in both near-term 
and far-term futures (toward “war in the robotic age”19)has not yet been seriously 
addressed on an analytical level. Arguably, autonomous weapon systemsand 
related hybrid robot-human technologies, interfaces, and other combined biological 
and electronic systemsare already transforming a “merely” networked force into a 
genuine swarm, and, collectively, have the potential to be as disruptive to 
conventional military wisdom and practice, as digital data links once were a 
generation or so ago. As burgeoning anti-access weapons curtail traditional channels 
of power projection (and non-state actors themselves deploy “robot swarm” 
weaponry),20 autonomous systems may, sooner rather than later, be the only “go to”  
technology that reliably penetrates the enemy space. However, the global spending 
on military robotics is estimated to reach only $7.5 billion per year by 2018,21 so 
thatwhen compared to the $43 billion per year estimate quoted above for the 
commercial sectorit can be anticipated that much of the near-term progress will 
not, as in priori generations, come from the U.S. defense sector. 

The Navy is laudably developing new “swarming” technologies. Two recent examples 
are the Office of Naval Research’s LOCUST = Low Cost (Unmanned Aerial Vehicle 
(UAV) Swarm Technology,22 and a 2014 demo of CARACaS = Control Architecture for 
Robotic Agent Command Sensing, in which 13 unmanned surface vessels escorted a 
manned control ship through the James River.23 (Many more appear throughout this 
white paper.) However, the concomitant operational analysis needed to understand 
the potentially revolutionary impact of these technologies on future military 
operations is lagging.   

                                                   
17 http://www.airforce-technology.com/projects/predator-uav/. 

18 http://www.army-technology.com/projects/irobot-510-packbot-multi-mission-robot/. 

19 S. Brimley and P. Scharre, “Time to Get Ready for War in the Robotic Age,” Defense One, 26 
Jan, 2014. 

20 R. Bunker, Terrorist and Insurgent Unmanned Aerial Vehicles: Use, Potentials, and Military 
Implications, U.S. Army War College, Strategic Studies Institute, August 2015. 

21 P. Scharre, Robotics on the Battlefield Part II: The Coming Swarm, Center for a New American 
Security, Oct 2014. 

22 http://www.onr.navy.mil/Media-Center/Press-Releases/2015/LOCUST-low-cost-UAV-swarm-
ONR.aspx. 

23 http://www.onr.navy.mil/Media-Center/Press-Releases/2014/autonomous-swarm-boat-
unmanned-caracas.aspx. 
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Organization of this report 

This report summarizes the results of an “exploratory” study of the state-of-the-art 
of AI, machine-learning, and robot technologies, their potential future military 
implications for autonomous (and semi-autonomous) weapon systems, and the 
development of general autonomy-centric concept of operations (CONOPs) and 
swarm-vs-swarm combat tactics.  

The study has three main goals: 

1. Identify (and provide a context for) key technical issues and analysis gaps. 

2. Provide a roadmap of opportunities and challenges. 

3. Recommend potential future studies. 

The main body of the report may be viewed as a prolonged evidence-based written 
“argument” justifying its core thesis (defined below), and culminating with a list of 
study recommendations. It is structured, thematically and organizationally, around a 
set of basic questions: 

 What is the state-of-the-art in artificial intelligence and robotics technology? 

 What is a swarm? Can it be reliably and predictably “controlled”? How? 

 What potential impacts will robotic swarm technology have on military 
operations? 

 Will robot-swarm technology gracefully enfold within (and around) traditional 
mission areas, or will it fundamentally transform the nature of warfare?  

 What does “autonomy” really mean?  

 What are the tradeoffs between human-based and autonomous systems? 

 What are the tradeoffs between the operational benefits and risks of 
autonomous systems? 

 Can DoD’s current acquisition process accommodate the accelerating pace 
of innovations and developments in AI? 

 Are traditional forms of Test and Evaluation (T&E) and Verification and 
Validation (V&V) adequate for autonomous systems? 

 Will existing command-and-control (C2) architectures have to be changed in 
order to accommodate various levels of autonomy? 

 What are the ethical and moral questions and risks associated with 
autonomous weapon systems? (The most egregious is the spectre of the 
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“Frankenstein” scenario—i.e., the “…haunting fear that [we] will be unable to 
control what [we] create.”24)  

 What new forms of military operations research will be required to address 
autonomous weapons systems? 

Each of these questions is addressedand answered, to varying degreesin the 

sections that follow. Of course, given the vast scope of the subject matter of this 
report, it is impossible, even in a document as lengthy as this one, to cover all 
pertinent issues with equal depth. It is our hope that, at the very least, the document 
will serve as a stepping stone for analysts interested in AI, robots, and autonomy to 
pursue their own research into these subjects.  

Apart from providing specific recommendations on how military operations research 
analysis, in general, and the Center for Naval Analyses (CNA), in particular, can help 

the Navy (and DoD) navigateand better understand the conceptual and technical 

dimensions ofa path toward increasing levels of autonomy, this report is also 

intended to serve as a general “go to” sourcebook of information about AI and swarm 
technologies as they relate to military operations, and to provide a summary of the 
recent spate of DoD directives, memos, and task force reports on the future role of 
autonomy. The discussion, arguments, and assertions that appear herein are 
supported by a bibliography containing over 150 references to original source papers 
and research material, and over 725 footnotes (that contain several hundred links to 
additional online sources of information and data). The appendix contains a set of 
slides that summarize a selection of recent “pushing the envelope” technological 
innovations (which have been made both inside and outside of the military). 

Terminology  

Much confusion can (and does) arise in the literature when terms such as 
“autonomy,” “automated,” and “robot” are used inconsistently, at best, and 
incorrectly, at worst. To avoid unnecessary confusion, we begin our discussion by 
introducing basic nomenclature (which will be revisited throughout the report) :25 

                                                   
24 T. Simpson, “Robots, trust, and war,” Philosophy and Technology 24, May 2011. 

25 A. Finn and S. Scheding, Developments and Challenges for Autonomous Unmanned Vehicles: 
A Compendium, Springer-Verlag, 2010; R. Mittu, D. Sofge, A. Wagner, and W. Lawless, editors, 
Robust Intelligence and Trust in Autonomous Systems, Springer-Verlag, 2016; R. Murphy, 
Introduction to AI Robotics, MIT Press, 2000. 
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 Artificial Intelligence (AI): The ability of a system “devoted to making 

machines intelligent,” where intelligence is that “quality that enables an 
entity to function appropriately and with foresight in its environment.”26 

 Intelligent System (IS): An application of AI to a particular problem domain 

(referred to as “narrow AI”). It is typically very specialized, though 
increasingly capable of “super human” capability (see discussion in a later 
section), and does not represent “general intelligence” (or “general AI”). 

 Automated System: A physical system that functions with no (or limited) 
human operator involvement, typically in structured and unchanging 
environments, and whose performance is limited to the specific set of actions 
it has been designed to accomplish. Typically these are well-defined tasks 
that have predetermined responses (i.e., behaviors are “scripted” according to 
simple rule-based prescriptions). 

 Autonomous System (AS): An IS that is able to independently compose and 

select among alternative courses of action to accomplish goals based on its 
knowledge and understanding of the world, itself, and the local, dynamic 
context. Unlike automated systems, autonomous systems are designed to 
respond to situations that are not pre-programmed or anticipated prior to 
system deployment.  

There are three broad classes of autonomy as it pertains specifically to the 
role it plays in the use weapons, delineated by the degree of control that 
humans can exert on the weapon deployment:27 

o Semi-autonomous (“human in the loop”): Once the weapon system is 

activated, it engages only those targets that have been selected by a 
human operator. (Specific functions may include acquiring, tracking, 
and identifying, cueing, and prioritizing potential targets.) 

o Supervised autonomous (“human on the loop”): Once activated, the 

weapon system operates under human supervision. (That is, the 
human operator can intervene and terminate engagements, including 
in the event of a weapon system failure.) 

o Fully autonomous (“human out of the loop”): Once activated, the 
weapon system may select and engage targets without further 

                                                   
26 N. Nilsson, The Quest for Artificial Intelligence: A History of Ideas and Achievements, 
Cambridge University Press, 2009. Note that there is no universally agreed-upon definition 
of what “AI” is. The definition provided here is intended only to “set the stage” for discussion. 

27 DoD Directive 3000.09, Autonomy in Weapon Systems, Nov 2012: http://www.dtic.mil/whs/ 
directives/corres/pdf/300009p.pdf. 
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intervention by a human. (No human either supervises the operation 
of the task nor has an ability to intervene in the event of a system 
failure.) 

 Robots: Physical systems with on-board sensors and actuators that are able to 

operate autonomously or semi-autonomously in cooperation with humans. 
Basic robotics research (examples of which are given later) focuses on 
developing adaptive intelligence to enable robots to cope with unstructured 
dynamic environments.28 

 Agent: A self-activating, self-sufficient and persistent computation. It may be 

an IS; may include significant automation; may be able to modify the manner 
in which it achieves the objective; and may reside and act entirely in the 
cyber world, or be embodied in a physical system such as a robot. 

Of course, the intuitive “simplicity” of most of these definitions deceptively belies 
the multiple nested “devil is in the details” layers of complexity that must be dealt 
with, and from which, as will be argued, come both opportunities and challenges. 

Core thesis 

This study is predicated on three tenets (the justification for which, and meaning of, 
will be provided and amplified during the ensuing discussion): 

 Tenet-1: That the exponential growth of affordable computing power, 

measured in terms of raw calculations per second, may soonpossibly 

within 10-15 yearsachieve a relative parity with that of the human brain (~ 

10 petaflops = 1016 computations per second (CPS) = 10,000 trillion CPS);29 

 Tenet-2: That limited domain AIthat is, AI applied to “solving” relatively 

narrowly focused but fundamental “problems” such as image and speech 
recognition, trivia, chess, and Go (tasks that until fairly recently were 

                                                   
28 The term “robot” is based on the Czech word robota (meaning “serf or slave”) and was 
introduced as a broad cultural lexicon in Karel Capek’s 1921 play R.U.R. (Rossum’s Universal 
Robots). In the beginning of the play, robots are synthetic humans that work in factories to 
produce low-cost goods. The play ends as these robots kill off the human race. 

29 China has reportedly far surpassed the 10 petaflop level earlier this year, having achieved 
93 petaflops in its Sunway TaihuLight supercomputer: M Feldman, “China Tops 
Supercomputer Rankings with New 93-Petaflop Machine,” Top 500, 20 June 2016: 
https://www.top500.org/news/china-tops-supercomputer-rankings-with-new-93-petaflop-
machine/. 
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regarded as “too hard” for current-generation AI)already regularly 

outperforms humans.30  

 Tenet-3: Which rests on the observation that, although DoD’s total drone-
related spending remains high (e.g., $5.8 billion in FY16 and $4.6 billion in 
FY17),31 the procurement of new systems (specifically, of medium-sized and 
larger UAVs: MQ-1, RQ-4, MQ-8, MQ-9, RQ-11) is declining: from 1,211 in 

FY12, to 288 in FY13, 54 in FY14, …, and 31 in FY17).32 Specifically, the third 
tenet is that there are two drivers for this reduction: (1) that purchases prior 
to 2012 were in direct response to high demand for Iraq and Afghanistan 
(and that declining requirements are met by the current generation), and 
(2) that, generally speaking, the technology behind the drones that were being 
procured in large numbers prior to 2012 was developed mainly by industry, 
which the military started buying in droves after recognizing its utility.33 

Assuming that all three tenets are valid, this study’s core thesis is that these tenets, 
collectively, provide an enormous opportunity for military operations research 
analysis (MORA):  

 To help the DoD better understand emerging new AI and robotrelated 

technologies (e.g., by developing taxonomies and conceptual frameworks 
within which otherwise overly complex “systems” can be systematically 
examined); 

 To provide an impartial bridge between military requirements and the 
products of commercial and academic research (e.g., MORA organizations 
can be used as “go betweens” linking DoD and private technology 
industries);34 and 

                                                   
30 N. Bostrom, Superintelligence: Paths, Dangers, Strategies, Oxford University Press, 2016. 

31 DoD FY17 President’s Budget Proposal, Release No: NR-046-16, Feb. 9, 2016. 

32 Ibid. 

33 For example, the Gnat-750 drone (a few prototypes of which were built by General Atomics in 
1980s), was bought by the CIA during the Clinton administration because it was looking for a 
surveillance platform to use in Bosnia. While the Gnat-750 was plagued by bugs and did not 
perform well, its "value" was duly noted, and subsequently led to the development of its direct 
follow-on, the Predator. Ref: R. White, “The Man Who Invented the Predator,” Wired, April, 2013. 

34 A recent example of a DoD-sponsored laison effort is the Defense Innovation Unit-
Experimental (DIUx) office, established in 2015 in Sunnyvale, California, by Secretary of 
Defense Ashton Carter. DIUx’s charter is to seek out innovative technologies and talent from 
Silicon Valley. Ref: M. Eaglen, “Tech-challenged Pentagon searches for a Silicon ally,” American 
Enterprise Institute, 1 Feb 2016: https://www.aei.org/publication/tech-challenged-pentagon-
searches-for-a-silicon-ally/. 
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 To help develop new methods and analysis techniques, and new measures of 
effectiveness and performance, for studying unmanned systems with 
increasing levels of autonomy (beyond the “low hanging fruit” variety of 
assessing basic tradeoffs between manned and unmanned systems, 
calculating optimal paths, or developing targeting algorithms).  

History of AI/robotics/swarm technologies 
and unmanned weapon systems  

The entwined history of AI, robotics, and swarm-related technologies (both software 
and hardware variants) is both too long and too rich for us to provide anything but a 
brief summary of selected milestone events. Here is a list of the major “takeaways”:  

 The military roots of unmanned systems go back over 100 years. 

 There is generally a long period (10 to 15+ years) of gestation before a 
technology matures and is available for widespread use. 

 The seeds of autonomy were already in place in the early 1990s. 

 Cold war era military innovations (stealth, precision navigation, satellites, 
networking, etc.) were generally spurred by government research and 
development. 

 There is an accelerating pace of technology innovation. 

 There is a widening (though opportunistic) “analysis gap” between 
requirements and technology. 

 There are increasingly complex tradeoffs between controllable and 
unanticipated behaviors. 

 The technical enablers of 20XX-era (e.g., autonomy, robotics, big data, deep 
learning, etc.) are driven primarily by the commercial world and the academic 
research community. 

These takeaways will be amplified by the commentary that appears in this section, 
and more deeply supported by discussions of specific topics as they arise 
throughout the main narrative. 
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Timeline of unmanned systems  

Unmanned military weapon systems have a long (and often surprisingly rich) history 
that dates back over 150 years, to Austria’s use of pilotless balloons to drop bombs 
on Venice in 1849,35 and encompasses both world wars.36   

Figures 1 and 2 show timelines of selected milestone events in the development and 
deployment of unmanned systems. Figure 1 covers the “early” period, through the 
1980s Iran-Iraq war, and figure 2 covers more recent events.  

Figure 1.  Timeline of selected milestones in the development and use of 
military unmanned systems (from 1849 to 1988) 

 

The first military use of a UAV dates back to World War I, when, in 1917, the UK 
attempted (unsuccessfully) to use a radio-controlled Sopwith Camel biplane loaded 
with dynamite to dive-bomb a German zeppelin.37 In World War II, attempts (also, 
largely unsuccessful) were made to develop unmanned B-17 and B-24 bombers to 
dive into German military-industrial targets. U.S. fighter pilots used some of the 
earliest drones for target practice (e.g., Dennymite, a radio-controlled plane invented 

                                                   
35 L. Hargrave, Remote Piloted Aerial Vehicles: An Anthology, Australia's National Library in 
Canberra: http://www.ctie.monash.edu/hargrave/rpav_home.html#Beginnings. 

36 H. Everett, Unmanned Systems of World Wars I and II, MIT Press, 2015. 

37 P. Singer, Wired for War: The Robotics Revolution and Conflict in the 21st Century, Penguin 
Books, 2009. 
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by a British World War I pilot, Reginald Denny).38 And Germany’s V-1 “is arguably one 
of the first widely used “autonomous” weapons (over 8,000 so-called “flying bombs” 
were used).39 

Figure 2.  Timeline of selected milestones in the development and use 
of military unmanned systems (1988 to present day) 

  

During the Cold War, the U.S. military’s interest in unmanned system was marginal, 
and focused on the reconnaissance mission (e.g., the AQM-91 “Fire Fly” drones were 
developed during Vietnam War to fly over China).40 A low point was the U.S. Army’s 
Aquila program, which was launched in 1979 with the goal of developing a remotely 
operated drone that could be used to provide surveillance over enemy territory. But 

                                                   
38 Ibid., p. 49. Denny also founded Radioplane Co. Inc., the first company to offer model 
airplane kits for sale: B. Benchoss, “A Brief history of the drone,” Hackaday, 26 Sep 2016. 
The word “drone” was first used to describe aerial vehicles when the sound of low-flying 
biplanes in the 1930s was likened to the sound of a cloud of bees (and, in Old English, 
"drone" denotes a male honeybee: B. Zimmer, “The Flight of 'Drone' From Bees to Planes,” 
The Wall Street Journal, 26 July 2016. 

39 P. Springer, Military Robots and Drones: A Reference Handbook, ABC-CLIO, 2013. 

40 “Teledyne Ryan AQM-91 Firefly,” Directory of U.S. Military Rockets and Missiles: 
http://www.designation-systems.net/dusrm/m-91.html. 
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the program was canceled eight yearsand about $1 billion dollarslater with only a 

few prototypes ever built.41 

The turning point with regard to the military’s interest in UAVs arguably is marked 
by the Israeli Air Force’s coordinated use of manned and unmanned aircraft in its 
victory over the Syrian Air Force in 1982 (in which 86 Syrian aircraft were destroyed 
over the Bekaa Valley with minimal Israeli losses).42 Israeli drones provided mainly 
real-time surveillance, but were also used as electronic decoys and jammers. These 
early Israeli drone successes arguably jump-started the U.S. military acquisition of 
UAVs (e.g., the Hunter RQ-5A / MQ-5B/C UAVs derive from Israeli models).  

By the First Gulf War (which may be considered the first “UAV war,” in which over 
500 sorties and 1,640 hours were logged with UAVs),43 “at least one UAV was 
airborne at all times during Desert Storm.”44 By way of comparison, the total number 
of UAV hours flown in the Second Gulf War is estimated to be over 500,000.45 Also, 
notably, since the First Gulf War there has not been a conflict where UAVs were not 
deployed. 

Other milestones include: 

 Confederate and Union forces both flew balloons for reconnaissance 
missions during the civil war. (Though these balloons were obviously not 
“unmanned systems,” they provide a benchmark for the number of years it 
took to progress from manned to unmanned flights for surveillance.) 

 Aerial surveillance emerged during the 1898 Spanish–American War, when 
the U.S. military deployed a camera on a kite, thereby producing the world’s 
first aerial reconnaissance photos.46 

 The first demonstrations of a remote control by radio were orchestrated in 
the late 1890s by Nikola Tesla, culminating in an exhibition in 1897 at 

                                                   
41 P. Singer, Wired for War, p. 55. 

42 M. Dobbing and C. Cole, Israel and the Drone Wars: Examining Israel’s Production, Use and 
Proliferation of UAVs, Drone Wars UK, Jan 2014. 

43 J. Coyne, Airpower in the Gulf, Aerospace Education Foundation, 1992. 

44 Ibid. 

45 L. Baldor, “Military use of unmanned aircraft soars,” Associated Press, January 2 2008. 

46 N. Polmar et al., Spyplanes: The Illustrated Guide to Manned Reconnaissance and Surveillance 
Aircraft from World War I to Today, Voyageur Press, 2016. 
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Madison Square Garden, New York, when Tesla caused a small boat to obey 
commands from the audience.47 

 The first functioning unmanned aerial vehicle (UAV)the Kettering Bugwas 

developed in 1918 by Orville Wright and Charles F. Kettering.48 It was a bit 
over 12 feet long, four-and-a-half  feet high, weighed 530 pounds (loaded), 
had a maximum speed of 120 mph, and a range of 75 miles. Its armament 
was 180 pounds of high explosive. 

 Operations Aphrodite and Anvil were code names of the U.S. Air Force and 
U.S. Navy operations, respectively, to use B-17 and PB4Y bombers as 
precision-guided munitions against bunkers and other hardened/reinforced 
enemy facilities during World War II.49 

 Iranian Revolutionary Guard Corps speedboats use swarm tactics for first 
time during the Iran-Iraq war (1980-1988).50 

 The Predator’s maiden flight took place in 1994, with its first combat 
deployment (as an intelligence, surveillance and reconnaissance (ISR) 
platform) in Yugoslavia the following year.51 

 The first drone strike by the United States was a Hellfire-missile attack by 
a CIA Predator on October 7, 2001, in an unsuccessful attempt to kill Taliban 
Supreme Commander Mullah Mohammed Omar.52  

 The first air-to-air engagement between a UAV and a manned aircraft took 
place in December 2002, between an Iraqi MiG-25 and an American Predator 
UCAV armed with Stinger missile.53 (Both vehicles fired at each other, and the 
UAV was shot down.) 

                                                   
47 A. Marincic, “Tesla’s multi-frequency wireless radio controlled vessel,” in History of 
Telecommunications Conference, 2008: http://ieeexplore.ieee.org/document/4668708/ 

48 Kettering Aerial Torpedo “Bug,” National Museum of the Air Force, 7 April 2015: 
http://www.nationalmuseum.af.mil/Visit/MuseumExhibits/FactSheets/Display/tabid/509/Artic
le/198095/kettering-aerial-torpedo-bug.aspx. 

49 J. Olsen, Aphrodite: Desperate Mission, I Books, 2014. 

50 F. Haghshenass, Iran’s Asymmetric Naval Warfare, The Washington Institute for Near East 
Policy, Policy Focus #87, September 2008. 

51 R. Whittle, Predator: The Secret Origins of the Drone Revolution, Henry Holt and Co., 2014. 

52 C. Woods, “The Story of America's Very First Drone Strike,” The Atlantic, 30 May, 2015. 

53 D. Fulghum, “Predator’s Progress,” Aviation Week & Space Technology, March 3, 2003; 
M. Knights, Cradle of conflict: Iraq and the birth of modern U.S. military power, Naval Institute 
Press, 2005. 
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 BigDog is a dynamically stable quadruped robot developed by Defense 

Advanced Research Projects Agency (DARPA) in 2005, and represents a 
technological breakthrough in legged robotics.54 It is essentially a robotic 
packhorse, with an on-board computer that controls locomotion, processes 
sensors (including those for joint position, joint force, ground contact, 
ground load, a gyroscope, and a stereo vision system), and handles 
communications with the user. BigDog runs at 4 mph, climbs slopes up to 35 

degrees, walks across rubble, climbs muddy hiking trails, walks in snow and 
water, and carries a 340-pound load.55 BigDog’s descendent, the LS3 

(prototypes of which were demonstrated in 2012,56 and used in RIMPAC 
201457), can carry up to 400 pounds of gear and enough fuel for a 20-mile 
mission lasting 24 hours, and can automatically follow its leader via 
computer vision. The LS3 program was canceled in 2015 due to several 
limitations: its loud noise, its difficulty traversing certain terrains, and the 
general challenge of integrating it into a traditional Marine patrol (it was used 
mainly as a logistical device, rather than, as originally planned, a tactical 
one).58 

Proliferation of drones 

Not surprisingly, the September 11, 2001, terrorist attacks initiated a general flurry 
of advances in military technology related to unmanned systems, and caused the use 
of drones to grow dramatically. For example, the Air Force logged its first 250,000 
hours of drone flight time between 1995 and May 2007. But the next 250,000 hours 
of drone flight time took only a year and a half (from May 2007 to November 2008); 
and a third batch of 250,000 flight-time hours took just one year (December 2008 to 
December 2009).59 A July 2012 report by the U.S. Government Accountability Office 

                                                   
54 Before BigDog, most legged robots were either humanoid in design or patterned after insects. 
With its four legs, BigDog offers greater stability than a humanoid, and is able to carry heavier 
loads. M. Raibert, et al., “BigDog, the Rough-Terrain Quadruped Robot,” IFAC Proceedings 
Volumes, vol. 41, no. 2, 2008: http://www.sciencedirect.com/science/article/pii
/S1474667016407020. 

55 http://www.bostondynamics.com/robot_bigdog.html. 

56 http://www.bostondynamics.com/robot_ls3.html. 

57 S. Dietz, “Meeting LS3: Marines experiment with military robotics,” Marine Corps News, 
16 July 2014. 

58 H. Seck, “Marine Corps Shelves Futuristic Robo-Mule Due to Noise Concerns,” Military.com, 
22 Dec 2015: http://www.military.com/daily-news/2015/12/22/marine-corps-shelves-
futuristic-robo-mule-due-to-noise-concerns.html?ESRC=todayinmil.sm. 

59 L. Greenemeier, “The Drone Wars: 9/11 Inspired Advances in Robotic Combat,” Live Science, 3 
Sep 2011: http://www.livescience.com/15908-drone-wars-september-11-anniversary.html. 
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(GAO) examined the worldwide proliferation of UAVs, noting that in the seven years 
since its last accounting, “the number of countries that acquired an unmanned aerial 
vehicle (UAV) system nearly doubled from about 40 to more than 75.”60  

Figure 3 provides a graphical depiction of the proliferation of UAVs, highlighted by 
three colors: (1) grey, to indicate countries that have either themselves developed 
drones or have acquired them elsewhere,61 (2) orange, to indicate countries that have 
either class 2 or class 3 (i.e., “large”) drones, and (3) red, to indicate countries that 
have armed drones. DoD classifies UAVs into five categories (Group 1 through Group 

5), which are distinguished by maximum gross takeoff weight (MGTW), normal 
operating altitude (NOA), and maximum airspeed (see table 1).  

Figure 3.  Countries with unmanned aerial vehicles 

References: Jane’s Unmanned Aerial Vehicles and Targets, 2011; US Unmanned Aerial 
Systems, Congressional Research Service, 2012; Information Sharing and End-Use 
Monitoring on Unmanned Aerial Vehicle Exports, GAO Report, 12-536, Sep 2012; and J. 
Wilson, 2013 Worldwide UAV Roundup, American Institute of Aeronautics and Astronautics, 
July–August 2013. 

                                                   
60 Agencies Could Improve Information Sharing and End-Use Monitoring on Unmanned Aerial 
Vehicle Exports, U.S. Government Accountability Office Report GAO-12-536, Washington, DC, 
July 2012: http://www.gao.gov/assets/600/593131.pdf. 

61 Of the 31 counties that currently have large drones, 28 have either directly purchased some 
or all of them from another country or developed their drones with the help of another 
country. The main exporter of drone technology is Israel, which has exported its larger drone 
technology to 13 countries and assisted 4 others. France has directly exported to 3 countries, 
and the United States to 6, while helping at least one other country develop drone technology. 
Ref: C. Cole, “Is Drone Proliferation about to Explode?” Drone Wars UK, 25 May 2012. 
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Table 1. DoD UAV categories 

Category MGTW 
(lbs) 

NOA Airspeed 
(knts) 

Category 

Group 1 < 20  < 1200 above ground 
level (AGL) < 100 Raven 

Group 2 21 - 55 < 3500 AGL < 250 Scan Eagle 

Group 3 < 1320 
<18,000 mean sea 

level (MSL) 

< 250 RQ-7/ Shadow 

Group 4 > 13320 Any RQ-1 / MQ-1 
Predator 

Group 5 > 13320 > 18,000 MSL Any 
RQ-4 / 

Global Hawk 

Ref: U.S. Army Unmanned Aircraft Systems roadmap 2010-2035, Army UAS 
CoE Staff, U.S. Army UAS Center of Excellence (ATZQ-CDI-C). 
 
It is estimated that 31 countries have large military drones (i.e., Group-3+; see table 
1). And the weaponized drone club has recently grown to 11 nations, including the 

United States, the United Kingdom, China, Israel, Pakistan, Iran, Iraq, Nigeria, 
Somalia, and South Africa (two non-state organizations—Hamas and Hezbollah—are 
also on the list).62 As of this writing, eight countries have actually used armed drones 

in combat: the United States, Israel, the United Kingdom, Pakistan, Iraq, Nigeria, Iran, 
and Turkey (along with one non-state actor, Hezbollah).63 

In the United States alone, over 1 million civilian drones were sold in 2015, and on a 
global level multiple millions of drones, ranging from small toy drones to larger 
commercial models, are sold and purchased.64 Given this general availability of 
commercial drones, there is the growing concern that terrorists and insurgents will 
use UAVs for their attacks.65 Attempts to do so date back to at least 1994, when the 
Japanese apocalyptic cult Aum Shinrikyo attempted (but failed) to release the nerve 

                                                   
62 World of Drones: Military, International Security Data Site, New America Foundation: 
http://securitydata.newamerica.net/world-drones.html. 

63 Ibid. 

64 W. Zwijnenburg, “Terrorist drone attacks are not a matter of if but when,” Newsweek, 
29 April 2016: http://www.newsweek.com/drones-isis-terrorist-attacks-453867 

65 T. Burgers and S. Romaniuk, “The Next Generation of Terror: Swarming, Flying Bomb Robots,” 
The National Interest, 21 Dec 2016. 
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agent sarin using remote-controlled helicopters equipped with aerial spray systems.66 

The next attempt by a terrorist group to use a UAV (also unsuccessful) was by Osama 
bin Laden, when, in July 2001, he tried using remote-controlled airplanes to deliver 
an improvised explosive device (IED) attack on G8 Summit leaders, then meeting in 
Genoa, Italy. Numerous terrorist plots and missions subsequently followed.67 It is 
also well documented that Hezbollah has repeatedly attempted to attack Israel using 
commercially available UAVs with explosives,68 and ISIS has started using small 
drones packed with explosives as weapons.69 

Of course, both Russia and the People’s Republic of China have invested heavily in 
developing unmanned systems (in all domains: air, land, sea, and underwater), and 
both are poised to become major global exporters of such systems.  

China 

A recent DoD assessment of China’s military and security developments estimates 
that “China plans to produce upwards of 41,800 land- and sea-based unmanned 
systems, worth about $10.5 billion, between 2014 and 2023.”70 According to the 
report, at least four Chinese drones (the Xianglong, Yilong, Sky Saber, and Lijian, all 
introduced in 2013) are designed to carry precision-strike weapons, and the Lijian is 
a stealth drone. Some elements of China’s emerging fleet of drones were revealed at 
the Zhuhai 2016 Airshow.71 These included  Cloud Shadow (a semi-stealthy roughly 
the size of the MQ-9) and the CH-5 (which has a wingspan of 21 meters, can carry 
payloads of up to one ton, has a flight time of 60 hours and a range of 6,500 km, and 
can link with other drones). A technology demonstration showed several dozen 

                                                   
66 The same group later (in 1995) “successfully” carried out a sarin attack on a Tokyo subway. 
Ref: D. Rassler, Remotely Piloted Innovation: Terrorism, Drones and Supportive Technology, 
United States Military Academy, Oct 2016. 

67 R. Bunker, Terrorist and Insurgent Unmanned Aerial Vehicles: Use, Potentials, and Military 
Implications, U.S. Army War College, Strategic Studies Institute, August 2015. Bunker examines 
24 terrorist and insurgent (attempted) use of UAVs between 1994 and 2015. 

68 M. Hoenig, Hezbollah and the Use of Drones as a Weapon of Terrorism, Federation of 
American Scientists, 2014: https://fas.org/wp-content/uploads/2014/06/Hezbollah-Drones-
Spring-2014.pdf. 

69 B. Watson, “The drones of ISIS,” Defense One, 12 Jan 2017: http://www.defenseone.com/ 
technology/2017/01/drones-isis/134542/. 

70 Annual Report to Congress: Military and Security Developments Involving the People’s Republic 
of China 2015, Office of the Secretary of Defense, 7 April 2015: https://www.defense. 
gov/Portals/1/Documents/pubs/2015_China_Military_Power_Report.pdf. 

71 J. Lin and P. Singer, “China’s new fleet of drones: airshow displays the future of Chinese 
warbots and swarms,” Popular Science, 4 Nov 2016. 
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drones flying in swarm flight patterns, coordinated by an interdrone communication 
network. 

And in a recently reported live-fire test, Chinese CH-4 drones (1,300-kg UAVs with a 
345-kg payload and a 35-hour flight endurance at 4,000-meter altitude; comparable 
to the US MQ-9 Reaper) fired their missiles on command from pilots over 1,000 km 
away. Earlier Chinese-made drones were limited to direct line-of-site communications 
from a ground station.72 

Russia 

Russia’s “wake-up call” on the importance of having unmanned systems arguably 
came during the 2008 Russo-Georgian War.73 Georgian government forces used 
Israeli-made Hermes Elbit 450 surveillance drones to conduct reconnaissance flights 
over the conflict regions (thereby gaining a demonstrable advantage), but Russia’s 
own drones came too late to provide real-time intelligence. (Russian Defense Minister 
Anatoly Serdyukov reportedly forgot to sign an order authorizing their use.) This left 
the fighter jets and bombers that were sent on reconnaissance missions to 
compensate, needlessly vulnerable to attack. Since then, Russia has shown a 
commitment to developing unmanned systems (spurred, partly by the diminishing 
size of its army);74 however, their efforts to date have lagged their Western and East 
Asian counterparts in reach, distance, and strike capability.75 It was only in 2012 that 
the Russian Defense Ministry formed a department to manage drone research and 
development.76 

Having learned its lesson in 2008, Russia has deployed over 16 types of drones for 
reconnaissance, surveillance, and targeting during its invasion of Ukraine.77 Russia’s 

                                                   
72 J. Lin and P. W. Singer, “Chinese drones make key breakthrough, firing on command by 
satellite,” Popular Science, 8 June 2016. 

73 N. Clayton, “How Russia and Georgia's 'little war' started a drone arms race,” GlobalPost, 23 
Oct 2012: http://www.pri.org/stories/2012-10-23/how-russia-and-georgias-little-war-started-
drone-arms-race. 

74 M. Galeotti, “Russia turns to drones and robots as army shrinks,” Blouinnews, 15 Dec 2013. 

75 S. Bendett, “How Russia's Military Plans to Counter the Pentagon's Drone Swarms,” 
The National Interest, 10 Jan 2017. 

76 “‘This is not a computer game’—Putin on drone use in Russia,” Sputnik News: The Voice of 
Russia, 28 Nov 2013: http://sputniknews.com/voiceofrussia/news/2013_11_28/This-is-not-a-
computer-game-Putin-on-drone-use-in-Russia-4577/. 

77 P. Tucker, “Is Russia Beating the U.S. in the Drone Race?” The Fiscal Times, 29 Sep 2016. 
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state media has also recently announced that the T-14 Armata tank may be the 
world’s first fully autonomous tank.78 

DoD drone-related funding 

In FY01, DoD invested approximately $667 million on UASs.79 In FY12, total spending 
(including both development and procurement) had increased to $3.9 billion.80 And, 
in the proposed FY17 budget, DoD has allocated approximately $4.457 billion for 
drones (DARPA’s FY17 budget includes $301.5 million for research into drones, 
autonomy and robotics, compared to $283.9 million in FY16, and $233.2 million in 
FY14).81 The Navy’s portion of the FY17 budget, which includes the Marine Corps, 
includes a total of $1.74 billion for drone procurement, research, and construction 
projects, the largest portions of which are earmarked for the MQ-4C Triton ($465 
million), X-47B strike drone that is being retooled for aerial refueling ($90.4 million, 
for research), and the procurement and development of underwater drones ($279 
million). This can be compared to $2.14 billion in FY16, and $1.2 billion in FY15).82 
The Army’s FY17 budget includes $4.7 million to study swarming (with an additional 
$2.7 million to develop a counter-drone technology); and the Air Force’s FY17 budget 
includes $52 million to improve human-machine interaction and the autonomous 
capabilities of unmanned vehicles.83 

To get a sense of the rapid increase in the number of drones in DoD’s inventory, 

observe that from 1994when the Predator (RQ-1) made its maiden flightDoD’s 

inventory of unmanned aircraft grew to 163 in 2003 (with only 5 major programs), 
and to close to 11,000 in 2013 (distributed over the 13 major programs that cover all 
five UAV “group” categories, and account for 40% of all aircraft); see figure 4. 

The deeper story (which will segue our narrative into a discussion of AI, in general, 

and autonomy, in particular) may be gleaned from whatat first sightappears to 

be an inconsistency among DoD recent funding and policy trends (see insert plots A 
and B at bottom right of figure 4). For example, while DoD expects to increase its use 

                                                   
78 A. Zemlianichenko, “Armata Designers: This May be the First Unmanned Drone Tank,” 
Sputnik News, 13 June 2016: https://sputniknews.com/russia/201506131023298755/ 

79 J. Gertler, U.S. Unmanned Aerial Systems, Congressional Research Service, CRS Report for 
Congress, 3 Jan 2012. 

80 Program Acquisition Costs by Weapon System, Office of the Under Secretary of Defense 
(Comptroller)/CFO, February 2011. 

81 D. Gettinger, Drone Spending in the Fiscal Year 2017 Defense Budget, Center for the Study 
of the Drone, Bard College, Feb 2016. 

82 Ibid., pp. 9-13. 

83 Ibid., pp. 3-8 and 14-17. 
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of unmanned systems by nearly 50% over the next several yearsand total 

expenditure has risen (figure 4, Plot A)funding for the procurement of new medium 

and larger UAVs (i.e., MQ-1, RQ-4, MQ-8, MQ-9, RQ-11) has dropped sharply (figure 4, 

Plot B): from 1,211 (in FY12)  288 (in FY13)  54 (in FY14)   …  31 (in FY17).84  

Figure 4.  Inventory of major DoD UAVs 

Ref: Unmanned Systems Integrated Roadmap: FY2013-2038, U.S. Department of Defense. 

There are two plausible reasons for this:85 (1) the thousands of UAVs purchased 
before 2012 were procured to address the high demands for intelligence and other 
ongoing missions in Iraq and Afghanistan (and there are sufficient numbers of 
current generation UAVs to meet the declining requirements as U.S. forces withdraw 
from those areas); and (2) the UAVs that have been procured thus far were primarily 
developed not as a result of DoD requirements but by commercial research and 
development. 

DoD’s recent budgets thus both reflect the reality of a transitioning commercial 
technology and portend the military’s strategic shift to less permissive operating 
environments (i.e., the Asia-Pacific region). While the next generation of UAVs is 

likely to include a variety of “old” (albeit enhanced) technologiesthereby gaining 

greater speed, endurance, and stealthand “new” technologies (not the least of 

which will be increasing levels of autonomy), DoD has not issued requirements or 
specifications, and thus appears “willing to let industry develop and put forward 
whatever that next generation will be.”86  

                                                   
84 DoD FY17 President’s Budget Proposal, Release No: NR-046-16, 9 Feb 2016. 

85 J. Gertler, “How Many UAVs for DoD?” CRS Insights, 27 August 2015. 

86 Ibid. 
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This confluence of events represents an ample pool of general opportunities for 
military operations research analysis (MORA): (1) to help the DoD better understand 
emerging new AI- and robot-related technologies (e.g., by developing taxonomies and 
conceptual frameworks within which otherwise overly complex “systems” can be 
systematically examined); (2) to provide an impartial bridge between military 
requirements and the products of commercial and academic research (e.g., MORA 
organizations can be used as “go betweens” linking DoD and private technology 
industries);87 and (3) to help develop new methods and analysis techniques, and new 
measures of effectiveness and performance, for studying unmanned systems with 
increasing levels of autonomy (beyond the “low hanging fruit” variety of assessing 
basic tradeoffs between manned and unmanned systems, calculating optimal paths, 
or developing targeting algorithms).88   

Timeline of AI-, robot-, and swarm-related 
technologies 

The idea of infusing inert objects with life and intelligence has existed for millennia, 
dating back at least to the ancient Greek myth of how Hephaestus, the god of fire, 
forged golden automaton-like statues to serve the gods.89 The word “robot” is based 
on the Czech word robota, meaning “serf or slave,” and first appeared in Karel 
Capek’s 1921 play, R.U.R. (“Rossum’s Universal Robots”).90 Then, in 1942, science 

fiction author Isaac Asimov published a short story called “Runaround,” which 
introduced his well-known “Three Laws of Robotics.”91 After that, the word “robot” 
effectively became part of the common lexicon. The development of the first physical 

                                                   
87 A recent example of a DoD-sponsored laison effort is the Defense Innovation Unit-
Experimental (DIUx) office, established in 2015 in Sunnyvale, California, by Secretary of 
Defense Ashton Carter. DIUx’s charter is to seek out innovative technologies and talent from 
Silicon Valley. Ref: M. Eaglen, “Tech-challenged Pentagon searches for a Silicon ally,” American 
Enterprise Institute, 1 Feb 2016: https://www.aei.org/publication/tech-challenged-pentagon-
searches-for-a-silicon-ally/. 

88 J. Cares and J. Dickman, editors, Operations Research for Unmanned Systems, Wiley, 2016. 

89 D. Gera, Ancient Greek Ideas on Speech, Language, and Civilization, Oxford University Press, 
2003. 

90 In the beginning of the play, robots are synthetic humans that work in factories to produce 
low-cost goods. The play ends as these robots kill off the human race. Ref: K. Capek, R.U.R., 
Penguin Classics, 2004. 

91 The “Three Laws of Robotic” are discussed in a later section of this report. “Runaround,” in 
which the laws are quoted from an imaginary "Handbook of Robotics, 56th Edition, 2058 A.D.," 
appears in the short story collection: I. Asimov, Robot Visions, Roc, 1991.  
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instantiations of robots soon followed. The concept of a swarm was also introduced 

in a science fiction story“The Glass Bees”published by Ernst Jünger in 1957.92  

Figures 5 and 6 show timelines of selected milestones in the development of AI-, 
robot-, and swarming-related technologies. Figure 5 covers the years from 1942 to 
1997; figure 6, the years from 2002 to 2016.  

Figure 5.  Timeline of selected milestones in the development of AI-,  robot-, 
and swarming-related technologies (from 1942 to 1997) 

 

 

                                                   
92 A major part of the story involves swarms of robotic bees (that are said to be much more 
efficient at gathering nectar than their real counterparts); the existence of humanoid robots 
is also alluded to. Ref: E. Juner, The Glass Bees, NYRB Classics, 2000. 
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Figure 6.  Timeline of selected milestones in the development of AI-,  robot-, 
and swarming-related technologies (from 2002 to 2016) 

 

The key conceptual and technological development from which many aspects of 
modern AI and robotics research derives is cybernetics.93 Inspired by and developed, 

in part, because of some specific military demands of World War II (e.g., the problem 
of automatic aiming and firing of anti-aircraft guns), cybernetics is a 
transdisciplinary approach to understanding auto-control in machines and other 

physical, biological, and social systems.94 It is also the conceptual precursor of 
modern-day complex systems theory (discussed in a later section).95 The word itself 

was introduced (along with the preliminary concepts describing its meaning) by 
Norbert Weiner, who was inspired by the Greek verb kybernan, which means “to 
steer, navigate, or govern.”96 Weiner defined cybernetics as “the scientific study of 
control and communication in the animal and the machine.”97 As a nascent discipline 
during World War II, cybernetics embodied three core concepts: control, feedback, 
and the merging of human and machine—concepts that, even without further 
explication (though discussions of each appear throughout this report), obviously 
overlap the main themes of this study.   

                                                   
93 T. Rid, Rise of the Machines: A Cybernetic History, W. W. Norton & Company, 2016. 

94 A. Pickering, The Cybernetic Brain, University Of Chicago Press, 2011. 

95 G. Mobus and M. Kalton, Principles of Systems Science, Springer-Verlag, 2015. 

96 Online Etymological Dictionary: http://www.etymonline.com/index.php?term=govern. 

97 N. Wiener, Cybernetics, or Control and Communication in the Animal and the Machine, 
MIT Press, 1948. 
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The timeline that unfolds after World War II consists of a series of (often 
“unexpected” 98 and “deceptively simple”) nascent technologies that are, in hindsight, 
recognized as precursors of what later become major (and transformative) 
capabilities. The timeline also includes examples of some of the academic, 
commercial, and military research institutions that formalized and nurtured the 
study of AI, robotics, and/or swarms—e.g., DARPA,99 which was founded in 1958100 
and offered the first grand challenge to produce an autonomous driverless car in 
2004;101 the first AI research labs established at MIT, Stanford University, and the 
University of Edinburgh in 1964; and the Santa Fe Institute,102 founded in 1982, which 
pioneered the study of complex systems). 

Other milestones include: 

 The first rule-based simulation of swarm behavior in 1986 by computer 
scientist Craig Reynolds (which was called “Boids”103 and lives on, in spirit if 
not detail, in many of today’s robotic swarms). 

 The first AI to beat the best human players at backgammon (TD-Gammon, 
in 1992), checkers (CHINOOK, in 1994), chess (Deep Blue, in 1997), and Go 
(AlphaGo, in 2016). The latter accomplishment is particularly noteworthy: 
in 20 years, the state-of-the-art in AI had progressed from being able to 

defeat the (then) world champion in chessalready a laudable 

accomplishmentto beating one of the world’s top-ranked players of a 

game, Go, that is so much more “complex” (as a problem for an AI to “solve”) 

                                                   
98 In deference to available space, we leave out of the narrative several “unexpected” disruptive 
technologies that have had a major (albeit more implicit) impact on the subject domains of this 
report (e.g., the development of the transistor and integrated circuits, the internet, stealth, and 
GPS). Ironically, it is AI’s potential to become a major disruptive technologynot just for the 
military, but for the world in generalthat directly inspired this study. A monograph that 
explores ways of describing, and forecasting, disruptive technologies was recently published by 
the National Research Council: Persistent Forecasting of Disruptive Technologies, Committee on 
Forecasting Future Disruptive Technologies, National Academies Press, 2010. 

99 http://www.darpa.mil/. 

100 A. Jacobsen, The Pentagon's Brain: An Uncensored History of DARPA, America's Top-Secret 
Military Research Agency, Back Bay Books, 2016. 

101 J. Hooper, “From DARPA Grand Challenge 2004: DARPA's Debacle in the Desert,” 
Popular Science, June 2004. 

102 https://www.santafe.edu/. 

103 C. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,” Computer 
Graphics 21, no. 4, 1987. 
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that priori to AlphaGo’s victory, most AI experts believed that it could not be 
done for another 15–20 years.104 

 The first prototype self-driving car developed by Google in 2009,105 with 
Tesla’s Autopilot106 now commercially available and installed in the vehicles it 

sells. 

 AI software that is able to understand natural language (in spoken form) and 
to recognize faces in images well enough to be commercially viable (e.g., 
Apple’s Siri, Google’s Now, and Microsoft’s Cortana apps, respectively;107 and 
Facebook’s DeepFace algorithm,108 that reportedly identifies faces with a 
97.35% accuracy). 

 In 2016, MIT researchers introduced an AI system that effectively uses a 
meta-learning algorithm that allows it to learn to extract text information on 
its own (when traditional “training” data are not available or are scarce).109 

 A potentially revolutionary AI machine-learning methodcalled Turing 

Learning,110 and developed at Harvard in 2016that includes the first-ever 

demonstration of an AI system that can automatically infer the behavior of 
physical robot swarms simply by watching. 

Other recent milestones (which do not appear in figure 5 and 6) include: 

                                                   
104 http://www.wired.com/2016/01/in-a-huge-breakthrough-googles-ai-beats-a-top-player-at-
the-game-of-go/. 

105 https://www.waymo.com/journey/. 

106 https://www.tesla.com/autopilot. 

107 J. Dunn, “We put Siri, Alexa, Google Assistant, and Cortana through a marathon of tests to 
see who's winning the virtual assistant race — here's what we found,” Business Insider, 4 Nov 
2016. 

108 Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “DeepFace: Closing the Gap to Human-Level 
Performance in Face Verification,” in Conference on Computer Vision and Pattern Recognition 
(CVPR), 24 June 2014: https://research.fb.com/publications/deepface-closing-the-gap-to-
human-level-performance-in-face-verification/. 

109 K. Narasimhan, A. Yala, and R. Barzilay, “Improving Information Extraction by Acquiring 
External Evidence with Reinforcement Learning,” presented at EMNLP 2016, 
arXiv:1603.07954v3: https://arxiv.org/abs/1603.07954. 

110 W. Li, M. Gauci, and R. Gross, “Turing learning: a metric-free approach to inferring behavior 
and its application to swarms,” Swarm Intelligence 10, no. 3, September 2016:  
http://link.springer.com/article/10.1007%2Fs11721-016-0126-1. 
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 Engineers from the University of Toronto, Canada, have recently introduced a 
novel approach to train neural networks (called “heuristic training”) that 
relies not on labelled data curated by human programmers but rather on 
natural-language input consisting of high-level assertions that describe basic 
properties of a system that a neural net will then “train itself” to identify 
patterns in. An early prototype has already outperformed conventional 
machine learning algorithms by 160 percent.111 

 Google’s on-line translation algorithm was recently enhanced with: (1) a 
neural network that trains on entire sentences at once (neural net “training” 
is discussed in a later section), thus providing it with a deeper context in 
which to come up with a translation, and (2) an ability to simultaneously 
translate among multiple pairs of languages (and just between a single pair 
of languages, as is common practice).112 A surprising result is that Google’s 
enhanced translation algorithm can now translate between two languages 
that it has not been directly trained on. The researchers responsible for this 
work suspect that the AI system has effectively invented its own “interlingua” 
language—i.e., an intermediary semantic core in which sentences with the 
same meaning are represented in similar ways independent of the specific 
languages (albeit one that resides entirely “internally” and is not 
understandable or usable by humans). 

 Researchers from Google Brain, Google’s deep learning project, have recently 
unveiled an AI “secure communications” system that can effectively invent its 
own encryption scheme, and without being taught specific cryptographic 
algorithms.113 Importantly, the researchers themselves do not know exactly 
how the encryption method works, since neural-network-based techniques 
such as the one used for this study do not easily reveal how their “solutions” 
actually work. 

 Google’s DeepMind has been enhanced with an ability to interact with its 
environment (via virtual actuators) in order to solve problems.114 The testbed 

                                                   
111 W. Guo and P. Aarabi, “Hair Segmentation Using Heuristically-Trained Neural Networks,” 
IEEE Transactions on Neural Networks and Learning Systems 99, 2016. 

112 Q. Le and M. Schuster, “A Neural Network for Machine Translation, at Production Scale,” 
Google Research Blog, 27 Sep 2016: https://research.googleblog.com/2016/09/a-neural-
network-for-machine.html. 

113 M. Abadi and D. Andersen, “Learning to Protect Communications with Adversarial Neural 
Cryptography,” arXiv:1610.06918v1: https://arxiv.org/abs/1610.06918. 

114 M. Denil, P. Agrawal, T. Kulkarni, et al., “Learning to perform physics experiments via 
deep reinforcement learning,” under review as a conference paper to ICLR 2017: 
https://arxiv.org/pdf/1611.01843v1.pdf. 
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tasks were to determine the number and the heaviest of five blocks stacked 
in a tower. Apart from being rewarded when it answered correctly, and 
penalized when it gave an incorrect answer, no other “instructions” were 
provided to the AI. The system effectively “solved” the problem on its own by 
manipulating its physical environment. This “toy-level” demonstration is a 
key first step toward developing AI systems that learn to develop a common 
sense understanding of our physical world on their own. 

“Third Offset Strategy”  

DoD’s near to midterm interest in AI, robotics, autonomous systems, and other 

innovative technologies will inevitably be shaped by then defense secretary Chuck 

Hagel’s announcement of a new Defense Innovation Initiativewhich included the 

Third Offset Strategy (TOS)on 15 November 2014.115 An offset strategy (OS) is a 

general set of peacetime competitive policies designed to generate and sustain a 
strategic advantage over one’s main adversaries. It is less about formulating new (or 
adapting old) theories of warfare, and more about brainstorming what ought to be 
done to gain and/or strengthen the military’s competitive edge. Judging by the only 
two existing offset strategies prior to TOS (see below), an OS is not myopically 
focused on technology alone; rather, its goal is to articulate a mix of technology and 
shifts in operational perspective that is judged best able to achieve the requisite 
strategic advantage.116 

For example, the First Offset was part of President Eisenhower’s “New Look” in the 

1950s at the start of the Cold War, and introduced tactical nuclear weapons to match 
Soviet numerical and geographical advantages along German border.117 The perceived 
imbalance at the time was the Soviet Union’s geographical advantage over the United 
States in Western Europe, so a strategy was born to regain the advantage by 
exploiting the superiority of our nuclear weapons technology. Some key investments 
that were fueled by the First Offset included much smaller-sized nuclear weapons,  
the development of intercontinental ballistic missiles (ICBMs), expanded aerial 

                                                   
115 C. Hagel, Transcript of Keynote speech delivered at Reagan National Defense Forum Keynote, 
Ronald Reagan Presidential Library, Simi Valley, CA, Nov. 15, 2014: 
http://www.defense.gov/News/Speeches/Speech-View/Article/606635. 

116 K. Lange, “3rd Offset Strategy 101: What It Is, What the Tech Focuses Are,” DoD Live, 30 
March 2016: http://www.dodlive.mil/index.php/2016/03/3rd-offset-strategy-101-what-it-is-
what-the-tech-focuses-are/. 

117 T. Walton, “Securing the Third Offset Strategy,” Joint forces Quarterly, National Defense 
University, Issue 82, 3rd Quarter 2016. 
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refueling, and enhanced air/missile defense networks. Notably, most major First-
Offset-related breakthrough technologies were funded by the Department of 
Defense. 

Harold Brown’s Second Offset was spurred on after the Soviet Union’s nuclear 

weapon technology and delivery systems essentially caught up to those of the United 
States, and strategic thinking turned to regaining a non-nuclear tactical advantage.118 
Key investments that resulted from the Second Offset included new intelligence, 
surveillance, and reconnaissance (ISR) platforms and battle management capabilities, 
precision-strike weapons, stealth aircraft, smart weapons and sensors, and the 
burgeoning tactical exploitation of space (e.g., GPS). The key technological drivers in 
this case were digital microelectronics and information technology.119 

And so we come to the TOS, which was announced formally on 15 November 2014, 
but the rudiments of which were openly discussed earlier.120 The perceived 
“imbalance” for this third go-around is a combination of two factors: shrinking force 
structure and declining technological superiority.121 The goal is not the acquisition of 

next-generation technologies, per se, but a combined re-evaluation of technological 
innovations and new concepts of operations.122  

In terms of a more detailed breakdown of what TOS portends for specific 
investments, five core building blocks were outlined by Deputy Secretary of Defense 
Robert Work during a keynote address at the CNAS Inaugural National Security 
Forum held on 14 December 2015:123 

 

                                                   
118 H. Brown, Secretary of Defense, DoD Annual Report, Fiscal Year 1982: 
http://www.dtic.mil/dtic/tr/fulltext/u2/a096066.pdf. 

119 J. McGrath, “Twenty-First Century Information Warfare and the Third Offset Strategy,” 
Joint forces Quarterly, National Defense University, Issue 82, 3rd Quarter 2016. 

120 C. Hagel, Transcript of Keynote speech delivered at the Southeastern New England Defense 
Industry Alliance, Newport, Rhode Island, Sept. 3, 2014: 
http://www.defense.gov/News/Speeches/Speech-View/Article/605602. 

121 M Eaglan, “What is the Third Offset Strategy?” RealClear Defense, 16 Feb 2016: http://www. 
realcleardefense.com/articles/2016/02/16/what_is_the_third_offset_strategy_109034.html. 

122 A. Carter, Secretary of Defense, speech delivered at the "The Path to an Innovative Future 
for Defense," CSIS Third Offset Strategy Conference, 28 October 2016: 
http://www.defense.gov/News/Speeches/Speech-View/Article/990315/remarks-on-the-path-to-
an-innovative-future-for-defense-csis-third-offset-strat. 

123 Keynote by Deputy Secretary of Defense Robert Work at the CNAS Inaugural National 
Security Forum, December 14, 2015: http://www.defense.gov/News/Speeches/Speech-
View/Article/634214/cnas-defense-forum. 
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 Autonomous Deep-Learning Systems 

 Examples: The Air Force Research Laboratory’s (AFRL’s) Autonomous 
Defensive Cyber Operations (ADCO); National Geospatial Agency’s 
(NGA’s) Coherence Out of Chaos program (deep-learning-based 
queuing of satellite data for human analysts); Israel’s Iron Dome air 
defense system 

 Human-Machine Collaborative Decision-Making 

 Examples: 2005 human-chess collaboration that defeated field of 
chess champions and grandmasters; F-35 helmet portrayal of 360 
degrees on heads-up display 

 Assisted Human Operations  

 Examples: wearable electronics, heads-up displays, exoskeletons 

 Advanced Manned-Unmanned System Operations  

 Examples: Army's Apache and Gray Eagle UAV,124 and Navy's P-8 
aircraft and Triton UAV; small service vessels operating as swarms, 
with one mission commander simultaneously directing the swarm 
itself 

 Network-Enable, Semi-Autonomous Weapons Hardened To Operate in a 
Future Cyber/EW Environment  

 Example: modified Air Force’s Small Diameter Bomb (SDB) for 
operating in GPS-denied environment 

While each of these building blocks obviously describes long-term commitmentsan 

assessment of the requisite operational analysis of which is the central focus of this 

white papera number of short-term investments consistent with their overarching 

vision have already made their way into DoD’s FY17 budget. Of the $71.8 billion 

allocated for research and development (R&D)4% greater than in the budget for 

FY16$12.5 billion is budgeted for science and technology (S&T), and $18 billion is 

spread over the Future Years Defense Program’s (FYDP’s) five year plan. The latter 
includes $3 billion for human-machine collaboration and teaming, $1.7 billion for 
cyber and EW issues, and $500 million for expanding war gaming and operational 
concept tests and demonstrations.125 While specific TOS technology represents only 
$35 million of the overall S&T budget, $902 million is allocated for the Strategic 

                                                   
124 http://www.ga-asi.com/gray-eagle. 

125 A. Mehta, “Defense Department Budget: $18B Over FYDP for Third Offset,” Defense News, 9 
Feb 2016: http://www.defensenews.com/story/defense/policy-budget/budget/2016/02/09/ 
third-offset-fy17-budget-pentagon-budget/80072048/. 
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Capabilities Office (SCO)—which, it has been argued, is DoD’s way of effectively 
“jumpstarting” TOS’s long-term vision by focusing on improving TOS-like current-
generation technologies.126 Finally, $45 million is allocated to the Defense Innovation 
Unit-Experimental (DIUx) office, established in 2015 in Sunnyvale, California, by 

Secretary of Defense Carter to seek out innovative technologies and talent from 
Silicon Valley.127 

TOS-specific thrusts in the FY17 budget include:128 

 Anti-access and area denial (A2/AD): continued development of Air Force and 

Navy aviation propulsion development programs, new counter-space, and a 
Navy autonomous cargo re-supply platform 

 Guided munitions: a program to counter hardened and deeply buried targets, 

experimentation with hypersonic weapons, and development of alternative 
guidance technologies to reduce reliance on GPS 

 Undersea warfare: acceleration of traditional investments focusing on 
quieting and sensing improvements, $200 million portfolio of a diverse set of 
unmanned undersea vehicles  

 Cyber and electronic warfare: $49 million allocated to accelerated 

development of the Advanced Anti-Radiation Guided Missile next-generation 
anti-radar missile, and cross-service investment in aircraft countermeasures 
against electronic warfare  

 Human-machine teaming: accelerated development of the machine-aided 

Joint Precision Approach Landing System, a new program for a more 
intelligent logistics system and several unmanned systems projects  

 War gaming and concepts development: $21 million allocated to the Navy’s 
Fleet Experimentation program, and $60 million for naval rapid acquisition 
programs (such as Rapid Prototype Development and Unmanned Rapid 
Prototype Development) 

                                                   
126 S. Freedberg, Jr., “Strategic Capabilities Office Is ‘Buying Time’ For Offset: William Roper,” 
Breaking Defense, 18 July 2016: http://breakingdefense.com/2016/07/strategic-capabilities-
office-is-buying-time-william-roper/. 

127 M. Eaglen, “Tech-challenged Pentagon searches for a Silicon ally,” American Enterprise 
Institute, 1 Feb 2016: https://www.aei.org/publication/tech-challenged-pentagon-searches-for-
a-silicon-ally/. 

128 M Eaglan, “What is the Third Offset Strategy?” RealClear Defense, 16 Feb 2016. 
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Accelerating technological change 

The increasingly rapid pace of technological change, particularly in the fields of AI 
and robotics, is well known and documented.129 For example, Ray Kurzweil (who 
directs Google’s research on machine intelligence and natural language 
understanding), has argued that technology, like biology, is an evolutionary process 
whereby the information-processing tools and methods of prior generations are used 
to generate those of the next. As improvements accrue and evolve, the time between 
successive advancements in order and capability decreases exponentially.130 
Moreover, according to Kurzweil’s “Law of Accelerating Returns,” if a technology 
stalls or comes up against some form of barrier impeding further progress, a new 
technology will be invented to militate the presence of the barrier. 

Figure 7 shows, as a microcosm of a much larger space of general engineering and 
technology innovations,131 a timeline of the accelerating growth of computer power, 

measured in terms of raw computations per second (CPS).132 Note that the CPS curve 
is logarithmic, meaning that each unit increment along the ordinate on the plot 

represents a jump of 10 the prior value. Sequenced from the bottom to the top of 

the figure, the four horizontal dashed lines represent the approximate CPS values for 
an insect’s brain, a mouse’s brain, a human’s brain, and all human brains on the 
planet, respectively.  

The vertical dashed line, the bottom of which is buttressed against the label “Now,” is 
centered on the year 2016 (i.e., this report’s release date). The alternating shades of 
gray, from left to right, represent overlapping technological epochs, and range from 
an era of electromechanical devices, to solid-state relays, vacuum tubes, transistors, 
and integrated circuits. In addition, six AI-related milestones are highlighted in red 

along the bottom of the CPS timeline curve (all are discussed later in this report): 
neural nets (introduced in 1943); reinforcement learning (a technique that is, in part, 
responsible for Google’s AlphaGo’s recent defeat of Lee Sedol in Go, and introduced 

in 1973); the backpropagation algorithm (that allows neural-nets to “learn”), 
introduced in 1986; IBM Deep Blue’s landmark victory over world champion Gary 

                                                   
129 Timeline of Computer History: http://www.computerhistory.org/timeline/ai-robotics/; 
J. Goodell, “Inside the Artificial Intelligence Revolution: A Special Report: Parts 1 & 2,” 
Rolling Stone Magazine, February & March 2016. 

130 R. Kurweil, The Singularity is Near, Viking Press, 2005. 

131 See, for example: T. Jackson, editor, Engineering: An Illustrated History from Ancient Craft 
to Modern Technology, Hselter Harbor Press, 2016. 

132 C. Moore and A. Mertens, The Nature of Computation, Oxford University Press, 2011. 
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Kasparov in chess, developed in 1997; the “deep learning” algorithm (used by 
AlphaGo and other recent AI systems), published in 2006; and AlphaGo’s historic win 

over the reigning world champion human player in Go in 2016.  

The red disk that appears just to the right of center of the figure denotes the area of 
uncertainty of the expected continued growth in CPS in the coming decade. 

Figure 7.  Accelerating growth of computing power 

Ref: https://upload.wikimedia.org/wikipedia/commons/d/df/PPTExponentialGrowthof_Computing.jpg 

The key takeaway from figure 7 is the observation thatas of this writing (November 
2016)the exponential CPS-vs-time curve is about a decade away from crossing the 
line that denotes the raw computational power of a human brain (the value of which 
is estimated to be between 1015 and 1016 CPS).133 The precise value does not matter; 
nor does a “one human brain equivalent” of CPS represent a special barrier (such as 
the “speed of sound” for a jet) at which something magical happens. However, it does 
denote a computational threshold vastly beyond what our experience with 
computational technology has thus far prepares us for.  

                                                   
133 N. Bostrom, “How long before superintelligence?” Int. Jour. of Future Studies 2, 1998. 
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Of course, no one can predict with any certainty when (or even if) the “one human 
brain equivalent” of CPS threshold will be achieved, or what impact this will have on 
business, culture, the military, or the world at large. But if recent advances offer even 
the most modest of clues, it is that we will be surprised. AlphaGo’s victory over Lee 
Sedol in 2016 took place less than a decade after IBM’s DeepBlue defeated Gary 
Kasparov; a victory that, right up until it happened, most AI researchers believed was 
still decades in the future (and some wondered whether an AI system could ever be 
taught to play well enough to defeat a top-ranked human player). This is because the 
innate complexity of Go, as a game (as measured by, say, the number of “moves” an 
AI system has to search through before deciding on a move), exceeds that of chess by 
almost 240 orders of magnitude.134 Yet, the advances in computation and machine-
learning techniques made in just nine years were sufficient to “achieve the (recently-
believed-to-be) unachievable.”  

Just a year before AlphaGo’s 2016 victory, essentially the same technique was used, 
for the first time, to master a diverse range of Atari 2600 games to a superhuman 
level with only the raw pixels and scores as inputs.135 

In less than a year after AlphaGo’s landmark achievement, its underlying machine-
learning technology has achieved several additional milestones, including navigation 
(in which an external memory is combined with deep learningdiscussed later in the 
reportto build an AI that uses basic reasoning to “self learn” how to  navigate the 
London underground),136 and encryption (in which neural networks “teach 
themselves” how to encrypt messages, without relying on any a priori cryptographic 
algorithms).137 Moreover, AlphaGo has continued to improve on its already core 
accomplishment: in January 2017, DeepMind founder Demis Hassabis revealed in a 
tweet that a theretofore anonymous online player known only as “Master”who had 
been regularly beating the world’s best Go players, including the world’s top-ranked 
player 50 out of 51 games (drawing the one game it did not win)was, in fact, an 
updated version of AlphaGo.138  

                                                   
134 While chess is played on an 8-by-8 board, tournament-level Go is played on a 19-by-19 board, 
albeit with effectively two pieces. J. Burmeister, “The challenge of Go as a domain for AI 
research: a comparison between Go and chess,” Intelligent Information Systems, 1995.  

135 V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature 518, 26 
February 2015. 

136 A. Graves et al., “Hybrid computing using a neural network with dynamic external memory,” 
Nature 538, 27 October 2016. 

137 M. Abadi, D. Andersen, “Learning to Protect Communications with Adversarial 
Neural Cryptograph,” 21 Oct 2016: https://arxiv.org/abs/1610.06918v1. 

138 T. Revell, “DeepMind’s AlphaGo is secretly beating human players online,” New Scientist, 
4 Jan 2017. 
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Evolution of DoD’s interest in autonomy 

We don’t have to develop new planes. We don’t have to develop 
fundamentally new weapons. But we have to work the integration and the 
concept of operation. And then you have a completely new capability, but 
you don’t have to wait long at all. 

William Roper (Director, Strategic Capabilities Office,  

Office of the Secretary of Defense 

DoD’s interest in autonomy as a distinct operational capability goes back only a 
relatively few years to 2011, when it appears as the sixth (out of seven) S&T 
investment priority for FY12-17 planning in a memorandum released by the secretary 
of defense.139 Prior to this memo, autonomy was used mainly as an ill-defined “catch-
all” term to label general future technology enhancements of unmanned platforms, 
and was not seen as a specific system ability to perceive, reason, or plan.140 

The Army’s 2009 Robotics Strategic White Paper141 was among the first by a Service to 

formally define a robot: “a man-made device capable of sensing, comprehending, and 
interacting with its environment.” But this “pioneering” document refers only to 
innate hardware characteristics, and does not include any capabilities for 
formulating plans and making dynamic decisions. DoD’s first Unmanned System 
Integrated Roadmap (USIR),142 also released in 2009, contains over 80 references to 

autonomy and autonomous systems, and devotes an entire section to outlining how 
autonomy can be incorporated into future operations. The USIR represents the first 
systematic focus on autonomy within DoD, identifying it as the second of seven 
challenges facing all military Services. The USIR also lists Manned-Unmanned (MUM) 
Teaming (MUM-T) as a related challenge, and introduces the issue of “trust” as an 
element of autonomy that will require the development of new verification and 
validation (V&V) and testing and evaluation (T&E) techniques.  

                                                   
139 Science and Technology (S&T) Priorities for Fiscal Years 2013-2017 Planning, Memorandum, 
Secretary of Defense, 19 April 2011. 

140 B. Grabowski, Anticipating the Onset of Autonomy: A Survey of the DoD, Armed Service, and 
other Federal Agencies’ Outlook on Autonomy, MITRE Technical Report MP130118, 2013. 

141 Robotics Strategy White Paper, Army Capabilities Integration Center – Tank-Automotive 
Research and Development, Engineering Center Robotics Initiative, 19 March 2009. 

142 Unmanned Systems Integrated Roadmap: FY2011-2036, U.S. Department of Defense: 
http://www.acq.osd.mil/sts/docs/Unmanned%20Systems%20Integrated%20Roadmap%20FY201
1-2036.pdf. 



 

 

 

35 
 

In 2010, the National Aeronautics and Space Administration (NASA) released its 
Robotics, Tele-Robotics and Autonomous Systems Roadmap,143 in which autonomy “in 

the context of a system (robotic, spacecraft, or aircraft)” is defined as “…the 
capability for the system to operate independently from external control,” and an 
autonomous system is defined as a system that “resolves choices on its own,” though 
in the context of working towards goals “provided by another entity.” Specific 
attributes include the ability for complex decision-making, including autonomous 
mission execution and planning, the ability to understand system state and react 
accordingly, and the ability to self-adapt in changing environments. 

DoD’s Defense Science Board’s (DSB’s) 2012 report on autonomy (DSB/2012)144 is the 
first defense-sponsored study to discuss autonomy not as an innate system property, 
but as a capability to perform a set of functions while coupled to a dynamic 

environment: “Autonomy is better understood as a capability (or a set of capabilities) 
that enables the larger human-machine system to accomplish a given mission, rather 
than as a ‘black box’ that can be discussed separately from the vehicle and the 
mission.”145 Above all, human-machine teaming is stressed: “all autonomous systems 
are joint human-machine cognitive systems.” 

The report disentangles autonomy from the system platform by shifting the focus 
from hardware to software, thereby effectively recasting the development of 
autonomy (as viewed by earlier DoD and Service-centric studies) as being “primarily a 
software endeavor, which is a shift from traditional hardware oriented, vehicle 
centric development.” The general consequences of this shift—which, as far as the 
author of this report is aware, remains unchallenged by any subsequent defense-
sponsored reports, including DSB’s more recent 2016 study (see discussion below)—
and the impact it is likely to have on DoD’s acquisition process, are potentially far-
reaching. DSB/2012 emphasizes that software development generally lies “outside of 
the current hardware-oriented, vehicle-centric development and acquisition 
processes. Program managers may not know how to specify autonomy software, 
developers may not have sufficient expertise to write autonomy software, and testing 
and evaluation has few metrics and test beds for verification and validation.” 
Autonomy’s unique acquisition challenges are examined in a later section. 

                                                   
143 Robotics, Tele-Robotics, and Autonomous Systems Roadmap, National Aeronautics and Space 
Administration, Nov 2010:  http://www.nasa.gov/pdf/501622main_TA04-Robotics-DRAFT-
Nov2010-A.pdf. 

144 The Role of Autonomy in DoD Systems, Department of Defense, Defense Science Board, Task 
Force Report, Office of the Under Secretary of Defense for Acquisition, Technology and 
Logistics, July 2012: http://www.acq.osd.mil/dsb/reports/DSBSS15.pdf. 

145 Ibid., p. 21. 
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An important part of DSB/2012’s shift from platform to capability consists of 
effectively doing away with the (then fashionable, though myopic) unidimensional 

views of autonomywhereby a system’s autonomy is assigned a numerical ‘rank’ on 

a sliding scaleand replacing them with an as-yet-undefined multidimensional 

conceptual framework (an idea that will be revisited in a later section): 

Treating the levels of autonomy as a developmental roadmap misses 
the need to match capabilities with the dynamic needs of the task or 
mission and directs programming attention away from critical, but 
implicit, functions needed for overall system resilience and human 
trust in the system. The mismatch of capabilities leads to gaps in 
functionality that have to be filled with additional manpower, creates 
vulnerabilities when unforeseen conditions arise and prevents rapid 
adaption or re-tasking of unmanned systems for new missions. 
Programming attention to the machine often means a lack of focus on 
the interfaces and tools that confirm to the operators and 
commanders that the system is performing mission priorities; 
without these interfaces and tools, there is no trust in the overall 
system.146 

Figure 8 shows a timeline (2012-2016) of unmanned-systems and autonomyrelated 

DoD directives, memos, and DSB reports that have appeared since the DSB/2012 
report. While we obviously do not have the space in this paper to discuss these 
reports, it is nonetheless instructive to summarize the evolution in thinking that this 
group represents as a whole.147 

 (July 2012) Defense Science Board Task Force Report (TF): The Role of 

Autonomy in DoD Systems148 

 Shifts from systems and platforms to capabilities and decisions. 

 Advocates moving away from single-valued “ranks” of autonomy 
to developing a multidimensional conceptual framework. 

                                                   
146 Ibid., p. 24. 

147 In addition to the individual references themselves, we also follow: J. Caton, Autonomous 
Weapon Systems: A Brief Survey of Developmental, Operational, Legal, and Ethical Issues, U.S. 
Army War College, Strategic Studies Institute, Carlisle, PA, Dec 2015, and B. Grabowski, Big 
Picture for Autonomy Research in DoD, Keynote presentation at the Safe and Secure Systems 
and Software Symposium, held 09-11 June 2015, Dayton, Ohio, Air Force Research Laboratory: 
http://www.mys5.org/Proceedings/2015/Day_1/2015-S5-Day1_0805_KEYNOTE_Grabowski.pdf. 

148 The Role of Autonomy in DoD Systems, DoD, Defense Science Board, Task Force Report, 
Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, July 2012. 
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 Lack of effective coordination of research and development (R&D) 
efforts across military services.  

 Autonomy entails unique acquisition challenges. 

 Operational challenges are created by the urgent deployment of 
unmanned systems to theater without adequate resources or time to 
refine concepts of operations and training. 

 States: “While currently fielded unmanned systems are making positive 
contributions across DoD operations, autonomy technology is being 
underutilized as a result of material obstacles within the Department 
that are inhibiting the broad acceptance of autonomy and its ability 
to more fully realize the benefits of unmanned systems.” 

Figure 8.  Recent timeline (2012-2016) of directives, memos, and reports related to 
unmanned-systems and autonomy   

* HSCOI (Human Systems Community of Interest) consists of senior officials from the U.S. 
Army, Navy, Marine Corps, Air Force, and DARPA. It is overseen by Assistant Secretary of 
Defense for R&E and Assistant Secretary of Defense for Health Affairs. 
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  (Oct 2012) Naval Research Advisory Committee Report: How Autonomy 
can Transform Naval Operations149  

 Finds that autonomy represents a transformational, and potentially 
disruptive, capability; currently still driven by technology “push.” 

 Identifies two essential keys to implementation of autonomy as a 
transformational capability: building a community and building trust. 

 Trust-building begins in the design and development phases by 
requiring Fleet involvement throughout the development process (not 
just in the final experimentation stage). 

 Potential near-term applications include: ocean monitoring, ISR, MCM, 
force protection, hull maintenance, and logistics). 

 Long-term opportunities include: the capacity to operate in A2/AD 
environment, mine clearing, antisubmarine warfare (ASW), and in situ 
ISR data processing (to reduce analyst load). 

 Recommendations include: establishing a Naval autonomy community 
(composed of technical, acquisition, requirements, and operational 
experts to focus on autonomy for Naval needs); periodically assessing 
global autonomy markets that may be relevant to its efforts; and 
developing protocols to support autonomous systems testing and 
“trust building.” 

  (Nov 2012) DoD Directive (DoDD) 3000.09, Autonomy in Weapon Systems150  

 Establishes policy for development and use of autonomous systems 

 Shows awareness of unique challenge of autonomy-related testing and 
V&V 

 Puts emphasis and constraints on autonomous weaponization 

 Emphasizes need for analysis of unanticipated emergent behavior. 

 (Oct 2013) DoD, Unmanned Systems Integrated Roadmap: FY2013-2038151  

 Outlines three broad goals: (1) expand scope of unmanned systems and 
integrate them into the current military structure, (2) be cost-effective, 
as defense budgets are cut (e.g., drone programs were cut 33% between 

                                                   
149 http://www.nrac.navy.mil/docs/NRAC_Final_Report-Autonomy_NOV2012.pdf. 

150 http://www.dtic.mil/whs/directives/corres/pdf/300009p.pdf. 

151 http://archive.defense.gov/pubs/DOD-USRM-2013.pdf. The next version of DoD’s 
unmanned systems roadmap is scheduled to be completed the first quarter of fiscal year 2017, 
and will examine systems in the ground, air and maritime domains for FY-16 through FY-41. 
Ref: J. Mishory, “DOD preparing to release new 25-year unmanned systems roadmap,” 
Inside Defense, 27 Oct 2016 
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2013 and 2014), and (3) build drones that can operate in less 
permissible environments than Iraq and Afghanistan. 

 Has 65/120 pages of text devoted to discussions of technology for 
unmanned systems. 

 Identifies interoperability as one of the principal needs in improving 
the use of unmanned systems. 

 (Nov 20143) SecDef (Chuck Hagel) announces new Defense Innovation 
Initiative: Third “Offset” Strategy at the Reagan National Defense Forum 
Keynote152 

 Announces new Defense Innovation Initiative: Third “Offset” Strategy.  

 Discusses five key points of strategy: (1) autonomous "deep learning" 
systems, (2) human-machine collaboration, (3) assisted-human 
operations, (4) human-machine teaming, and (5) semi-autonomous 
weapons.” 

 (June 2015) Memorandum, SecNav: AI and Robotics for Support Functions153  

 Cites recent operational examples of the application of AI and robotics 
technology within the Navy—e.g., Ghost Swimmer, an underwater 
unmanned vehicle that mimics a bluefin tuna,154 the X-47B, that can 
autonomously land aboard an aircraft carrier,155 and the Swarmboat 
USV, that can synchronize with other unmanned vessels to swarm.156 

 Recognizes heavy private sector investment in AI and robotics. 

 Mandates acceleration of exploring of these emerging fields; i.e., for 
DoN to identify opportunities for the DON integration of proven AI and 
robotics technologies. 

 (June 2015) Human Autonomy Teaming, United States Air Force, Office of 
the Chief Scientist157  

                                                   
152 http://www.defense.gov/News/Speeches/Speech-View/Article/606635. 

153 http://www.secnav.navy.mil/innovation/Documents/2015/06/AIRoboticsMemo.pdf. 

154 J. Golson, “The Navy’s new robot looks and swims just like a shark,” Wired, 16 Dec, 2014. 

155 X-47B UCAS Demo Evolution: http://www.navair.navy.mil/img/uploads/ 
UCASTimeline%20(2).png. 

156 S. Smalley, “The Future Is Now: Navy’s Autonomous Swarmboats Can Overwhelm 
Adversaries,” Office of Naval Research: https://www.onr.navy.mil/Media-Center/Press-
Releases/2014/autonomous-swarm-boat-unmanned-caracas.aspx. 

157  Autonomous Horizons: System Autonomy in the Air Force  A Path to the Future, Volume I: 
Human-Autonomy Teaming, United States Air Force, Office of the Chief Scientist, June 2015. 
Volumes II (that will deal with technical issues in creating intelligent machines that can operate 
in uncertain and changing environments) and III (that will address cyber security and reliability, 
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 Articulates Air Force’s vision for autonomous systems that “serve as a 
part of a collaborative team with airmen. Flexible autonomy will allow 
the control of tasks, functions, sub-systems, and even entire vehicles to 
pass back and forth over time between the airman and the autonomous 
system, as needed to succeed under changing circumstances. Many 
functions will be supported at varying levels of autonomy, from fully 
manual, to recommendations for decision aiding, to human-on-the-loop 
supervisory control of an autonomous system, to one that operates 
fully autonomously with no human intervention at all.” 

 Identifies key technical challenges for human-machine teaming: 
(1) developing autonomous systems that are robust enough to function 
without human intervention and oversight; (2) spectre of reducing 
situation awareness (by inadvertently leaving humans out-of-the-loop); 
(3) potential increase in cognitive load of humans (while interfacing 
with autonomous systems); (4) decision speed vs. decision accuracy 
tradeoffs; (4) establishing trust (that is appropriately calibrated to the 
reliability and functionality in given operational contexts). 

 ”(Feb 2016) Human Systems Roadmap Review, Office of SecDef, Human 
Systems Community of Interest (HSCOI)158  

 Highlights need for: “More robust, valid, and integrated mechanisms 
that enable constructive agents that truly think and act like people.” 

 One of the five “building blocks” of the Human Systems program is to 
develop: “Network-enable, autonomous weapons hardened to operate 
in a future Cyber/EW Environment” … [and allow for]  “…cooperative 
weapon concepts in communications-denied environments.” 

 Focus areas for S&T development include: (1) “autonomous weapons: 
systems that can take action, when needed,” and (2) “architectures for 
autonomous agents and synthetic teammates.” 

  (Feb 2016) Autonomous Undersea Vehicle (AUV) Requirements for 2025, 
Report To Congress, Chief of Naval Operations, Undersea Warfare 
Directorate159  

                                                                                                                                           
communication links, and command and control systems to support autonomous vehicles) 
have not yet been released (as of Dec 2016). 

158 HSCOI consists of senior officials from the US Army, Navy, Marine Corps, Air Force, Defense 
Advanced Research Projects Agency (DARPA); and is overseen by the Assistant Secretary of 
Defense for Research & Engineering and the Assistant Secretary of Defense for Health Affairs; 
http://www.defenseinnovationmarketplace.mil/resources/NDIA_Human_Systems_Conference_
2016_HSCOI_DistroA_FINAL.pdf. 

159 https://news.usni.org/wp-content/uploads/2016/03/18Feb16-Report-to-Congress-
Autonomous-Undersea-Vehicle-Requirement-for-2025.pdf. 
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 Identifies AUVs as key component to expand undersea superiority. 

 Projects that by 2025 AUVs will operate farther forward than manned 
platforms; will operate in shallower, denied waters; will support 
multiple tasks/sensors; will be more passive vice transmitting 
frequently; and will have increased general autonomy (e.g., managing 
own stealth) 

 Delineates specific tasks that (by 2025) AUVs will be able to perform 
independently or cooperatively (enhancing) tasks performed by 
manned submarines. 

 (June 2016) Defense Science Board (DSB) Task Force Report (TF): Summer 
Study on Autonomy160  

 Autonomy has “attained a “tipping point’ in value”: “DoD must take 
immediate action to accelerate its exploitation of autonomy while 
also preparing to counter autonomy employed by adversaries.” 

 Multiple recommendations aligned with three over-arching vectors: 
(1) accelerating DoD’s adoption of autonomous capabilities, 
(2) strengthening the operational pull for autonomy, and 
(3) expanding envelope of technologies available for DoD missions. 

 Recommendations are grounded on in concepts of “autonomy” and 
“trust.” 

 (Oct 2016) The National Artificial Intelligence Research and Development 
Strategic Plan, National Science and Technology Council161  

 Identifies AI as a transformative technology. 

 Defines objectives for federally-funded AI research: (1) acquiring long-
term investments in AI research; (2) developing effective method for 
human-AI collaboration; (3) understanding ethical and legal 
implications 
of AI; (4) ensuring safety and security of AI systems; (5) developing 
shared public datasets for AI training and testing; (6) establishing 
standards and benchmarks for evaluating AI technologies; and (7) 
better understanding national AI research and development needs. 

                                                   
160 http://www.acq.osd.mil/dsb/reports/DSBSS15.pdf. 

161 http://www.whitehouse.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/ 
national_ai_rd_strategic_plan.pdf. 
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What do they all have in common? 
Figure 9 summarizes the main technologies mentioned in each of the reports listed 
above, and identifies the eight most commonly cited ones in the center. 

Figure 9.  Core set of innovations/technologies across a representative set of recent 
studies and reports (references appear on the next page) 

 
 



 

 

 

43 
 

1 Emerging Science Technologies, Intelligence and National Security Alliance, Council 
on Technology and Innovation, April 2013. 

2  S. Brimley, K. Sayler, and B. Fitzgerald and,  “Game Changers: Disruptive Technology 
and U.S. Defense Strategy”, Center for a New American Security (CNAS), Sep 2013. 

3 Envisioning 2030: US Strategy for the Coming Technology Revolution, Strategic Foresight 
Initiative, Brent Scowcroft Center on International Security, 2013. 

4 R. Work and S., Brimley, 20YY: Preparing for War in the Robotic Age, CNAS, Jan 2014. 

5 Summer Study on Autonomy, DoD, Defense Science Board (DSB), Task Force Report 
(TFR), Office of the Under SecDef for Acquisition, Technology and Logistics, June 2016. 

6 The Role of Autonomy in DoD Systems, DoD, DSB, TFR, Office of the Under SecDef 
for Acquisition, Technology and Logistics, July 2012. 

7 The National Artificial Intelligence Research and Development Strategic Plan, National 
Science and Technology Council, Networking and Information Technology R&D 
Subcommittee, Oct 2016. 

8 Robotics Collaborative Technology Alliance: FY 2012 Annual Program Plan, Army 
Research Laboratory, March 2012. 

9 Unmanned Systems Integrated Roadmap: FY2013-2038, U.S. Department of Defense: 
http://archive.defense.gov/pubs/DOD-USRM-2013.pdf. 

10 Global Trends 2030, National Intelligence Council, NIC 2012-001, Dec 2012. 

11 Technology and Innovation Enablers for Superiority in 2030, DoD, DSB, TFR, Office of 
the Under SecDef for Acquisition, Technology and Logistics, Oct 2013. 

12 http://www.defenseinnovationmarketplace.mil/resources/Lemnios_Testimony_ 
2013.pdf. 
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Artificial intelligence 

What is it? 

Despite its long history, and increasingly rapidly paced advances, there has never 
been a universally agreed-upon definition of what “AI” is. Norvig and Russell, in the 
introduction to their opus Artificial Intelligence: A Modern Approach,162 provide 
extracts of eight different definitions of AI from other standard textbooks, some of 
which stress “thought processes,” others “reasoning,” and still others “rationality”; 
(The authors point out that proponents of these various approaches have both 
helped and disparaged each other.) Nilsson, in the preface of his recent historical 

survey of the fieldQuest for Artificial Intelligence163defines AI as “that activity 

devoted to making machines intelligent, and intelligence is that quality that enables 
an entity to function appropriately and with foresight in its environment.” Poole and 
Mackworth provide an even simpler definition, albeit one laden with suggestive 
concepts:164 “AI is the field that studies the synthesis and analysis of computational 
agents that act intelligently.” 

The “Turing Test,” proposed by Alan Turing in 1950,165 was designed to provide an 
operational means of detecting the presence of intelligence in an engineered system. 
Turing’s idea was to use an existing “standard” of intelligence (i.e., that of a human) 
to probe for the ability of an AI-candidate achieve the same level of performance in 
the same set of cognitive tasks that the “standard” is proficient in. The method was 
to have a human interrogate the candidate system (in Turing’s time, via a teletype). If 
the interrogator cannot determine whether she is probing a computer or a human, 
the candidate “passes” the test. Leaving aside the question of whether the “AI” that 

                                                   
162 S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Pearson, 2009. 

163 N. Nilsson, The Quest for Artificial Intelligence: A History of Ideas and Achievements, 
Cambridge University Press, 2009. 

164 D. Poole and A. Mackworth, Artificial Intelligence: Foundations of Computational Agents, 
Cambridge University Press, 2010. 

165 A. Turing, “Computing Machinery and Intelligence,” Mind 236, Oct 1950. 
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passes such a test is intelligent,166 even the minimal set of capabilities that a system 
would need in order to pass such a test effectively covers most of what today 
constitutes the field of AI: 

 Natural language processing, so that the system can communicate with 
the interrogator (modern incarnations are coupled with automatic speech 
recognition).167 

 Knowledge representation, to codify what the system knows. 

 Automated reasoning, so that the system has the facility to use its stored 
information to draw inferences and answer questions. 

 Machine learning, so that the system is able to adapt to new information, 

by incorporating news facts into its existing corpus and to detect (and 
extrapolate from) patterns of information. 

While Turing deliberately left out a requirement for the interrogator to physically 
interact with the candidate system (since “intelligence” does not require 
corporeality),168 one can imagine a generalized “Total Turing test” that includes, say, 
a video feed to allow the interrogator to test a candidate AI’s perceptual skills. In this 
case, the candidate system would need additional capabilities: 

 Computer vision, to sense objects in its immediate environment (and the 
currently dominant form of machine perception); today, for some specific 
image classification tasks, computers perform better than humans.169 

 Robotics, in order to manipulate and otherwise interact with objects. Current 
research focuses on interacting with changing environment (the general 
navigation problem having been effectively “solved” for static 
environments).170 

                                                   
166 See chapter 26 in S. Russell and P. Norvig, Artificial Intelligence. 

167 Near-real-time translation already commercially available: M. Guta, “Waverly Labs Earpieces 
Translate Other Languages Almost Instantly,” Small Business Trends, 30 May 2016. 

168 The fact that modern cognitive theory posits that intelligence (at least as embodied within 
humans) is actually entwined with physicality, does not alter our narrative, since Turing 
was concerned only with whether a concealed AI-system (i.e., an algorithm running on a 
computer that is itself situated somewhere else; e.g., “behind a curtain”) can fool a human into 
believing she is interrogating another human. Ref: C. Allen, “Why Intelligence Requires Both 
Body And Brain,” Footnote, 27 Jan 2014. 

169 A. Hern, “Computers now better than humans at recognizing and sorting images,” 
The Guardian, 13 May 2015. 

170 R. Murphy, An Introduction to AI Robotics, MIT Press, 2000. 
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State-of-the-art advances in many of these fields (particularly computer vision and 
natural language processing) have been spurred by recent advances in deep learning 
techniques (discussed later). Other forms of AI (not conceivable in Turing’s time), 
include collaborative systems (i.e., autonomous systems that work alongside humans 
and other AI systems), crowdsourcing (i.e., harnessing human intelligence, such as 
Wikipedia does), and Internet-of-Things (i.e., the interconnected world of physical 

devices that can collect and share their sensory information). To make these 
otherwise abstract concepts more concrete and relevant in the context of the subject 
matter of this report, the next few sections take a deeper dive. 

Overview 

Research and development in AI officially dates back to the 1956 British Dartmouth 
Summer Conference at which John McCarthy coined the term,171 although its 

rudimentsat least as far as inspiration from biological neural processing is 

concernedgo back at least a decade to the introduction of the first artificial neuron 

(or threshold logic unit), introduced in 1943 by McCulloch and Pitts.172 Since then the 
field has advanced along two concurrent methodological points of view: a top-down 

approach, in which knowledge about a specific problem domain is first curated by 
human subject matter experts (SMEs), codified in terms of simple rules, and 
implemented in software (the goal of which is to reproduce “human like” reasoning); 
and a bottom-up approach, which deliberately mimics nature’s own evolutionary 

propensity to build “complex” structures out of “simpler” parts. Whereas the first 
approach generally seeks to create AI systems that “understand” (a segment of) the 
world by imposing a hand-crafted symbolic ontology (i.e., a semantic model that 
describes a SME-curated knowledge), the latter approach is grounded on the belief 
that AI systems must learn to understand their environments (and problem domains) 
on their own. The best known examples of these two approaches are, respectively, 
expert systems (ESs) and machine learning (ML). A third approach, natural language 
processing (NLP), involves aspects of both ES and ML and is playing an increasingly 
central role in advancing the state-of-the-art in human-AI collaboration.173   

                                                   
171 John McCarthy is generally acknowledged as one the "founding fathers" of artificial 
intelligence, along with Marvin Minsky (with whom he worked at MIT), Allen Newell, and 
Herbert Simon; Ref: S. Williams, Arguing A.I.: The Battle for Twenty-first-Century Science, 
AtRandom Books, 2002. 

172 W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” 
Bulletin of Mathematical Biophysics, Vol. 5, 1943. 

173 R. Deits, et al., “Clarifying Commands with Information-Theoretic Human-Robot Dialog,” 
Journal of Human-Robot Interaction 2, 2013. 
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Research in NLP goes back to the roots of computer science in the 1940s and 
1950s.174 Today it is a mix of computer science, general AI and computational 
linguistics, with a specific focus on the automatic “understanding” of free-form 
human language. NLP, by itself, does not denote any specific method or algorithm, 
but is best thought of as a label for a broad rubric of related techniques. Examples 
include: text summarization, in which a given document is distilled to manageably 
small summary; named entity recognition (NER), which is the task of identifying text 
elements that belong to certain predefined categories, such as the names of persons, 
organizations, locations, and expressions of times; relationship extraction, in which 

the relationship between various named parts of a chunk of text are identified (“an 
object O belongs to person P”); semantic disambiguation, in which a priori ambiguous 
meanings of words (or chunks of text) are automatically disambiguated from a 
deeper analysis of context and/or information that may be culled from an “ontology” 
(see discussion below); sentiment analysis, in which certain kinds of subjective 

information is extracted from a document or set of documents (e.g., extracting a 
range of emotional reactions to public events from social media posts); speech 
recognition, which refers to the textual representation of sound recordings of people 
speaking; and natural language understanding, in which semantic content is 

extracted from free-form text (this is arguably “the” most difficult open-research 
problem of NLP). 

NLP consists of myriad subfields, including: (1) machine translation (the automatic 
translation from one language to another); (2) information retrieval (the act of 

obtaining, storing, searching information resources that are relevant to a specific 
query or subject from a given source of documents); (3) information extraction (the 
extract of semantic information from text); and (4) deep learning (discussed below). 

Expert systems 

ESs may be characterized loosely as systems that mimic the decision-making ability 
of a human expert (in a given domain), and are arguably the best known “successes” 
of early 1970s AI research.175 They are essentially a knowledge base (see “Semantic 
Knowledge Models” below) + inference engine, with the latter typically instantiated as 
a set of SME curated “IF…THEN…” rules. For example, DENDRAL176 (developed by 

                                                   
174 S. Lucci and D. Kopec, Artificial Intelligence in the 21st Century, Mercury Learning and 
Information, 2013. 

175 S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Pearson, 2009. 

176 E. Feigenbaum, B. Buchanan, and J. Lederberg, “On generality and problem solving: a case 
study using the DENDRAL program,” Machine Intelligence 6, 1971. 
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Stanford University, 1965-1969) was designed to deduce the molecular structure 
from the information provided by a mass spectrometer; and MYCIN177 (also 
developed at Stanford University in the early 1970s) was an automated system to 
diagnose infectious diseases. It was among the first expert systems to combine SME 
“rules” (about 450) with a calculus that allowed the system to make inferences based 
on “certainty factors,” and performed better than junior doctors. The first 
commercial expert system, R1178 (introduced by the Digital Equipment Corporation in 
1982), was designed to help managers configure orders for their new VAX-11 
computer systems, and was powerful enough to save the company about $40 million 
a year). Of course, numerous other examples may be culled from the literature, and 
the range of applications is both deep and broad. For example, a 1983 book by 
Hayes-Roth, Waterman, and Lenat179 lists 10 general categories of applicability of ES 
technology: (1) interpretation and identification (i.e., making general inferences from 
input data), (2) prediction, (3) diagnosis, (4) design, (5) planning, (6) monitoring, (7) 
debugging, (8) repair (e.g., developing a plan to administer a required remedy to a 
system fault), (9) instruction, and (10) control. 

MYCIN, because of its early success, remains a benchmark against which even 
modern ES are often judged. Its importance is underscored by Durkin,180 among 
whose “lessons learned” from MYCIN are: knowledge is separate from control (i.e., 
one does not need to change the inference engine if the rules change); rules must 
accommodate both inexact reasoning (i.e., degrees of certainty) and meta-control (i.e., 
rules about rules); natural language interaction (i.e., the user must be able to interact 
with the system in a natural fashion); explanatory power (i.e., the system must be 

able to explain how and why a given inference was made); and an ability to provide 
alternative recommendations (so that the user is not constrained to blindly choose a 
single “conclusion”). An equally important lesson is that despite being a relatively 
“simple” expert system by modern standards, MYCIN was hardly “easy” to develop, 
requiring some 20-person years of research effort. The same is true of modern 
approaches to the “general AI” problem, examples of which will be discussed below. 

 

                                                   
177 B. Buchanan and E. Shorti, Rule based expert systems: the MYCIN experiments of the Stanford 
Heuristic Programming Project, Addison-Wesley, 1984. 

178 J. Macdermott, “R1: the formative years,” AI Magazine 2, no. 2, 1981. 

179 F. Hayes-Roth, D. Waterman, and D. Lenat, Building Expert Systems, Addison-Wesley, 1983. 

180 J. Durkin, Expert Systems: Design and Development, Macmillan, 1994. 
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Machine learning 

“Machine learning” is a catch-all phrase that refers to a wide variety of techniques 
designed to detect patterns in, and learn and make predictions from data. Specific 
techniques include:181 Bayesian belief networks (which are graph models whose nodes 
represent some objects or states of a system and whose links denote probabilistic 
relationships among those nodes); deep learning (which is sometimes also called 
hierarchical learning, and refers to a class of ML algorithms designed to find 
multiple high levels of abstract representations of patterns in data); genetic 
algorithms (and other evolutionary programming techniques that mimic the 
dynamics of natural selection);182 inductive logic programming (designed to infer a 

hypothesis from a knowledge base and a set of positive and negative examples);183 
neural networks (which are inspired by the structure and function of biological 
neural networks);184 reinforcement learning (which is inspired by behaviorist 
psychology and refers to a technique whereby learning proceeds by adaptively 
constructing a sequence of actions that collectively maximize some long-term 
reward);185 and support vector machines (SVM),186 used for classifying objects into 

While all ML techniques require a dataset (or multiple datasets) to be used as a 
source of training data, the learning can proceed in one of three ways: supervised, 
semi-supervised, or unsupervised. In supervised learning, each training data element 

is explicitly labeled as an input-output pair, where the output is the “correct” desired 
value that one wishes the system to learn to associate with a given input (thereby 
learning the general rules by which to associate input-output pairs not in the original 
training set), and the “output” represents a “supervisory signal”). In unsupervised 
learning, the system attempts to discover hidden structure in data on its own—i.e., 

no reward signals are given to “nudge” the system as it processes the training data. 
Semi-supervised learning refers to a class of supervised learning techniques that also 
use unlabeled training data. Reinforcement learning may be considered a form of 
semi-supervised learning, in that it neither uses input-output pairs for training nor is 
completely unsupervised; instead, the type of feedback it receives depends on its 

                                                   
181 S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Pearson, 2009. 

182 Z. Michalewicz and D. Fogel, How to Solve It: Modern Heuristics, Springer-Verlag, 2005. 

183 S. Muggleton and H. Watanabe, Latest Advances in Inductive Logic Programming, Imperial 
College Press, 2014. 

184 M. Hassoun, Fundamentals of Artificial Neural Networks, MIT Press, 2003. 

185 R. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT Press, 1998. 

186 N. Cristianini, An Introduction to Support Vector Machines and Other Kernel-based Learning 
Methods, Cambridge University Press, 2000. 
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response. For correct responses, it receives the same type of response as any 
supervised learning system does (e.g., response is “correct”); for incorrect responses 
it is told only that an “incorrect response” was given but is not informed of what the 
correct response was.    

Neural networks and deep learning 

Neural networks (NNs) are among the oldest, and most powerful, forms of “bottom 
up” AI methods.187 Though the development of the general method was curtailed 
during at least two dark periods (in the 1970s and 1990s; see below), NNs are 
currently undergoing a burgeoning renaissance in a slightly modified form known as 
Deep Learning (DL),188 due mainly to the confluence of three factors: exponential 
growth in computing power, the exponentially dwindling cost of digital storage 
coupled with an exponential growth of available data, and a new generation of fast 
learning algorithms for multiplayer networks. Because of the importance of these 
techniques to the development of military autonomous systems and AI in general, 
one must have at least a passing acquaintance with the history of NNs and basic 
terminology in order to appreciate the significance of the most recent developments. 
Figure 10 shows a timeline of major milestones, starting with the first mathematical 
model of a neuron introduced in 1943.189 

At its core, and loosely stated, an NN represents a particular class of functional 
transformations from a set of input patterns to an output class of associated 

categories. Think of a simple linear regression (LR)say, a linear predictor function 

(LPF)for modeling the relationship between some scalar dependent variable, y, and 

a single independent variable, x. To find the LPF, one merely has to fit a line that 

“best fits” the dataset that represents what is known about how y is related to x (e.g., 

the dataset may consist of a set of (x,y) pairs, most, or even all, of which may only be 

known approximately). Of course, one is free to use a more complicated function, but 
this runs the risk of overfitting (i.e., “learning” a function that works well for the data 

in the training set but is unable to predict reasonable sets of values for the “real” or 
“test” data). 

                                                   
187 J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Technical Report IDSIA-
03-14, arXiv:1404.7828 v4, 2014. 

188 I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016. 

189 W. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” 
Bulletin of Mathematical Biophysics 5, 1943. 
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Figure 10.  Timeline of milestones in the development of neural networks and deep 
learning techniques (see text for discussion) 

 

LR is essentially the idea behind the perceptron, introduced by Rosenblatt in 1958 as 

a mathematical distillation of how biological neurons operate.190 In a perceptron, each 
“neuron” takes a set of binary inputs (from nearby neurons in the NN), multiplies 
each input by some real-valued weight (which represents the strength of the 
connection to each nearby neuron), transforms the sum of these weighted inputs to 
an output value of 1 if the sum exceeds some threshold value, and otherwise outputs 
the value 0 (to mimic the way biological neurons either “fire” or not). It was believed, 
early on, that perceptrons could be used as the basis for developing AI systems 
because it can be proven that they can model basic logic functions (such as OR, AND, 
and NOT gates). In order to “learn” a function, one starts with an input-output 
training set, and adjusts the weights of the perceptron by either increasing their 
value if the output for a given example is too low, or decreasing their value if the 
output is too high. The rudiments of modern ML were born when Rosenblatt’s 
learning-perceptron was implemented in hardware (and used to classify simple 
shapes with 20-by-20 pixel inputs), and the single-output perceptron design was 
replaced with a network that included multiple neurons in the output layer. For 
example, in the latter case, if the task is for the NN to “learn” to classify an image of 
a handwritten digit, the inputs may be used to represent the pixels of an image, and 
10 output neurons may be used to correspond to each of the 10 possible digit values. 

The first “dark period” of NN development (see figure 10), during which the funding 
for further research and the number of published papers dropped significantly from 

                                                   
190 F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and 
Organization in the Brain,” Psychological Review, Vol. 65, 1958. 
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prior years, followed the landmark publication of the book Perceptrons in 1969.191 

The book argued, correctly, that because the Boolean exclusive-OR (or XOR) function 
is not linearly separable,192 the utility of Perceptron networks in the development of 
AI is necessarily limited. The only way that the XOR function can be learned was by a 
multilayer network; i.e., a NN in which there are hidden layers sandwiched between 

the input and output layers (see left-hand-side of figure 11-a).  

But the only known learning algorithm at the time of the book’s publication applied 
only to the simplest single-input-layer/single-out-layer NNs. It was not until 1986, 
when the so-called Backpropagation Learning (BL) method, which could be applied to 

NNs with hidden layers, was introduced, that the first “dark period” of NN research 
finally ended.193 Three years later, Hornik et al. proved that multiply layered NNs can 
learn any function, including XOR.194 Also in 1989 was the first landmark application 
of BL to the automatic recognition of handwritten zip code numbers;195 the algorithm 
for which was a precursor of what have come to be known as convolutional neural 
networks (CNNs). The layers of a CNN are defined to exploit any regularities and 

constraints of the dataset that the NN is being trained on. For example, if the NN is 
to be trained on a set of 3D images, the layers of a CNN might be arranged in three 
dimensions (width, height, and depth).196 Modern incarnations of CNNs include 
pooling layers (positioned in-between convolutional layers), that effectively reduce 
the spatial representation (e.g., by down sampling the size of an image) to reduce the 
number of parameters in the network, and thus also help control overfitting. 

                                                   
191 M. Minsky and S. Paypert, Perceptrons, MIT Press, 1969. 

192 The XOR function yields the following output values for the four possible input 
combinations of 0 and 1: 0 XOR 0 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1, and 1 XOR 1 = 0. If these 
four output values are arranged in a two-dimensional (x,y) plot, it is immediately clearby 
visual inspectionthat it is impossible to draw a line that separates the two ‘0’ values from 
the two ‘1’ values. Ref: Chapter 4.5 in S. Haylin, Neural Networks: A Comprehensive Foundation, 
Second Edition, Prentice Hall, Inc., 1999. 

193 D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-propagating 
errors,” Nature 323, 1986. 

194 K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal 
approximators,” Neural Networks 2, 1989. 

195 Y. LeCun et al., “Backpropagation applied to handwritten zip code recognition,” Neural 
Computation 1, 1989. 

196 L. Deng, G. Hinton, and B. Kingsbury, “New types of deep neural network learning for 
speech recognition and related applications: an overview,” in IEEE International Conference 
on Acoustics, Speech and Signal Processing, 2013. 
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Figure 11.  Schematic illustrations of neural network designs 

 

 

The late 1980s/early 1990s saw the advent of NNs being applied to physical robots, 
in which, for example a robot was taught (using supervised learning) to steer through 
a simple physical environment.197 Also around this time, an RL-based AI 

systemcalled TD-Gammonfamously “taught itself” to play backgammon at a 

superhuman level.198 TD-Gammon is one of the first instances of an RL/NN-hybrid 
system being able to outperform humans on a relatively complex task (see discussion 
in next section). Ironically, it was this early “success” that led to the second “dark 
period” of NN development (see figure 10), which ended relatively recently in 2006. 
The reason was that when TD-Gammon’s learning algorithm was applied to other 

                                                   
197 L. Lin, Reinforcement learning for robots using neural networks, Ph.D. Thesis, Carnegie-
Mellon University, School of Computer Science, CMU-CS-93-103, 1993. 

198 G. Tesauro, “Temporal difference learning and TD-Gammon,” Communications 
of the ACM 38, 1995. 
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(albeit more “complex”) games such as chess199 and Go,200 its performance was far 
worse. Notably, the main reason for the ostensible “failure” was not so much the 
learning algorithm (the basic characteristics of which are still embedded in most 
modern “successes”; see next section), but the relative slowness of the computer 
processors and limited memory storage of c.1990s era computers. Amidst the 

growing realization that problems more “complex” than that of learning to play 
backgammon required many more than one single hidden layer, was the reality that 
the BP algorithm did not work well for NN that had many hidden layers201—and it is 
the presence of many hidden layers that is the cornerstone of most modern deep 
learning systems (see figure 11-b).202  

Even as the raw power of available computers was steadily increasing until very 
recently (thanks to Moore’s law203), it was not until both a “fast learning” algorithm 
for deep learning neural networks (DLNNs) was finally introduced in 2006204 and AI 
researchers began exploiting the massively parallel computing powers of Graphical 

Processing Units (GPUs) to speed up learning even further,205 that a largeand 

increasingnumber of “narrow AI” problems showed signs of having been effectively 

“solved” (see State-of-the-Art below).  

                                                   
199 S. Thrun, “Learning to play the game of chess,” Advances In Neural Information Processing 
Systems 7, 1995. 

200 N. Schraudolph, P.  Dayan, and J. Sejnowski, “Temporal difference learning of position 
evaluation in the game of Go,” Adv. in Neural Information Processing Systems 6, 1994. 

201 A. Ilachinski, Chapter 10 in Cellular Automata, World Scientific Press, 2001. 

202 The BP (supervised) learning rule is essentially a prescription for adjusting the initially 
randomized set of synaptic weights (existing between all pairs of neurons in each successive 
layer) so as to minimize the difference between the perceptron's output of each input fact 
and the output with which the given input is known (or desired) to be associated. The 
backpropagation rule takes its name from the way in which the calculated error at the output 
layer is propagated backwards from the output layer to the Nth hidden layer to the (N  1)th 
hidden layer, and so on. As the number of layers, N, increases, the BP rule results in assigning 
unmanageably large or extremely small numbers to weights; i.e., the ‘vanishing or exploding 
gradient problem.” Ref: J. Schmidhuber, “Deep learning in neural networks: An overview,” 
Neural Networks 61, 2015.  

203 “Moore’s law” was an observartion made in 1965 by Gordon Moore, co-founder of Intel, that 
the overall processing power for computers roughly doubles every two years; a pattern that 
has only recently been broken: T. Simonite, “Moore’s Law Is Dead. Now What?”, MIT Technology 
Review, 13 May 2016. 

204 G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets,” Neural 
Computation 18, 2006. 

205 Speedups close to two orders of magnitude have been reported: R. Raina, A. Madhavan, and 
A. Ng, “Large-scale deep unsupervised learning using graphics processors,“ Proceedings of the 
26th Annual International Conference on Machine Learning, ACM, 2009. 
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While the United States government has always played an important role in fostering 
AI research (e.g., ARPA, DARPA, NSF, ONR),206 it is arguably the commercial sector 
that is driving most significant advances (certainly for “narrow AI” problems), 
including major technology companies such as Amazon, Apple, Microsoft, Google, 
and Facebook.207 Nearly 140 private AI technology companies have been acquired 
since 2011, with over 40 acquisitions taking place in 2016 alone (as of this writing: 
27 October 2016).208 Perhaps the most noteworthy acquisition (anticipating the 
discussion of some major AI “successes” in the next section) occurred in 2014, when 
Google bought the AI startup DeepMind. More recently, both Microsoft and Google 

have recently made public essentially the same set of core machine learning tools 
used by their in-house researchers: Computational Network Toolkit (CNTK)209 and 
TensorFlow,210 respectively.  

Finally, we note the United States is no longer the “de facto” world leader when it 
comes to the number of publications’ citations of research journals mentioning 
“deep learning” or “deep neural network”; that distinction, as of sometime between 
2013 and 2014, now belongs to mainland China (see figure 12).211 

                                                   
206 Funding a Revolution: Government Support for Computing Research, National Research 
Council, National Academy Press, 1999. 

207 “Microsoft, Google, Facebook and more are investing in artificial intelligence: What is their 
plan and who are the other key players?”, TechWorld, September 29, 2106, 
http://www.techworld.com/picture-gallery/big-data/9-tech-giants-investing-in-artificial-
intelligence-3629737/. 

208 The Race For AI: Google, Twitter, Intel, Apple In A Rush To Grab Artificial Intelligence 
Startups, CBInsights, 7 Oct 2016: https://www.cbinsights.com/blog/top-acquirers-ai-startups-
ma-timeline/. 

209 https://github.com/Microsoft/CNTK. 

210 https://github.com/tensorflow/tensorflow. 

211 The National Artificial Intelligence Research and Development Strategic Plan, National 
Science and Technology Council, Networking and Information Technology Research and 
Development Subcommittee, Oct 2016. 
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Figure 12.  Number of journal articles mentioning “deep learning” or “deep neural 
network” for the top 6 nations (as of 2015) 

Ref: Based on Figure 1 in Ref: The National Artificial Intelligence Research and 
Development Strategic Plan, National Science and Technology Council, Networking 
and Information Technology Research and Development Subcommittee, Oct 2016. 

State-of-the-Art 

Increasingly more often, AI systems are outperforming humans on specific tasks; a 

fact due primarily to the advent of deep learning techniques (discussed above) and 
the accompanying (and continuing) growth of computer power. Table 2 shows 
selected milestones when AI first surpassed human performance, culminating in 
Google’s DeepMind’s AlphaGo defeating a top-ranked human Go player (Lee SeDol) 

four games to one in March 2016.212 

                                                   
212 http://gogameguru.com/alphago-defeats-lee-sedol-4-1/. AlphaGo also defeated Fan Hui, the 
European Go champion, five games to none in October 2015. However, the 2016 match against 
Lee Sedol was the first time that a human with the highest Go ranking (9-dan master) lost a 
tournament match without handicap to an AI system. 
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Table 2. Selected milestones when AI first surpassed human performance 

Year  Milestone  Reference 

1981  Traveller TCS* 
D. Lenat, "EURISKO: A program that learns new heuristics and domain 
concepts,” Artificial Intelligence 21, 1983 

1992  Backgammon 
G. Tesauro, A Self‐Teaching Backgammon Program, Achieves Master‐Level 
Play, AAAI Technical Report FS‐93‐02, 1993 

1994  Checkers 
J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in Checkers, 
Springer‐Verlag, 1997 

1997 
Othello 

M. Buro, “The Othello match of the year: Takeshi Murakami vs. Logistello,” 
ICGA Journal 20, 1997 

Chess 
B. Pandolfini, “Kasparov and Deep Blue: The Historic Chess Match Between 
Man and Machine,” Fireside Chess Library, 1997 

2002  Scrabble 
B. Sheppard, “World Championship Caliber Scrabble,” Artificial Intelligence 
143, 2002 

2008  Poker  J. Rubin, I. Watson, “Computer poker: A review,” AI  175, 2011 

2011  Trivia/Jeopardy! 
S. Baker, Final Jeopardy: Man vs. Machine and the Quest to Know 
Everything, Houghton Mifflin Harcourt, 2011 

2013 

Atari Games 
V. Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,” 
in Proc. of the 33rd International Conference on Machine Learning, 2016 

Image Recognition 
K. He et al., “Deep Residual Learning for Image Recognition,” The IEEE 
Conference on Computer Vision and Pattern Recognition, 2016 

Speech Recognition 
D. Amodei, “Deep Speech 2 : End‐to‐End Speech Recognition in English 
and Mandarin,” Proceedings of the 33rd International Conference on 
Machine Learning, 2016 

2016 
Go 

S. Byford, “Google's AlphaGo AI beats Lee Se‐Dol again to win Go series 
4‐1,” The Verge, March 15, 2016 

Voice Recognition 
W. Xiong et al., “Achieving Human Parity in Conversational Speech 
Recognition,” 17 Oct 2016 (http://arxiv.org/abs/1610.05256v1) 

* “Traveller TCS” is a futuristic naval war game, introduced in 1977 by Game Designers' 
Workshop. 
 
Although IBM’s Deep Blue’s victory in chess over Gary Kasparov in 1997 was historic 
at the time, AlphaGo’s victory in Go over Lee Se-Dol in 2016 is arguably more 

noteworthy, because of the generalizability of the learning method by which it was 
taught). Indeed, right up until AlphaGo’s victory, it was commonly believed among AI 

researchers that it would take at least another decade for an AI to defeat a top-
ranked Go player.213 The reason simply has to do with how much more “complex” a 
game Go is compared to chess. For example, using one standard metric, called game 

tree complexity (GTC)which, roughly speaking, measures the number of positions a 

move-ranking algorithm would have to evaluate in order to determine the value of an 

initial positionthe complexity of Go exceeds that of chess by almost 240 orders of 

magnitude.214  

                                                   
213 http://www.wired.com/2016/01/in-a-huge-breakthrough-googles-ai-beats-a-top-player-at-
the-game-of-go/. 

214 While chess is played on an 8-by-8 board, tournament-level Go is played on a 19-by-19 board, 
albeit with effectively two pieces. J. Burmeister, “The challenge of Go as a domain for AI 
research: a comparison between Go and chess,” Intelligent Information Systems, 1995.  
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For purposes of this white paper, it is instructive to underscore the differences 
between Deep Blue’s and AlphaGo’s respective achievements. While both AI systems 

obviously learned to play (chess and Go, respectively), the ways in which they were 

“taught”and how they playedare very different. Deep Blue’s core evaluation 

function numerically “ranks” given board positions, and was handcrafted, albeit with 
many thousands of open parameter values, and later refined by a grandmaster. The 
final algorithm was effectively determined by the system itself, after playing several 
thousand games against itself. The style of gameplay (which defeated Kasparaov) was 
effectively “brute-force,” in which Deep Blue systematically applied its evaluation 

function to many alternative future states, searching seven or eight moves ahead for 
each player, at a rate of about 200 million position evaluations per second.215 Since 
Deep Blue’s victory over Kasparov in 1997, chess-playing computers have become 

increasingly stronger, to the point where all but the strongest players are likely to be 
defeated by chess engines running on a smartphone.216 However, the manner in 
which these chess engines “play” has not changed, as they all rely on the same “brute 
force” approach used by Deep Blue.  

AlphaGo’s learning method (and playing style) is very different from Deep Blue’s, and 
is a harbinger of the future of “narrow AI.” AlphaGo “learns” via a two-pronged deep-

learning approach that uses “value networks” to evaluate board positions and “policy 
networks” to select moves.217 The DLNNs are trained partly by supervised learning 
using a dataset of human expert games (with about 30 million total moves), and 
partly from unsupervised reinforcement learning from games that it played with 
itself (using Monte Carlo tree search programs to simulate many thousands of 
random games). Notably, AlphaGo does not use look-ahead search; instead, its moves 

are a consequence of a gestalt-like holistic assessment of a single “Go position” (as 
one “pattern”). Where Deep Blue is essentially an expert system built using 
handcrafted rules, AlphaGo uses general machine-learning techniques to effectively 

                                                   
215 M. Campbell, “Knowledge discovery in Deep Blue,” Comm. of the ACM  42, Nov. 1999. 
Essentially the same ”brute force” learning/playing method was used about 10 years later by 
a widely available commercial chess program, Deep Fritz, to defeat the then-reigning chess 
champion Vladimir Kramnik, but in which the AI system was run on a personal computer, 
evaluated only 8 million positions per second, and searched to an average depth of 17 to 18 
moves (Ref: http://news.bbc.co.uk/2/hi/europe/6212076.stm). Compare this to the hardware 
required by Deep Blue, a 30 node, massively parallel system enhanced with 480 special purpose 
chess chips. When Deep Blue defeated Kasparov, its underlying hardware was the 259th most 
powerful supercomputer in the world (M. Newborn, Deep Blue, Springer-Verlag, 2002). 

216 The chess-playing program Pocket Fritz 4 reached grandmaster level in 2009 while running 
on a 528 MHz HTC Touch HD mobile phone: https://en.chessbase.com/post/pocket-fritz-4-full-
ahead-. 

217 D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,” 
Nature 529, 28 Jan 2016. 
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teach itself a complex “board position  move” mapping function, f
Go

: position  

move. The caveat of AlphaGo’s human+ level playing abilityand an example of the 

“harbinger of future AI” aspect of its landmark achievementis that short of 

watching what move AlphaGo selects for a given board position, the details of the 
function f

Go
 are effectively invisible. While this “unknowability” caveat is nothing 

newit is a well-known characteristic of all neural-net based learning218its 

appearance in future military AI-based weapon systems is all-but-guaranteed if 
similar learning methods are used, and raises the more ominous spectre of military 
autonomous systems sometimes behaving unpredictably (a subject we will revisit in 
a later section). 

In the case of Deep Blue and AlphaGo, both of their human victims were surprised by 

their AI opponent at some point during their respective matches: Kasparov, by a 
human-move-like sacrifice of a pawn in the first time (though the surprising move 
was later revealed to be a result of a programming error219); and Lee SeDol, by a move 

that was so surprising“not a human move”that the human player had to leave the 

room for 15 minutes to recover his composure.220  

There is one other recent landmark achievementTuring Learning221that, though it 

does not yet surpass human performance (indeed, it is the first of its kind), 
nonetheless highlights the rapidly growing power of machine learning techniques.  

Turing Learning is the first “self-learning” AI-system (based on a “simple” single-
hidden-layer neural network architecture) that is able to effectively infer the rules 
that govern the behavior of individual robots within a robotic swarm by watching the 
swarm. Moreover: (1) collective behaviors can be directly inferred from motion 

trajectories of a single agent in the swarm, and (2) the basic technique can be applied 
to any observed system, human or machine. It works by simultaneously optimizing 
two populations of computer programs: one population represents models of the 

                                                   
218 M Hassoun, Fundamentals of Artificial Neural Networks, MIT Press, 2003. 

219 During an interview after the match, Kasparov was so “stunned” by Deep Blue’s seeming 
sacrifice of a pawn in the first game”a wonderful and extremely human move”that it 
altered the way he played in subsequent games, and, arguably, contributed to his eventual 
defeat. Ref: G. Kasparov, “The day that I sensed a new kind of intelligence,” Time, 25 March, 
1996). However, 15 years later, one of Deep Blue’s designers suggested that the move was 
due to a programming bug: K. Finley, “Did a computer bug help Deep Blue beat Kasparov?”, 
Wired, 28 Sep 2012. 

220 C. Metz, “The sadness and beauty of watching Google’s AI play Go,” Wired, 11 March, 2016. 

221 G. Templeton, “Turing Learning breakthrough: Computers can now learn from pure 
observation ,” ExtremeTech, 30 Aug 2016: https://www.extremetech.com/extreme/234669-
turing-learning-breakthrough-computers-can-now-learn-from-pure-observation. 
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behavior of the system under investigation, and the other represents the classifiers. 
Two robot swarms are used: “A” (the “true” swarm) and “B” (the “learning” swarm). 
The movements of both “A” and “B” are tracked by the two learning systems: the 
classifier is rewarded for its ability to discriminate between “A” and “B”; and the 
model is rewarded for its ability to fool the classifier. Unlike other system 

identification methods, Turing Learning does not require any predefined metrics to 
quantify the difference between observed behaviors of a system and its models; 
indeed, Turing Learning outperforms metric-based system identification methods, in 
terms of model accuracy.222 Although it is impossible to predict how this prototype 
technology might evolve in the coming years, it is safe to say that its continued 
development may impact the operational deployment options of future autonomous 
weapon systems (e.g., robotic swarms may be endowed with the ability to adapt their 
behaviors in real-time by observing enemy swarms). 

Where state-of-the-art AI still falls short  

Despite the string of recent successes in “narrow AI” (in which an AI system is 
taught, or learns, how to perform on a specific class of problems), there are many 
problems for which “narrow AI” techniques still fall far short of “solving.” And even 
among those problems for which “narrow AI” both is well suited and demonstrably 
outperforms humans (such as it does for any of the problems listed in table 2), there 
are situations when an AI’s “solution” is surprising and/or blatantly wrong.  

While we may certainly expect to be “surprised” by an AI system’s “solution” to a 
hard problem (such as Lee SeDol’s surprise at one of AlphaGo’s moves during the 
second game of the landmark match he lost in 2016),223 a limitation that applies to all 
extant machine learning methods as they apply to “narrow AI” problems is that they 
are effectively “black boxes” that do not easily reveal the “logic” behind the 
“reasoning.”224 This may be innocuous when playing an AI system in chess, but it 
assumes an entirely new (and serious) dimension if the “narrow AI” in question is 
embedded within a military autonomous system. For example, how does one ensure 

                                                   
222 W. Li, M. Gauci, and R. Gross, “Turing learning: a metric-free approach to inferring behavior 
and its application to swarms,” Swarm Intelligence, Vol. 10, No. 3, September 2016:  
http://link.springer.com/content/pdf/10.1007%2Fs11721-016-0126-1.pdf. 

223 C. Metz, “The Sadness and Beauty of Watching Google’s AI Play Go,” Wired, 3 March 2016: 
http://www.wired.com/2016/03/sadness-beauty-watching-googles-ai-play-go/. 

224 In the context of AI-based text-processing systems, MIT has recently introduced a method 
to train neural networks so that they provide rationales for their otherwise (and traditionally) 
opaque classifications. Ref: T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing Neural 
Predictions,” Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, 2016. 
https://people.csail.mit.edu/taolei/papers/emnlp16_rationale.pdf. 
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(during, say, the testing and evaluation phase of DoD’s acquisition process) that the 
autonomous system being developed will not perform “surprising” (i.e., 
unanticipated) actions during a mission? (A discussion of the issues involved in 
answering this question appears later in the narrative.) 

The second issueat least as egregious as displaying impenetrably surprising 
behaviorsis that otherwise well-performing “narrow AI” systems can also 
sometimes (and unpredictably) provide bad solutions to problems, with counter-
intuitive properties. For example, two recent studies of state-of-the-art visual 
classifiers show that: (1) changing an image that has already been correctly classified 
in a way that is imperceptible to humans can cause a deep-learning neural network 
(DLNNs) to classify the image as something entirely different,225 and, conversely, (2) it 
is easy to produce images that are completely unrecognizable to humans but that are 
“classified” by state-of-the-art DLNNs with 99.99% confidence (e.g., labeling with 
certainty that white noise static is a lion).226 Figure 13 shows an example of the first 
case, in which a correctly classified image of a panda (with 57.7% confidence) is 
combined with a random imagewhich the classifier algorithm designates with low 
confidence as an image of a nematodeto produce an image that is now incorrectly, 
and with high confidence, classified as a gibbon, even though the first and third 
images are indistinguishable to a human. 

Figure 13.  Example of a DLNN’s “blind spot” in recognizing images (see text) 

Ref: After figure 1 in I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing 
adversarial examples,” International Conference on Learning Representations (ICLR) 2015: 
https://arxiv.org/pdf/1412.6572v3.pdf. 

                                                   
225 C. Szegedy et al., “Intriguing properties of neural networks,” presented at the International 
Conference on Learning Representations, 2014: https://arxiv.org/abs/1312.6199. 

226 A. Nguyen, J. Yosinski, and J. Clune, “Deep Neural Networks are Easily Fooled: High 
Confidence Predictions for Unrecognizable Images,” Computer Vision and Pattern Recognition 
(CVPR), IEEE, 2015: http://www.evolvingai.org/files/DNNsEasilyFooled_cvpr15.pdf. The authors 
of this study believe that all AI techniques that derive from creating decision boundaries 
between classes (not just deep neural networks) are subject to this “self fooling” phenomenon. 
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To emphasize: All deep learning neural networks effectively have “blind spots” in the 
sense that their input space inevitably contains elements that are arbitrarily close to 
correctly classified examples but that are misclassified.227 Moreover, these “blind 
spots” display a kind of universality since the same misclassifications typically 
appear both in different DLNN architectures trained on the same dataset and by the 
networks trained on different data (i.e., misclassifications are not just a consequence 

of overfitting to a particular model). In a military context, such “blind spots” 

represent both a vulnerabilityto a novel form of cyber intrusion by an adversary, 

whereby just the right array of pixels is injected into, say, the DLNN-trained image 
sensors of an autonomous system to render its environment temporarily 

unrecognizable)and a weapon, whereby friendly forces do the same to an 

adversary’s autonomous systems.  

Finally, and before moving on to the “general AI” problem, note that all of the 
“narrow AI” successes thus far cited share two fundamental characteristics (apart 
from the obvious fact that they are all designed to “solve” specific problems—e.g., 
play a good game of checkers, or chess, or Go): 

1. They map fairly simple inputs to outputs. For example, an image (as input) is 
classified as, say, a “dog” (as output) by an image recognition program; the 
sentence “this phrase is in English” (as input) is translated to, say, its Russian 
equivalent (as output) by an AI-translator algorithm; or, as an example of an 
ostensibly “more complex” variant, the moving 3D video (as input from, say, 
a self-driving car’s cameras and other sensors) is “transformed” (via the 
“narrow AI” system) into a new position/movement-vector for the car. 

2. The times scales for human performance (on the same set of specific problems) 
are fairly short. Whether a typical human is “good” at solving a specific 
problem or merely adequate, if the problem is such that the human 
processing time is on the order of seconds, today’s state-of-the-art AI can 

probably automate (if not exceed a typical human’s ability to perform) the 
specific task. (This is not to say that games such as chess or Go can be 
“solved” in a few seconds—only that each essentially requires but a single 
“glance” at the board position to provide the information necessary for 
making a move.) 

One other common element is that all of these systems require huge datasets for 
training.228 For example, the image classifiers that competed in the 2014 Large Scale 

                                                   
227 M. James, “The Flaw Lurking In Every Deep Neural Net,” I Programmer, 27 May 2014. 

228 In contrast, most humans are capable of “one shot” learning, whereby general categories 
can be self-learned “on the fly” using only a few examples. This is an (as yet, unavailable) ability 
that is desirable to have embedded in the software driving autonomous systems and that 
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Visual Recognition Challenge (LSVRC)229 all trained on a set of images distributed 
among 1,000 categories and 1.2 million images;230 and training required significant 
human effort to provide a large enough sample space of “correct” labels.231 Two 
fundamental problems with requiring large datasets for training are: (1) the spectre 
of hidden or otherwise latent patterns that may bias the data (and thereby 
inadvertently skew what AI systems “learn”), and (2) the difficulty and cost of simply 
acquiring the data (an issue that immediately rises to the forefront in any discussion 
of DNN-driven DoD procurement of AI systems). In the first case, it is not always 
clear whether what AI systems “learn” from a given dataset are bona fide patterns in 
the data or merely “half-truths” distorted by hidden or latent biases in the training 
data. For example, Microsoft recently unveiled an AI-driven chat bot called Tay232 and 
almost immediately shut it down233 because of concerns over its inability to recognize 
when it was making offensive or racist statements. While the bot was not “taught” to 
make racist comments, the developers failed to take into account the statistical 
likelihood that the bot would “learn” all ambient social norms prevalent in the data-

rich tweet/chat space it is programmed to interact with. In the second case, since 
DoD has only recently embarked on a path toward developing and acquiring 

                                                                                                                                           
comes with its own associated risks (and which therefore represents a bona-fide analysis 
“gap”). Ref: Google has recently announced a possible breakthrough in “one view” learning, 
exploiting the same memory-enhanced architecture used by DeepMind to learn to traverse the 
London Underground (see discussion in main text). When used to learn to recognize images, 
the system still needs to effectively bootstrap itself to learn several hundred categories, but 
after an initial “pre learning” phase, it is able to recognize new objects from a single image. 
Ref: O. Vinyals et al., “Matching Networks for One Shot Learning,” arXiv, 1606.04080v1, 
13 June 2016. 

229 LSVRC homepage: http://www.image-net.org/challenges/LSVRC/2014/index#introduction. 

230 http://image-net.org/challenges/LSVRC/2014/browse-synsets. These training data are a 
subset of the Imagenet database, which is a vast archive of more than 14 million images that 
have been identified by humans: http://image-net.org/. 

231 Google has developed a method that uses unsupervised learning to teach an AI system to 
distinguish among objects observed in YouTube videos. Using 1,000 computers (with 16K 
cores) to sort through 10 million 200200 pixel images, the system learned to recognize 22K 
object categories with a 15.8% accuracy (with represents a 70% relative improvementover the 
previous state-of-the-art). Ref: Q. Le et al., “Building high-level features using large scale 
unsupervised learning,” IEEE International Conference on Acoustics, Speech and Signal 
Processing, 2013: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6639343. 

232 S. Perez, “Microsoft’s new AI-powered bot Tay answers your tweets and chats on GroupMe 
and Kik,” TechCrunch, 23 March 2016: https://techcrunch.com/2016/03/23/microsofts-new-ai-
powered-bot-tay-answers-your-tweets-and-chats-on-groupme-and-kik/. 

233 Peter Lee, Corporate Vice President Microsoft Research, “Learning from Tay’s introduction,” 
Official Microsoft Blog, 25 March 2016: ttps://blogs.microsoft.com/blog/2016/03/25/learning-
tays-introduction/#sm.000805batb8df0w106j2gxbiibbsg. 
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autonomous systemssystems that will be tasked with performing in vastly 

different environments from those for which the commercial and academic research 

communities have built their own AI systemsit will be an enormous undertaking 

for DoD to build the requisite types of training datasets. 

General AI and the ability to reason  

One major area in which state-of-the-art AI currently falls short is in general AI, the 
basic challenge of which is to develop a system that both performs well across a wide 
spectrum of cognitive skills and responds to many different forms of input data. 
General AI directly impacts each of the core AI-related components of autonomous 
systems: perception, navigation, planning, behavior, targeting, and the human-system 
interface. For example, the scene-recognition part of “perception” may be adequately 

“solved” via “narrow AI” training methods for sufficiently well characterized 
environments; however, with an increase in the difference between the real dynamic 
operational environment and the ones depicted in the dataset used for training, the 
autonomous system must be able to move gracefully away from simple “recognition” 
to reasoning. And even rudimentary reasoning (constrained to “simple,” well-defined 

unchanging environments—something that is unlikely to occur in real-world 
scenarios) requires an ability to infer properties in the world from sensor-derived 

data and past experience. Except for the simplest of environments, an autonomous 
system’s behavior and targeting algorithms must be able to respond quickly to all 

elements in a constantly changing environment. While some of these elements may 
be foreseen (during training and programming) and others (for which the training 
may nonetheless be adequate), may not be foreseen, many will be genuinely 
unanticipated (in training) and therefore require “on the fly” reasoning. However, 
state-of-the-art AI-based inference generally lags far behind the abilities of the best 
“narrow AI” systems. 

To be more precise, while computers surpass humans in their ability to reason 
deductively, they are currently far behind in their ability to perform either inductive 
or abductive reasoning. Deductive reasoning consists of applying standard rules of 
logic to known facts and forming true propositions that are entailed by those facts. 

For example, from the facts “all oranges are fruits” and “all fruits grow on trees,” one 
can deduce that “all oranges grow on trees.” In deductive reasoning, if something is 
true about a general class of things, it is true for all members of that class. As 
discussed earlier, expert systems are textbook examples of applying this approach. 
Inductive reasoning is the opposite of deductive reasoning, in that it consists of 
generalizing from specific observations. One makes many observations, discerns a 
pattern, generalizes to a description of what makes up the pattern, and infers an 
explanation or rule for the conditions under which given patterns will occur. All 
neural-net-based deep-learning systems are effectively inductive inference machines. 
And, as table 2 showed, the current generation of AI systems can already outperform 
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humans on many complex “limited domain” problems, although they still fall short 
on more open-ended problem domains. 

Abductive reasoning,234 on the other hand, is an inference of some fact X, for which 

there is no direct evidence (of the form, say, “if A then X,” and “A is known to be 
true”), but there are indirect pieces of evidence such that, when they are combined, 
collectively “strongly suggest” that X is true. Although this reasoning process may 
appear “simple” to humans, it is far from trivial to implement in an AI system. 
Indeed, it has been argued that since local syntactical systems alone cannot be used 
to model abductive inference, no computational processes can produce true 
intelligence.235 However, since it is not necessarily “true intelligence” that DoD needs 
to develop for its autonomous systems, but only those aspects of it necessary for the 
system to successfully execute its missions, it is instructive to investigate any recent 
AI systems that have been taught to use abductive reasoning. Edbia236 provides a 
cogent critique of AI from the perspective of cognitive science. 

Watson 

A well-known example of an AI system that relies heavily on abductive reasoning, 
and that has received much recent publicity, is IBM’s Watson;237 (or, more precisely, 
the DeepQA238 architecture that underlies Watson). Watson is part of a more general 
ongoing research effort that started in 2007. The goal of its development was to 
develop an AI system that performs sufficiently well on open-domain (free-form 
based) question-and-answering to compete with human champions at the game of 

                                                   
234 “Abduction,” Stanford Encyclopedia of Philosophy: http://plato.stanford.edu/entries/ 
abduction/. 

235 Fodor, J., The Mind Doesn't Work That Way, MIT Press, Cambridge, MA, 2000. Two additional 
challenges to implementing a human-level intelligence are the “symbol grounding” problem 
(which refers to establishing a direct correspondence between an AI system’s internal symbolic 
representation and external real-world entities, events, and relationships), and the “framing 
problem” (which refers to problem of predicting what changes in the world are incurred as a 
result of an AI system’s action(s), and what stays the same. Searle (The Rediscovery of the Mind, 
MIT Press, Cambridge, MA, 1992) has argued that because  local syntactical systems cannot 
perform symbol grounding, computational processes cannot be intelligent; while Pylyshyn 
(The Robot's Dilemma: The Frame Problem in Artificial Intelligence, Ablex, Norwood, NJ, 1987) 
argues that it is impossible to model the world entirely by logical propositions. 

236 H. Ekbia, Artificial Dreams: The Quest for Non-Biological Intelligence, Cambridge University 
Press, 2008 

237 http://www.ibm.com/watson/. 

238 https://www.research.ibm.com/deepqa/deepqa.shtml. 
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Jeopardy!239 We discuss some details of this project here to illustrate both the 

potential for developing AI systems that are able to reason abductively and the 
technical challenges that remain to be solved (and that therefore must also be part of 

DoD’s calculus of what capabilities are likelyand not likelyto be available in the 

near future). 

Watson’s claim to fame came in 2011, when it defeated the two highest ranked 
Jeopardy! players of all time in a two game match played on 14 and 15 Feb 2011.240 

The game challenges three human contestants to answer natural language questions 
over a broad range of subject domains, with penalties for wrong answers. In 
preparation for Watson’s 2011 game with Ken Jennings (who won 74 straight games 
in 2004) and Brad Rutter (who defeated Jennings in a tournament in 2005), 100 test 
matches were first conducted against a variety of human players, with Watson 

winning 65% of them;241 and a 15-question test round was played with Jennings and 
Rutter, which Watson won (during which none of the contestants answered any of the 
clues incorrectly). Watson’s final winning score was triple that of the second place 

winner (Jennings).242  

Notably, it took roughly four years of research and development by a core team of 20 
researchers243 to build DeepQA (though the effort also made use of prior related work 

                                                   
239 http://www.jeopardy.com/. Some sample Jeopardy! questions: (1) “ On Sept. 1, 1715 Louis 
XIV died in this city, site of a fabulous palace he built” (ans: “What is  Versailles?”); (2) 
“Pseudonym of labor activist & magazine namesake Mary Harris Jones” (ans: “What is Mother 
Jones?”); and (3) “Sakura cheese from Hokkaido is a soft cheese flavored with leaves from this 
fruit tree” (ans: “What is Cherry?”)  Ref: “Sample 'Jeopardy!' questions,” Arizona State 
University, 2010: https://asunews.asu.edu/20101103_jeopardyquestions. 

240 S. Baker, Final Jeopardy: Man vs. Machine and the Quest to Know Everything, Houghton 
Mifflin Harcourt, 2011. 

241 A. Sostek, “Human champs of 'Jeopardy!' vs. Watson the IBM computer: a close match,” 
Pittsburgh Post Gazette, 13 Feb 2011: http://www.post-gazette.com/tv-
radio/2011/02/13/Human-champs-of-Jeopardy-vs-Watson-the-IBM-computer-a-close-
match/stories/201102130241. 

242 Famously, IBM|Watson gave a single (albeit inexplicably) erroneous response to the clue 
(in the category, “U.S. Cities”): “Its largest airport was named for a World War II hero; its 
second largest, for a World War II battle,” with the answer, “What is Toronto?” The correct 
response was “What is Chicago?” It was given by both Jennings and Rutter, and, as later 
revealed,was also IBM|Watson’s second choice. IBM|Watson’s lead developer (David Ferrucci) has 
suggested that the error occurred because “U.S. city” does not appear in the actual clue, and 
the underlying logic assumed that categories do not strongly correlate with the type of 
response. 

243 http://researcher.watson.ibm.com/researcher/view_group_pubs.php?grp=2099 
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conducted at IBM and elsewhere) and to bring the system’s performance capability to 
“human expert” level.244 

Although IBM’s Watson research team is no longer focused on Jeopardy!, 

development work continues on applying DeepQA to other problems. Spurring this 
effort, is the fact that DeepQA’s core algorithms for information retrieval, data 
mining free-form text documents, and associating “answers” to specific queries using 
statistical classifiers are not anchored to any particular subject-matter domain or 
even type of problem.245  

As a concrete example of the steps required to adapt Watson to new domains, 
Ferrucci et al.246 describe post-Jeopardy! work on applying DeepQA to health care—
specifically, on performing differential medical diagnoses. The general problem is to 

develop a diagnostic support tool that uses the context of an individual medical case 
(as extracted from datasets that describe a patient’s medical condition—e.g., a 
patient’s electronic medical record) to generate a ranked list of candidate diagnoses 
with associated confidence levels. Various dimensions of evidence are weighed just 
as in IBM|Watson, but individual bits of data are now domain-specific elements such 

as symptoms, patient and family history, and current medications. When the 
confidence in a given hypothesis (i.e., a medical condition) exceeds a certain 
threshold, then, analogously to IBM|Watson’s “buzzing” the answer, 
“DeepQA|Diagnostician” returns the medical diagnosis. 

Just as Watson uses abductive reasoning to Jeopardy!, DeepQA|Diagnostician uses 

abduction to discover a piece of structured or unstructured knowledge that patients 
with disease D show symptom S. If it is then uncovered that the patient in question 
has symptom S, the system will generate the hypothesis that the patient has disease 
D, and then systematically search for evidence to either support or refute this 
hypothesis. More complex cases of abduction are also possible. While the use of 
abduction in medical diagnoses has been proposed before, DeepQA is unique in its 
ability to generate alternative hypotheses, along with associated confidence levels 
and supporting evidence. 

                                                   
244 “Human expert” level is achieved when the contestant can answer roughly 70% of the 
questions being asked with at least 85% precision in 3 seconds or less: 
http://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=2160. 

245 J. Murdock and G. Tesauro, “Statistical Approaches to Question Answering in Watson,” 
Mathematics Awareness Month theme essay, Joint Policy Board for Mathematics, 2012. 

246 D. Ferrucci, et.al., “Watson: Beyond Jeopardy!,” Artificial Intelligence 199/200, 2013. 
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Ferrucci, et.al.247 cite two main challenges in adapting DeepQA to act as a clinical 
decision support tool: (1) the challenge of embedding the tool into an existing clinical 
decision system (not unlike the challenge that a similar research effort would face in 
embedding a DeepQA-like technology into the existing document declassification 
process), and (2) the challenge of adapting the internal components of DeepQA itself 
to the medical domain.  

The first challenge is the ability to tailor DeepQA’s embedded NLP algorithms to 
extract clinically relevant information (from, say, EMR systems). The problem is 
nontrivial because different problem areas require different—domain-specific— 
information, and the nature of this information must be characterized well enough 
to tune the NLP algorithms to find and extract it. In the context of declassification, 
and apart from performing simple-minded “key word” searches, the first order of 
business is to understand why (or why not) a particular piece of information is 

“significant” in weighing evidence pro/con as to, say, a given document’s 
classification level. Another component of this first kind of challenge is to tailor the 
output so that each hypothesis is associated with its supporting evidence in a 
manner consistent with existing practices of (in this example) medical practitioners. 
The authors acknowledge that “significant areas of research remain within the 
natural language processing capability of DeepQA itself.”248 

The second challenge involves adapting DeepQA to a specific domain. The authors 
identify three kinds of adaptations that must be made: (1) content adaptation, which 

refers to organizing the domain content for hypothesis and evidence generation; 
(2) training adaptation, which refers to the development of domain-specific sets of 

training question-answer pairs in order for the system to learn how to weigh 
individual bits of evidence; and (3) functional adaptation, which consists of adding 

new domain-specific question analysis, candidate generation, and hypothesis scoring 
algorithms. While none of these challenges preclude DeepQA-based applications to 
be developed for specific domains, they are important reminders of the conceptual 
and practical impediments to development time that any research effort must face 
when adapting an existing general-purpose DeepQA-like inference engine to a 
specific domain (such as a military autonomous system). 

Examples of AI / “system” failures  

Along with gaps in ability (as outlined in the “narrow-AI vs. general-AI” discussion 
above), AI can also fail, sometimes badly. While the details of specific failures depend 

                                                   
247 Ibid. 

248 Page 100: D. Ferrucci, et.al., “Watson: Beyond Jeopardy!,” Artif. Intel., Vol. 199/200, 2013. 
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on the AI system (and the context in which a failure occurs), essentially all AI 
systems above a threshold level of “complexity” (read: those underlying the 
development of autonomous weapon systems) are prone to “surprising” behaviors— 
behaviors that are, at best, “unexpected” but inconsequential, and, at worst, both 
unexpected and catastrophic. We have already mentioned a few academic “failures,” 

such as the “blind spot” that all deep-learning NN-based image classification systems 
suffer from. However, the impact of these kinds of failures, were they to occur in a 

military operational context, isas yetimpossible to predict. But there are also 

historical examples of failures that have occurred in otherwise fully operational 
systems (albeit only loosely AI-like, and still not in military contexts) that collectively 
provide both a cautionary flag and “lessons learned” for developers of autonomous 
weapons systems: 

 1982  Software designed to make discoveries, discovers how to cheat 

instead.249  EURISKO (developed by Lenat, who later developed CyC (see first 
entry in table 2) was an early self-improving AI system that had built-in 
heuristics for suggesting new heuristics. During one of EURISKO’s runs, it 
was found that the rank of a particular newly “discovered” heuristic kept 
increasing, though the heuristic appeared to serve no useful purpose. Upon 
closer inspection, it was discovered that EURISCO had inserted its own 
“name” (as “creator”) beside an early-generation heuristic, and thereafter 
kept adding to its innately meaningless rank. In short, the program had 
found a way to cheat.  

 1983  Nuclear attack early warning system falsely claims that an attack is 

taking place.250  In a well-known incident that occurred on 26 September 

1983, and during which a nuclear war was averted by human intervention, 
the Soviet Union’s nuclear early warning system twice reported the launch of 
Minuteman intercontinental ballistic missiles from bases in the United 
States. Duty officer Lieutenant Colonel Stanislav Petrov correctly identified 
the warning as a false alarm. 

 1988   U.S.S. Vincennes shoots down Iranian passenger jet.251 In another 

well-known incident from the 1980s, the guided missile cruiser 

                                                   
249 G. Johnson, “Eurisko, The Computer With A Mind Of Its Own,” The APF Reporter, 1984: 
http://www.aliciapatterson.org/APF0704/Johnson/Johnson.html. 

250 A. Libak, “Nuclear War:  Minuteman,” Weekendavisen, 2 April 2004: 
http://www.brightstarsound.com/world_hero/weekendavisen.html. 

251 Lt. Col. (U.S. Marine Corps, Retired) D. Evans, “Vincennes: A Case Study,” Proceedings 
Magazine, U.S. Naval Institute, Aug 1993: http://www.usni.org/magazines/proceedings/1993-
08/vincennes-case-study. 
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USS Vincennes shot down an Iranian passenger jet in the Persian Gulf after 

the ship’s Aegis targeting system erroneously identified it as a military 
fighter. While (in hindsight) the crew of the Vincennes had the necessary data 
to determine that the radar contact was a civilian aircraft, Aegis had, 
unfortunately, been designed to detect large Soviet bombers, not passenger 
jets. One scholar explains, “Even though the hard data was telling the crew 
that the plane wasn’t a fighter jet, they trusted what the computer was 
telling them more. Aegis was on semiautomatic mode, but not one of the 
eighteen sailors and officers on the command crew was willing to challenge 
the computer’s wisdom. They authorized it to fire.”252 

 2010  Stock trading software causes a trillion dollar flash crash.253  The 

historic stock market crash that occurred on May 6, 2010, was caused by a 
large investor using automated trading software to sell futures contracts 
(used by traders to bet on the future performance of stocks in the S&P 500 
index). The software sold a very large number of contracts very quickly, and 
inadvertently initiated a feedback loop whereby it reacted to the rise in 
trading volume it created by increasing the number of sell orders. In turn, a 
lack of buyers, coupled with the rapid selling of futures contracts, affected 
the underlying stocks and the broader stock indices, resulting in a runaway 
cascade failure of the market.. 

 2015  A robot grabs and kills a man.254 An industrial robot at a Volkswagen 

production plant in Germany, designed to grab and configure auto parts, 
instead grabbed a factory worker and pushed him against a metal plate, 
crushing him. 

 2015   Image tagging software classifies black people as gorillas.255 Until 

“corrected,” Google’s Photos application 256 contained a fault whereby black 

people were classified as “gorillas.” A similar “fault” was detected earlier in 

                                                   
252 P. W. Singer, Wired for War, Penguin Books, 2009 

253 B. Rooney, “Trading program sparked May 'flash crash',” CNN Money, 1 Oct 2010:  
http://money.cnn.com/2010/10/01/markets/SEC_CFTC_flash_crash/. 

254 E. Dockterman, “Robot Kills Man at Volkswagen Plant,” Time, 1 July 2015. 

255 T. Finley, “Google Apologizes For Tagging Photos Of Black People As ‘Gorillas’,” 
The Huffington Post, 2 July 2015. 

256 https://photos.google.com/. 
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the same year, when Google Maps was discovered to link to the address of 

the White House when queried with a racial slur.257  

 2016   Car autopilot navigation system kills driver.258 A Tesla Model S (a 

full-size all-electric automobile produced by Tesla Motors, and equipped 
with Autopilot, which allows limited hands-free driving)259 was involved in a 

fatal crash on 7 May 2016. The driver was killed by an 18-wheel tractor-
trailer, as it drove across the highway perpendicular to the car. Neither the 
driver nor the car detected the tractor-trailer “against a brightly lit sky” and 
brakes were not applied. This is the first known fatality in a Tesla where 
Autopilot was active. 

 

                                                   
257 J. Crave, “If You Type ‘N—— House’ Into Google Maps, It Will Take You To The White House,” 
The Huffington Post, 20 May 2015. 

258 J. Golson, “Tesla driver killed in crash with Autopilot active, NHTSA investigating,” The 
Verge, 30 June 2016. 

259 https://en.wikipedia.org/wiki/Tesla_Model_S. 
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Complex Adaptive Systems 

The musical notes are only five in number but their melodies are so 
numerous that one cannot hear them all. The primary colors are only five in 
number but their combinations are so infinite that one cannot visualize them 
all. The flavors are only five in number but their blends are so various that 
one cannot taste them all. In battle there are only the normal and 
extraordinary forces, but their combinations are limitless; none can 
comprehend them all. For these two forces are mutually reproductive; their 
mutual interaction as endless as that of interlocked rings. Who can determine 
where one ends and the other begins?  

— Sun Tzu, The Art of War 

 

Complex adaptive systems (CASs)260 consist of (typically many) interconnected, 
nonlinearly interacting parts. Moreover, their aggregate behavior is emergent. That is 
to say, the properties of the whole are not possessed by, and are not directly 
derivable from, any of the parts; a water molecule is not a vortex, and a neuron is not 
conscious. A complex system must therefore be understood not just by listing the 
set of components out of which it is constructed, but by knowing the topology of 
interconnections, by knowing the interactions among those components, and—most 
importantly—by observing how it evolves over time and under different conditions. 
Figure 14 shows some examples of CASs. 

Understanding the basic properties of CASand the methods and tools used to 

study themcan help shed light on what otherwise would be difficult-to-understand 

interrelationships among the operational benefits, challenges, costs, risks, and 
capabilities of unmanned autonomous systems. CASs and the tools used to study 
them pervade many key aspects of AI, autonomy, robotics, swarms, and human-
machine cooperative systems (albeit not always in the most obvious fashion). For 
example, the power of deep-learning neural-networks, which lie at the heart of many 

                                                   
260 S. Kauffman, Investigations, Oxford University Press, 2000; S. Wolfram, A New Kind of 
Science, Wolfram Media, 2002; J. Miller and S. Page, Complex Adaptive Systems: An Introduction 
to Computational Models of Social Life, Princeton University Press, 2007; C. Mainzer, Thinking 
in Complexity: The Computational Dynamics of Matter, Mind, and Mankind, Springer-Verlag, 
2007; M. Mitchell, Complexity: A Guided Tour, Oxford University Press, 2009; C. Gross, 
Complex and Adaptive Dynamical Systems: A Primer, Springer-Verlag, 2009. 
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of today’s most sophisticated “narrow AI” systems, derives, in part, from the 
complex network of connections among the neurons distributed across various 
layers. This behavior falls under the broader rubric of dynamic network theory, 
which is itself a subfield of complex systems.261  

Figure 14.  Examples of complex adaptive systems 

 

Ref: G. Mobus and M. Kalton, Principles of Systems Science, Springer-Verlag, 2015 
 

Most modern algorithms used to define and control robots derive from complex-
systems-theoretic behavior-based architectures.262 And swarms are, of course, 
prototypical complex systems, and the only proper way to design and study their 
behavior is by evolutionary programming techniques263 and multi-agent-based 
modeling.264 (It is also worth mentioning that the general study of “autonomous 

                                                   
261 A.-L. Barabasi, Network Science, Cambridge University Press, 2016. 

262 R. Brooks, Cambrian Intelligence: The Early History of the New AI, MIT Press, 1999. 

263 R. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence, Morgan Kaufmann, 2001. 

264 H. Iba, Agent-Based Modeling and Simulation with Swarm, CRC Press, 2013. 
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systems” dates back to the rise of cybernetics and early systems theory in the 1960s, 
a precursor of modern-day complex systems theory.)265 

We will exploit this close connection between complexity theory and the main subject 
of this report (i.e., AI, robotics, and swarms) in three ways: (1) by deepening an 
understanding of the basic properties of individual autonomous weapon systems 

(since their AI behavior derives from complex systems theoretic architectures), (2) by 
deepening an understanding of robotic swarms (since collective behavior is an 

emergent self-organized complex process), and (3) by ameliorating some of the 
Testing and Evaluation (T&E) and Verification, Validation, & Accreditation (VV&A) 
challenges that autonomous weapon systems will inevitably face within DoD’s 
existing acquisition process. Many of the same technical challenges now facing the 
design and development of unmanned autonomous systems (UASs) have been dealt 
with, with varying degrees of success over the last several decades, within the 
complex systems research and modeling communities. While a few of these “lessons 
learned” can, in principle, be applied almost immediately to the design of (and 
deeper understanding of the general behavior of) autonomous systems, others are 
best viewed as cautionary notes, and describe the inherent limitations of using 
various forms of analysis to probe into a CASs’ behavior.  

Complexity theory also provides valuable insights into how risk and vulnerability 
may be assessed for autonomous systems, including human-machine hybrids. The 
first step is to understand how complex systems can fail. 

Basic properties 

Gases, fluids, crystals, and lasers are all familiar kinds of complex systems in the 
realm of physics. Chemical reactions, in which a large number of molecules conspire 
to produce new molecules, are also good examples. In biology, there are DNA 
molecules built up from amino acids, cells built from molecules, and organisms built 
from cells. On a larger scale, the national and global economies and human culture 
as a whole are also complex systems, exhibiting their own brand of global 
cooperative behavior. One of the most far-reaching ideas of this sort is James 
Lovelock’s controversial Gaia hypothesis,266 which asserts that the entire earth—its 

oceans, rocks, atmosphere, and entire biosphere—is essentially one huge, complex 
organism, delicately balanced on the edge-of-chaos. Perhaps the quintessential 
example of a complex system is the human brain, which, consisting of something on 

                                                   
265 T. Rid, Rise of the Machines: A Cybernetic History, W. W. Norton, 2016. 

266 J. E. Lovelock, Gaia: A New Look at Life on Earth, Oxford University Press, 2000. 
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the order of 1010 neurons with 103 to 104 connections per neuron, is arguably the 
most “complex” complex system on this planet. Somehow, the cooperative dynamics 
of this vast web of “interconnected and mutually interacting parts” manages to 
produce a coherent and complex enough structure for the brain to be able to 
investigate its own behavior. 

Roughly speaking, the science of CAS emerged between the late 1980s and early 
1990s,267 and did so with a strongly interdisciplinary cast, involving the efforts of 
physicists, chemists, biologists, computer scientists, and social scientists. However, 
its conceptual origins date back to Alan Turing’s observations of biological pattern 
formation in the early 1930s,268 and the rise of systems theory and cybernetics in the 
1950s.269 Its association with social science is due largely to Axtell’s and Epstein’s 
Sugarscape model,270 which used agents to model economic dynamics. Around the 
same time that Sugarscape was being developed (late 1990s), CNA introduced its 

pioneering CAS-based models of land combat (ISAAC and EINSTein).271 Today, basic 
research on complex systems theory remains unabated and widespread. Two well 
known (but no means only) centers of study are the Santa Fe Institute (SFI)272 and New 
England Complex Systems Institute (NECSI).273 

Consider some examples of the dynamics of complex systems: predator-prey 
relationships in natural ecologies, dynamics of world financial markets, firing 
patterns of neurons in a human brain, information flow on the internet, antigen-
antibody interactions in an immune system, pedestrian and vehicular traffic 
dynamics, the behavior of ant and termite colonies, the spread of infectious disease, 
the dynamics of combat, and (what the narrative of this report purports to show) 
unmanned autonomous systems. 

                                                   
267 See, for example, the landmark series of workshop publications that collectively chronicle 
the rise of the Santa Fe Institute in Santa Fe, New Mexico: D. Stein, editor, Lectures in the 
Sciences of Complexity, Addison Wesley, 1989; E. Jen, editor, 1989 Lectures in Complex Systems, 
Addison-Wesley, 1990; L. Nadel and D. Stein, 1990 Lectures in Complex Systems, Addison-
Wesley, 1991; G. Cowan, D. Pines, and D. Meltzer, Complexity: Metaphors, Models, and Reality, 
Addison-Wesley, 1994. 

268 A. M. Turing, “On computable numbers with an application to the Entscheidungsproblem,” 
Proceedings London Mathematical Society, Vol. 42, 230-265, 1936. 

269 L. von Bertalanffy, General System Theory, Braziller, 1968; W. Ross Ashby, An Introduction 
to Cybernetics, Chapman & Hall, London, 1956. 

270 J. Epstein and R. Axtell, Growing Artificial Societies: Social Science from the Bottom up, 
MIT Press, 1996. 

271 A. Ilachinski, Artificial War: Multiagent-Based Simulation of Combat, World Scientific, 2004. 

272 https://www.santafe.edu/. 

273 http://necsi.edu/. 
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What all of these systems have in common is that they share (a significant number 
of) the following list of nine properties, described below (in no particular order):274 

Many interconnected nonlinearly interacting 
heterogeneous parts 

Complex systems owe their apparent complexity to the fact that they consist not just 
of isolated parts, but of deeply interconnected parts that continually respond to (and 
change as a function of) changes undergone by other parts to which they are 
connected. While the parts are usually related in some manner, and may all belong to 
the same general class of possible system constituents (for example, a predator-prey 
ecology may include multiple instances of the class “shark,” and an urban traffic 
environment may include many different kinds of “automobile”), how one specific 
part interacts with another part may also, in general, be a function of the specific 
part and/or its previous history. How a hungry shark responds to prey in its 
immediate environment may be very different from how another, more satiated, 
shark responds. 

The most interesting interactions are those that are nonlinear—i.e., those that entail 
disproportionate responses to (local) information. For example, the magnitude of a 
single neuron’s electrical impulse does not steadily increase with increasing local 
chemical potential but is triggered, nonlinearly, in an all-or-none reaction once it 
senses a threshold local potential. Or, consider some site (the “part”) on the world-
wide web (the “system”) that languishes for months, attracting few visitors, until, by 
chance, a word or phrase that appears on the site comes into vogue, is picked up by 
automated search-spiders, and is catalogued by web search engines. Suddenly, and in 
an unpredictably nonlinear fashion, the site is now besieged by visitors. In general, 
nonlinear interactions imply that small system perturbations may (though not 
necessarily must) cause a large effect. 

Multiple simultaneous scales of resolution 

Complex systems tend to be organized hierarchically, with complex behavior arising 
from the interaction among elements at different levels of the hierarchy. A biological 
organism is, simultaneously, the complex system comprising DNA, proteins, cells, 
tissues, and organs, as a whole. Similarly, weather consists of patterns on multiple 
scales, ranging from the individual molecules of the atmosphere, to small dust 
devils, to tornados, to full-blown hurricanes that span hundreds of miles. 

                                                   
274 A. Ilachinski, Cellular Automata, World Scientific, 2001. 
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The individual parts of complex systems (which we will henceforth call, generically, 
agents) form groups that then effectively act as higher-level agents that, in turn, also 
cluster and interact with still other agents; these (still higher-level) groups, in turn, 
form super-groups than also act as agents, interacting with other agents (on different 

timescales); and so on. Koestler
275

 observes that an agent on any given level of a 

complex system’s hierarchy is driven by two opposite tendencies: (1) a integrative 
tendency, compelling it to function as a part of the larger whole (on higher levels of 
the hierarchy);, and (2) a self-assertive tendency, compelling it to preserve its 
individual autonomy. 

Multiple metastable states 

Complex systems generally harbor multiple metastable states. Multistable systems 
have multiple stable fixed points; which particular stable fixed point a system is 
attracted to depends on the initial configuration of the system. A metastable system 
is a system that is above its minimum-energy state, but requires an energy input if it 
is to reach a lower-energy state. Metastable states are thus states that are in a 
pseudo-equilibrium. Small perturbations to the system lead to recovery, but larger 
ones can also ignite large changes in the system. A metastable system can act as if it 
were stable, provided that all energy inputs remain below some threshold. Because 
one must keep track of multiple metastable states, the dynamics of such systems are 
often difficult to analyze mathematically, a task that is made harder still because it 
also usually involves dealing with local frustration (i.e., conflicting constraints that 
make it impossible to solve for globally minimal energy states).  

The fact that complex systems almost certainly harbor multiple metastable states is 
important, on the conceptual level, because it compels the researcher to explore as 
large a volume of a system’s (typically, very large) multidimensional state space as 
possible. A moment’s thought will show that this deceptively simple assertion 
radically shifts the way in which complex systems are studied. It is commonly 
assumed that a system has but one, mathematically well-defined, equilibrium state. 
Once that state is “solved” for—either as a closed-form “solution” or by running a 
simulation—the system is said to be understood. However, if the system in question 
is a CAS, and harbors multiple metastable states—none of which are generally 
“solvable” in closed form, and the entire set of which depends on where a system 
“starts” its evolution—one can hope to characterize the “whole system” only by 

                                                   
275 A. Koestler, Janus: A Summing Up, Random House, 1978. This book presages Kauffman’s 
compelling edge  of chaos hypothesis, articulated about a decade later: S. Kauffman and S. 
Johnson,“Coevolution to the edge of chaos,” in C. Langton, C. Taylor, J. D. Farmer, and S. 
Rasmussen, editors, Artificial Life II, Addison-Wesley, 1992, pages 325-370. 
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exploring as many attainable states as possible. This therefore also implies that one 
must explore as many system evolutions as possible, which start from as many initial 
configurations as possible. A given state of a CAS can generally be understood only 
by providing a context for its being—i.e., by understanding all of the possible states 
of a system, and all of the possible ways these states can be attained. 

Local information processing 

The agents of a complex system typically “see” (and interact with) only a limited 
portion of the whole system, and act locally; i.e., interagent dynamics is usually 
strongly decentralized. There is no God-like “oracle” dictating what each and every 
agent ought to be doing; no master neuron tells each neuron of a brain when and 
how to “fire.” Instead, the parts of the system act locally, using only local 
information. The order that emerges on a global scale does so naturally, and does not 

depend on either a central or an external control. Kauffman
276

 observes that 

“contrary to our deepest intuitions, massively disordered systems can spontaneously 
‘crystallize’ to a very high degree of order.” Self-organization takes place as a system 
reacts and adapts to its external environment, with which it also usually has an open 
boundary (i.e., energy and/or other system resources are continually exchanged 
between the inside and outside of a system). 

Self-organization 

Self-organization is a fundamental characteristic of CAS. It refers to the emergence of 
macroscopic nonequilibrium organized structures, and is due to the collective 
interactions of the constituents of a complex system as they react and adapt to their 
environment. At first sight, self-organization appears to violate the second law of 

thermodynamics,
277

 which asserts that the entropy S of an isolated system never 

decreases (or, more formally, dS/dt  0). Since entropy is essentially a measure of the 

degree of disorder in a system, the second law is usually interpreted to mean that an 
isolated system will become increasingly more disordered with time. How, then, can 
structure emerge after a system has had a chance to evolve?  

Upon closer examination, we see that self-organization in a complex system does not 
really violate the second law. The reason is that the second law requires a system to 
be isolated; that is, it must not exchange energy or matter with its environment. For 

nonisolated systems consisting of noninteracting or only weakly interacting particles, 

                                                   
276 S. Kauffman, Origins of Order, Oxford University Press, 1993. 

277 F. Mandl, Statistical Physics, Wiley, 1988. 
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S consists of two components: (1) an internal component, S
i
, due to the processes 

taking place within the system itself, and (2) an external component, S
e
, due to the 

exchange of energy and matter between the system and the environment. The rate of 
change of S with time, dS/dt, now becomes dS/dt = dS

i
/dt + dS

e
/dt. As for an isolated 

system, dS
i
 /dt  0. But there is no such constraint on dS

e
/dt. If dS

e
/dt is sufficiently 

less than zero, the overall entropy of the system can itself decrease. Thus, the 
entropy of a nonisolated system of noninteracting or only weakly interacting 
particles can decrease due to the exchange of energy and/or matter between the 

system and its environment.
278

 

Emergent behavior 

Emergence is one of the central ideas of complex systems theory. Emergence refers 
to properties of the whole system that are not possessed by, and are not directly 
derivable from, any of the system’s parts. Or, more colloquially, emergence = novelty; 
i.e., complex systems will (almost always) surprise us with their behavior. A line of 

computer code cannot calculate a spreadsheet, an oxygen molecule is not a tornado 
and (unfortunately) no one can predict a significant gain (or catastrophic crash) of 
the stock market. Emergent behaviors, which appear on the macroscale, are typically 
novel and unanticipated, at least with regard to our ability to predict them from 
knowing a system’s microscale parts and rules alone. Indeed, it is the microscale that 
induces the macroscale behavior. Some elements of emergent behaviors may be 
universal, in the sense that more than one set of local rules may induce more or less 
the same global behavior. 

Examples of emergence include the characteristic spirals of the Belousov-Zhabotinski 
chemical reaction;279 the Navier-Stokes-like macroscopic behavior of a lattice gas that 

                                                   
278 The situation is more complicated for nonisolated systems consisting of strongly interacting 
particles and when the system is no longer in equilibrium with the environment. The second 
law effectively asserts only that a system tends to the maximum disorder possible, within the 
constraints due to the dynamics of the system (Y. Bar-Yam, Dynamics Of Complex Systems, 
Westview Press, 2003). 

279 The Belousov-Zhabotinski reaction is a chemical reaction consisting of simple organic 
molecules that is characterized by spectacular oscillating temporal and spatial patterns. One 
variant of the reaction involves the reaction of bromate ions with an organic substrate 
(typically malonic acid) in a sulfuric acid solution with cerium (or some other metal-ion 
catalyst). When this mixture is allowed to react exothermally at room temperature, interesting 
temporal and spatial oscillations (i.e., chemical waves) result. The system oscillates, changing 
from yellow to colorless and back to yellow about twice a minute, with the oscillations typically 
lasting for over an hour (until the organic substrate is exhausted): I. Motoike and A. 
Adamatzky, “Three valued logic gates in reaction-diffusion excitable media,” Chaos, Solitons 
& Fractals 24, 2005, pp. 107-114. 
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consists, on the micro-scale, of simple unit-bit billiards moving back and forth 
between discrete nodes along discrete links;280 and the seemingly purposeful task of 
forming clusters of randomly distributed objects—a behavior common in, say, ant 
colonies organizing the carcasses of their dead companions—that spontaneously and 
quite naturally emerges out a simple set of autonomous actions having nothing to do 
with clustering per se (as demonstrated by Beckers et al. in the context of exploring 
collective robotics281). The macroscopic behavior in each of these examples is 
unexpected, despite the fact that the details of the microscopic dynamics are well 
defined. 

Nonequilibrium patterns and order 

The long-term behavior of a complex system usually consists of a nonequilibrium 
order. This term refers to an organized state that remains stable for long periods of 

time despite matter and energy continually flowing in and out of the system. 

Nonequilibrium states are also sometimes called either dissipative structures
282

 or 

autopoietic systems.
283

 A vivid example of nonequilibrium order is the Great Red Spot 

on Jupiter (though any terrestrial hurricane will do just as well). This gigantic 
whirlpool of gases in Jupiter’s upper atmosphere—which can fit three Earth-sized 
planets within its boundary—has persisted for a much longer time (at least 400 
years) than the average amount of time any one particular gas molecule has spent 
within it. Despite the millions of individual molecules that have traveled in and out 
of the Great Red Spot—a substantial fraction of which have likely done so repeatedly, 
some perhaps also circumnavigating Jupiter’s entire atmosphere—the Great Red Spot 
itself, as a high-level emergent entity, remains in a stable but nonequilibrium ordered 
state. 

                                                   
280 J. Rivet and J. Boon, Lattice Gas Hydrodynamics, Cambridge University Press, 2005. 

281 R. Becker, E. Holland, and J. Deneubourg, “From local actions to global tasks: stigmergy 
and collective robotics,” pages 181-189 in Artificial Life IV, edited by R. Brooks and P. Maes, 
MIT Press, 1994. 

282 I. Prigogine, From Being to Becoming, Freeman and Company, 1980. 

283 F. Varela, J. Humberto, R. Maturana, and R. Uribe, “Autopoiesis: the organization of living 
systems, its characterization and a model,” Biosystems 5, 187-196, 1974. 
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Emphasis on process and adaptation rather than 
static structure 

A CAS is almost never stagnant. It continually interacts with, and adapts to, changing 
conditions of its environment, and always evolves. It can neither be captured, 
conceptually or mathematically, nor be understood, by simply cataloging its parts 
and the rules according to which they interact. Such static “snapshots” never 
adequately capture the often latent and subtle patterns that such systems exhibit 
over long times. It is for this reason that computer simulations of complex systems 
are indispensable tools for studying them. Mathematical descriptions and/or 
equations of motion are often rendered tractable only if one makes a number of 
mean-field-like simplifications (such as assuming a strict homogeneity of parts and 
homogenous interactions); therefore, by themselves, they are rarely able to capture 
any emergent behaviors aside from the simplest. In fact, much of what falls under 
“complex systems research” consists not so much of “solving” equations, or of 
recording what state a given system is in at what time, as of patiently and 
systematically observing—and learning to recognize the properties of emergent 
patterns in—the behaviors that a system exhibits over the course of its (typically 
open-ended) evolution; and then repeating the process for many different starting 
conditions. Complex systems theory is, essentially, the art of finding the proper 
global context in which the local behavior can be understood. 

The most interesting behavior is poised between 
chaos and order 

Effective computation, such as that required by life processes and the maintenance 
of evolvability and adaptability in complex systems, requires both the storage and 
transmission of information. If correlations between separated sites (or agents) of a 
system are too small—as they are in the ordered regime shown in the schematic 
illustration on the previous page—the sites evolve essentially independently of one 
another and little or no transmission takes place. On the other hand, if the 
correlations are too strong—as they are in the chaotic regime—distant sites may 
cooperate so strongly so as to effectively mimic each other’s behavior, or worse yet, 
whatever ordered behavior is present may be overwhelmed by random noise; this, 
too, is not conducive to effective computation. It is only within the phase transition 
region, in the complex regime poised at the edge-of-chaos, that information can 
propagate freely over long distances without appreciable decay. However loosely 
defined, the behavior of a system in this region is best described as complex—i.e., it 
neither locks into an ordered pattern nor dissolves into an apparent randomness. 
Systems poised at the edge-of-chaos are optimized, in some sense, to evolve, adapt, 
and process information about their environment: they are both stable enough to 
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store information, and dynamically amorphous enough to be able to successfully 
transmit it. 284 

Modeling lessons from studies of CAS 

CASs are inherently difficult to study analytically—that is, by reductive methods that 
assume that the properties of a system may be deduced (and, implicitly, that the 
system itself may be understood) by decomposing it into progressively smaller and 
smaller parts. By analyzing a system in this way, there is a good chance that the most 
interesting properties of the system will become lost; the chance of this happening 
only increases as the complexity of a system’s behavior increases. Understanding a 
complex system requires both analysis and synthesis. Think of the absurdity of 
seeking a clue to how consciousness arises by systematically stripping a brain down 
to a few neurons. In meticulously probing the parts, the analytical-reductionist 
method inevitably loses sight of the whole. The understanding of complex systems 
also requires a complementary holistic, or constructionist, approach, executed in 
parallel with reducing a system down to its essential parts, in which one explores 
how the system’s parts cooperatively synthesize the whole. It is often the case that 
qualitative factors are the critical drivers (i.e., components of the system that involve 

human interaction or decision-making). 

While no all-encompassing “formal theory” of complexity yet exists (in the sense that 
it does not yet constitute a rigorous set of mathematical “theorems” or universal 
“laws”), complexity is both mature enough as an multidisciplinary field of study and 
rich enough in its store of phenomenologically observed behaviors in a wide variety 
of physical systems, to offer deep insights into what modeling approaches are more 
(or less) suited for a given system, as well as general observations and lessons about 
the forms the most “useful” models should take. 

The first, and key, property of many CASs is that they can display remarkably 
complex global, emergent behavior despite what may appear to be (sometimes, 

trivially) “simple” local rules.285 To the extent that the basic principles of CASs also 
apply to the design (and behavior) of UASs, the main “takeaway” for system 
developers is that the behavior of UASs cannot, in general, be easily derived or 
predicted from the list of “local rules” alone; and that this general observation holds 
equally true for individual vehicles (which operate autonomously and not as part of a 

swarm, but whose own overall behavior emerges from lower-level rule-based 

                                                   
284 S. Kauffman, At Home in the Universe, Oxford University Press, 1995. 

285 G. Mobus and M. Kalton, Principles of Systems Science, Springer-Verlag, 2015. 
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behaviors) and swarms (whose collective dynamics derives from rules of interaction 

among individual systems). 

Figure 15 shows, schematically, three examples of how “simple” local interactions 
induce complex global structures: figure 15-a shows a pedagogical example of a one-
dimensional cellular automaton (discussed below); figure 15-b shows an example of 
robotic swarms (discussed in a later section); and figure 15-c illustrates the 

emergence of a human brainand, by implication, consciousnessfrom a substrate 

of individual neurons.286  

Figure 15.  A schematic illustration showing the ubiquitous emergence of 
complex global behavior from “simple” local interactions 

Ref: U. Wilensky and W. Rand, An Introduction to Agent-Based Modeling, MIT Press, 2015. 

Cellular automata 

While there is obviously not enough space in this report to provide anything more 
than a cursory look at how difficult it is, in general, to predict global behaviors in 
complex systems by knowing only how their constituent parts interact, the salient 
points can be made by referring to figure 15-a. The bottom of figure 15-a (i.e., the 

                                                   
286 C. Koch, Consciousness, MIT Press, 2012. 
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“local interaction”) shows a particular rule for a one-dimensional two-state cellular 
automaton (CA); there are 256 possible rules in this “elementary rule space” (see 
below). CA were introduced by John von Neumann in the early 1950s as simple 
models of life in general, and biological self-reproduction in particular.287 They have 
been continually studied over the years because they capture many essential features 
of complex self-organizing cooperative behavior observed in real systems.288  

CA are easy to describe: imagine an infinite row of discrete sites (in practice, we are 
limited to some finite number: 600 sites are used to generate the top of figure 15-a), 
each of which harbors one of two values, 0 or 1 (which we can think of as being off, 

and denote as white, or on, and color black). A given sequence of site values, at time 

t, represents the global state of the CA at that time. The value of i at time t, (i, t)  

{0,1}, is a function of the values of site i and i’s left and right neighbors at time t  1: 

(i, t) = f [(i1, t1),(i, t1),( i+1, t1)]. The function f may be defined as an explicit 

list of the values the center site assumes for all 8 possible 3-tuples that represent the 

values sites i, i1, and i+1 have on the previous time step.  The bottom of figure 15-a 

defines the rule-110:289 (0,0,0)  0, (0,0,1)  1, (0,1,0)  1, (0,1,1)  1, (1,0,0)  0, 

(1,0,1)  1, (1,1,0)  1, (1,1,1)  0. 

The top of figure 15-a shows a space-time plot (with time moving downwards) 
starting with a random initial string of 600 ones and zeros. In all, 600 time steps are 
depicted; each successive row represents the updated configuration of on and off 

states at the next time step. The obvious intricacy of the emergent global pattern, 
which may be viewed at two scales—on the individual site-level, by explicitly reading 
off the values of the individual cells, or on a higher level as propagating particle-like 

structures superimposed on a periodic backgroundbelies an even deeper, 

unexpected, layer of complexity. Namely, this rule has been proven mathematically to 
be universal.290 This means that with a proper selection of initial conditions (i.e., the 
initial distribution of on and off sites), rule-110 can be turned into a general purpose 

computer. The “deeper level” of complexity that this, in turn, implies is that the 

                                                   
287 J. von Neumann, “The general and logical theory of automata,” in Cerebral Mechanisms 
in Behavior, edited by L. Jeffress, Wiley, 1951. 

288 A. Ilachinski, Cellular Automata: A Discrete Universe, World Scientific Press, 2001. 

289 “Rule codes” are the the base-10 equivalent of a CA’s binary f-rule specification. That is, if 
f is defined by (0,0,0)  a, (0,0,1)  b, (0,1,0)  c, (0,1,1)  d, (1,0,0)  e, (1,0,1)  f, (1,1,0)  
g, (1,1,1)  h, then the rule code for f is given by a20+ b21+ c22+ d23+ e24+ f25+ g26+ h27. 
Hence, (0,0,0)  0, (0,0,1)  1, (0,1,0)  1, (0,1,1)  1, (1,0,0)  0, (1,0,1)  1, (1,1,0)  1, 
(1,1,1)  0 yields rule code = 020+ 121+ 122+ 123+ 024+ 125+ 126+ 027=110. 

290 S. Wolfram, A New Kind of Science, Wolfram Media, 2002. 
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global behaviors of this (seemingly “trivial”) rule cannot be predicted!291 For example, 
a well-known theorem from computer science, the Halting Theorem, asserts that 

there cannot exist a general algorithm for predicting when a computer will halt its 
execution of a given program.292 Given that rule-110 is a universal computer—so that 
the Halting Theorem applies—one cannot, in general, predict whether a particular 
starting configuration of on and off sites will eventually die out. No shortcut is 

possible, even in principle. Rule-110, like all computationally universal systems, 
effectively defines the most efficient simulation of its own behavior. 

More generally, if one is interested in understanding why something happens in a 

CAS, it is rarely true that the reason turns out to be a “simple” linear chain of causal 
events of the form: event A → “causes” event B → “causes” event C and so on. The 

“reason” why any event X occurs in a CAS is more typically: (1) not a priori “obvious” 

or easily discernable by direct observation alone (requiring focused study and/or 
experimentation), and (2) due to a causal network of events that are spatially and 
temporally coupled with X. Moreover, the parts and links in this causal network are 

themselves “meaningful” (locally, to X’s existence, and, globally, to the entire system) 

only within certain dynamic contexts. Parts and relationships in CASs are seldom 
fixed throughout the time-evolution of CAS, and the nature of interrelationships can 
change depending on a given dynamic context and overall state of an evolving 
system. 

Being able to “explain” (the reasons for) a certain behavior or phenomenon in a 
CAS—perhaps by generating, or “growing,” it by using an MBM—does not necessarily 
imply that one is able to predict future behaviors. By the same token, while a CAS’s 
behavior may be unpredictable—even in principle, a property attributable to, and 
reflective of, an inherent “irreducible complexity” typical of complex systems—this 
does not preclude the possibility to understand, or explain critical behaviors of, that 
same system. For example, while evolutionary theory does not “predict” the 
phenotypes that are observed in nature, it is perfectly adequate to “explain” the 
phenomenon of species diversity. Complexity thus suggests, as a general “lesson” to 
modelers, that less attention should be given to predicting specific behaviors, and 
more to understanding the underlying causal mechanisms behind emergent classes 

                                                   
291 This is true strictly only for infinite systems, or, more precisely, for finite systems for which 
the area to which nonzero sites may be assigned can adaptively grow in unbounded fashion. 
However, the essence of our argument remains unchanged, since we are using rule-110’s 
universality only to emphasize the contrast between the (seemingly) trivial specification of a 
local behavioral ruleset and what is arguably the most complex imaginable behaviornamely 
that of computational universalitythat emerges on a global level. 

292 C. Moore and S. Mertens, The Nature of Computation, Oxford University Press, 2011. 
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of behaviors. This has potentially significant ramifications for the testing and 
evaluation of CAS-based algorithms underlying autonomous systems. 

Since many of the most important behaviors of CAS appear when a system is 
(sometimes, very far) out of equilibrium, knowing (or “solving for”) equilibrium states 

is often far less important than understanding the range of possible fluctuations and 
the nature and frequency of extreme events. For example, much of what is currently 
known about the statistics of traffic jams in vehicular dynamics comes not from 
solving differential equations describing continuum fluid flow, but from high-fidelity 
MBMs of traffic flow.293 Likewise, it is unlikely that there will be an all-encompassing 
“theory” of autonomous systems, or set of equations that will predict the possible 
range of robotic-swarm behaviors. To the extent that any specific behaviors can be 

predicted about robotic swarms prior to deployment, MBMs will almost certainly play 
a key role. 

Self organized criticality 

Some lessons from the study of CAS are more subtle, and require one to delve a bit 
deeper into the literature on complex systems theory. One example is that of self-
organized criticality (SOC),294 which embodies the idea that dynamical systems with 
many degrees of freedom naturally self-organize into a critical state in which the 
same events that brought that critical state into being can occur in all sizes, with the 
sizes being distributed according to a power-law. SOC seeks to describe the 

underlying mechanisms for structures in systems that look like equilibrium systems 
near critical points but are not near equilibrium. Instead, they continue interacting 
with their environment, “tuning themselves” to a point at which critical-like behavior 
appears. In contrast, thermodynamic phase transitions usually take place under 
conditions of thermal equilibrium, where an external control parameter such as 
temperature is used to tune the system. Introduced in 1987 by Bak, Chen, and 
Wiesenfeld,295 SOC is arguably the only existing holistic mathematical theory of self-
organization in CAS, describing the behavior of many real systems in physics, 
biology, and economics. 

                                                   
293 K. Nagel and S. Rasmussen, Traffic on the Edge of Chaos, Working Paper 94-06-032, Santa 
Fe Institute, 1994. 

294 H Jensen, Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological 
Systems, Cambridge University Press, 1998. 

295 P. Bak, C.Tang, and K.Wiesenfeld, “Self-organized criticality: an explanation of 1/f noise,” 
Physical Review Letters 59, 1987. 
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“Self-organized” refers to the fact that the system, after some initial transient period, 
naturally evolves into a critical steady state without any tuning of external 
parameters. This stands in marked contrast with the critical points at phase 
transitions in thermodynamic systems that can only be reached by a variation of 
some parameter (temperature, for example). “Criticality” refers to a concept 
borrowed from thermodynamics. Thermodynamic systems generally get more 
ordered as the temperature is lowered, with more and more structure emerging as 
cohesion wins over thermal motion. Thermodynamic systems can exist in a variety of 
phases—gas, liquid, solid, crystal, plasma, etc.—and are said to be critical if poised at 

a phase transition. Many phase transitions have a critical point associated with them, 
that separates one or more phases. As a thermodynamic system approaches a critical 
point, large structural fluctuations appear despite the fact that the system is driven 
only by local interactions. The disappearance of a characteristic length scale in a 
system at its critical point, induced by these structural fluctuations, is a 
characteristic feature of thermodynamic critical phenomena and is universal in the 
sense that it is independent of the details of the system’s dynamics. Other than the 
absence of any control parameters, the resulting behavior is thus strongly 
reminiscent of the critical point in thermodynamic systems undergoing a second-
order phase transition. 

In general, SOC appears in systems that have the following properties: (1) many 
degrees of freedom; (2) strong local interactions; (3) number of parts is usually 
conserved; (4) slowly driven by exogenous “energy” source; and (5) energy is rapidly 
dissipated within the system. In systems that have these properties, SOC itself is 
characterized by: (1) a self-organized drive towards the critical state; (2) 
intermittently triggered (avalanche-style) release of energy; (3) sensitivity to initial 
conditions296 (i.e., the trigger can be very small); and (4) the critical state is 
maintained without any external “tuning.” Notably, SOC systems characteristically 
display fat-tailed behavior—i.e., “rare events” occur much more frequently than what 

is expected from normally distributed events in non-SOC dynamical systems. While 
the relevance of SOC for the design of (and understanding of the possible behaviors 

                                                   
296 Note that sensitivity to initial conditions is usually a trademark of chaos in dynamical 
systems. Unlike fully chaotic systems, however, in which nearby trajectories diverge 
exponentially, the distance between two trajectories in systems undergoing SOC grows at a 
much slower (i.e. power-law) rate. Systems undergoing SOC are therefore only weakly chaotic. 
There is an important difference between fully developed chaos and weak chaos. Fully 
developed chaotic systems have a characteristic time scale beyond which it is impossible to 
make predictions about their behavior. However, no such time scale exists for weakly chaotic 
systems, so that long-time predictions may still be possible. 
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of) robotic swarms is, as yet, unclear, it is has been shown to be a fundamental driver 
of the dynamics of combat.297 

Understanding a complex system’s behavior requires both analysis and synthesis. The 

traditional Western scientific method is predicated on a fundamentally reductionist 
philosophy that assumes that the properties of a system may be deduced by 
decomposing the system into progressively smaller and smaller pieces. However, by 
analyzing a system in this way, there is strong chance that the most interesting 
emergent properties of the system will become lost; the chance of this happening 
only increases as the complexity of a system’s behavior increases. Think of the 
absurdity of searching for consciousness by stripping a brain down to a few neurons! 
In meticulously probing the parts, the analytical-reductionist method inevitably loses 
sight of the whole. The understanding of complex systems also requires that a 
complementary holistic, or constructionist, approach be undertaken—in parallel with 
reducing a system down to its essential parts—in which one explores how the 
system’s parts synthesize the whole. 

Part of the power, and allure, of using MBMs to study complex systems (discussed in 
the next section), is that they embody precisely the kind of generative tools that a 
synthetic analysis of a complex system requires. They are designed to help build and 
understand complex systems, from the bottom up, and allow analysts to explore 
their (typically vast multidimensional) behavior space. 

The traditional search for “optimal solutions” (to equations that describe a complex 
system’s dynamics) is typically untenable. Emergent CAS behaviors are often due to a 
relatively small set of primitive rules and behaviors that constrain and define the 
dynamics of the system on its lowest levels. It is in this sense that a fundamental 
understanding of the critical nonlinear feedbacks that drive a system is essential to 
understanding how the whole CAS behaves. However, it is often the case that the 
components of a CAS need not be described in great detail in order for a model of 
the system to yield certain aggregate behaviors of interest; which has obvious 
ramifications for the design of robotic swarms, and is discussed in a later section. 
Important insights into system behavior can often be gained even in the absence of 
detailed knowledge of a given system, so long as the critical drivers and nonlinear 
relationships have all been properly identified. 

Arguably, the most important qualitative lesson that complexity theory offers the 
prospective modeler (and/or autonomous system/swarm engineer / human operator) 

                                                   
297 D. Roberts and D. Turcotte, “Fractality and Self-Organized Criticality of Wars,” Fractals: 
Complex Geometry, Patterns, and Scaling in Nature and Society 6, no. 4, 1998; M. Lauren, 
“Describing Rates of Interaction between Multiple Autonomous Entities: An Example Using 
Combat Modelling,” https://arxiv.org/abs/nlin/0109024. 
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is that the most useful CAS models are those that are developed specifically to 
support exploratory modeling. Exploratory modeling298 refers to the practice of using 

models or simulations not as predictive vehicles, per se (in which inputs are used 
merely as “seeds” for generating predictions of specific outcomes), but rather as 
interactive tools for aiding analysts in conducting computational experiments and 
exploring (what might be loosely called) “plausibly possible futurescapes” of system 
behavior. CAS simulations are rarely developed solely to make predictions; rather, 
they more typically provide a conceptual underpinning to allow the analyst to 
interactively generate explanations of systemic behavior. Epstein299 lists no fewer 
than sixteen reasons other than prediction for using models of CAS (the first of 
which is to help “explain” observed behavior). 

The “best” CAS-based models are those that instantiate (in source code and through a 

model’s visualization algorithms) an analyst’s own (possibly abstract) theories and 
assumptions about a system and a system’s behavior. The model’s main purpose, in 
this case, is to do nothing other than what the analyst herself might have done—had 
the analyst been equipped with a massive store of “memory” and very fast 
“processor”—only much faster, and for a far greater number of scenarios and 

starting conditions. Exploratory modeling is especially useful for gaining insights 
into systems about which there may be significant uncertainties (such as is often the 
case in studies of CASs, in which there are myriad uncertainties regarding both low-
level dynamics and high-level emergent behaviors). In effect, exploratory modeling 
may be viewed as an interactive search for plausible possible futures over a space of 
models, wherein each model represents a plausible distillation of a given system, 
given whatever a priori knowledge or past experience an analyst brings to bear on a 
particular problem.300 In sharp contrast to traditional forms of modeling (wherein the 
focus is to use methods such as sensitivity analysis to estimate the variance of 
predictions of a model to its inputs), exploratory modeling—especially when aided by 

                                                   
298 S. Bankes, “Exploratory modeling for policy analysis,” Operations Research 41, 
no. 3, May/June 1993.   

299 J. Epstein, “Why Model?” Journal of Artificial Societies and Social Simulation 11, 
no. 412, 2008. The 16 reasons are: (1) explain (very distinct from predict); (2) guide data 
collection ; (3) illuminate core dynamics; (4) suggest dynamical analogies; (5) discover new 
questions; (6) promote a scientific habit of mind; (7) bound outcomes to plausible ranges; 
(8) illuminate core uncertainties; (9) offer crisis options  in near-real time; (10) demonstrate 
tradeoffs / suggest efficiencies; (11) challenge the robustness of prevailing theory through 
perturbations; (12) expose prevailing wisdom as incompatible with available data; (13) train 
practitioners; (14) discipline the policy dialogue; (15) educate the general public; and 
(16) reveal the apparently simple (complex) to be complex (simple). 

300 S. Bankes and J. Gillogly, Exploratory Modeling: Search Through Spaces of Computational 
Experiments, RAND, RP-345, 1994. 
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multiagent-based simulations—seeks only to find plausible future states and 
trajectories of a system that are consistent with what is known.301 

Multiagent-based models 

Multiagent-based models (MBMs) represent a broad class of modeling techniques that 
have been developed specifically for studying complex adaptive systems302 and, more 
recently, social dynamic systems.303 MBMs are predicated on the basic idea that the 
ostensibly complicated global behavior of a CAS derives, collectively, from simpler, 
low-level interactions among the parts (or agents); indeed, MBMs are, by design, 
explicit distillations of whatever particular complex system is being studied. Essentially 

everything that is currently known about the general behavior of complex systems, 
including the properties of specific systems, has been derived from MBMs.  

Roughly speaking, any real physical system that exhibits the following four basic 
properties is, in principle, amenable to being “modeled” by an MBM:  

 Heterogeneity, meaning that the system consists not just of “exact copies of 

the same” part, but a variety of dissimilar, related parts with a mix of 
properties 

 Autonomy, so that the behavior of the system, as a whole, is not dictated top-

down by one central “controlling” agent, but rather is a collective property of 
the combined decisions of otherwise autonomous intelligent agents 

 Bounded rationality, which prevents any part of the system from “knowing” 

what the entire is system is  “doing” at any one time (so that each agent has 
access only to limited information and a finite store of computational 
resources by which to make “decisions”) 

 Local interactions, which constrains agents’ actions to local interactions with 

other neighboring agents (of course, this constraint can be lifted for cases 
where agents making up a robotic-swarm, say, communicate with one 
another) 

                                                   
301 S. Bankes and J. Gillogly, Validation of exploratory modeling, RAND, RP-298, 1994. 

302 G. Weiss, editor, Multiagent Systems, MIT Press, 2000. 

303  J. Epstein, Generative Social Science, Princeton University Press, 2007; C. Nikolai and  
G. Madey, “Tools of the Trade: A Survey of Various Agent Based Modeling Platforms,” 
Jour. of Artificial Societies and Social Simulation 12, no. 2, 2009. 
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A fifth property—adaptive evolution, by which agents are able to learn and grow as a 

simulation unfolds—is often part of an MBM; though, strictly speaking, a system 
does not need to be a “learning” system in order to be modeled as an CAS. 

MBMs are rarely developed purely as predictive models—that is, as tools to produce 
an “expected outcome” (or behavior) of a system given some input. Instead, they are 
best used to provide generative explanations. Insights about the real system are 
gained by examining the emergent structures within the simulation. Traditional 
mathematical and computer models focus on high-level descriptions because they 
assume that complex behaviors observed on the aggregate level of a system must be 
described by “complex” rules. In contrast, MBMs proceed from the assumption that 
complex global behavior is often a self-organized emergent consequence of the 
intertwined web of much simpler, low-level interactions among (also, typically, 
“simple”) individual agents. Of course, neither traditional models nor MBMs account 
equally well for all kinds of dynamical systems; however, if the system of interest is a 
CAS, MBMs are, by far, the most suitable modeling paradigm. MBMs are particularly 
well suited for simulating the self-organized emergent dynamics of complex 
networks. 

Figure 16 shows a partial list of some landmark / prototype MBMS that have been 
developed across multiple problem domains. 

Figure 16.  A partial list of some landmark / prototype MBMs 

 

Ref: U. Wilensky and W. Rand, An Introduction to Agent-Based Modeling, MIT Press, 2015 
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 “Generative explanations” proceed from the bottom up. By effectively decoupling 
individual rationality from macroscopic equilibrium, MBMs represent a new hybrid 

theoretical-computational tool
304

—one that is neither totally deductive nor totally 

inductive. While MBMs, like deductive methods, start from a set of primitive rules 
and assumptions, they do not prove theorems; rather, they generate behaviors that 
must themselves be further studied inductively. Unlike traditional induction, 
however, via which patterns are uncovered by studying empirically derived data, 
MBMs provide the framework for discovering (presumably real-world) high-level 
patterns that emerge out of the aggregate behaviors of lower-level entities and 
interaction rules. Traditional models ask, effectively, “How can I characterize the 
system’s top-level behavior with a few, equally top-level, variables?” MBMs ask, 
instead, “What low-level rules and what kinds of heterogeneous, autonomous agents 
do I need to have in order to synthesize the system’s observed high-level behavior?” 

While a valid and useful answer to the first question can often be found, there is at 
least one significant drawback to this approach: so many simplifying assumptions 
must usually be made about the real system in order to render the top-level problem 
a soluble one, that other natural, follow-up questions, such as “Why do specific 
behaviors arise?” or “How would the behavior change if the system were defined a bit 
differently?” cannot be meaningfully addressed without first altering the set of 

assumptions. An analytical, closed-form “solution” may describe a behavior; 
however, it does not necessarily provide an explanation for that behavior. Indeed, 
subsequent questions about the behavior of the system must usually be treated as 
separate problems. 

As a general class of problem-solving tools, MBMs span a wide spectrum of function 
and utility. Ranked roughly according to conceptual depth and sophistication, they 
can be used as:305  

 Classical simulation tools: they can be used as dynamic representations, and 

therefore effectively provide instantiated “checks,” of otherwise 
“conventional” closed-form solutions to tractable problems.  

                                                   
304 J. Epstein, “Agent-Based Computational Models and Generative Social Science,” Complexity 4, 
no. 5, 1999; and R. Axtell, Why agents? On the varied motivations for agent computing in the 
social sciences, Brookings Institution, Working Paper 17, November 2000.   

305 For additional details see J. Epstein, “Agent-Based Computational Models and Generative 
Social Science,” Complexity 4, no. 5, 1999; R. Axtell, Why Agents? Brookings Institution, 2000; 
and J. Epstein,  “Why Model?” Journal of Artificial Societies and Social Simulation 11, no. 4, 31 
October 2008. 
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 Logical inference engines: they help identify—and discover—the logical 

consequences of the assumptions and/or constraints imposed on a problem 
or class of problems.  

 Sensitivity analysis: they may be used to take systematic excursions away 

from equilibrium solutions derived by other means, thereby helping to 
characterize the solution space.306 

 Interactive theorizers: MBMs may be used for helping to explain “why” 

something happens, and to enhance understanding of existing problem 
spaces.  

 Generators of “plausibly possible” futurescapes: MBMs are generally best used 

as tools for exploring (the typically vast, multidimensional space of) 
“plausibly possible” future states of a system; i.e., as conceptual / analytical / 
visual aids for exploratory modeling. “Exploratory modeling” refers to the 
practice of using models or simulations not as predictive vehicles, per se (in 
which inputs are used merely as “seeds” for generating predictions of 
specific outcomes), but rather as interactive tools for aiding analysts in 
conducting computational experiments and exploring all possible future 
states of a system. They may also be used to gain insight into the 
relationship between low-level rules and behaviors and high-level emergent 
phenomena. 

 Experimental probes: MBMs may be used to discover alternative and/or novel 
measures of effectiveness or measures of performance (of, say, specific 
adaptation or mitigation strategies), and to act as conceptual testbeds for 
suggesting real-world experiments. 

 Meta-modeling environments: there are a growing number of meta-modeling 

platforms that, by deliberately minimizing the “details” about specific 
systems or problem domains, facilitate the design and development of MBMs. 
Some well-known examples include Swarm, MASON, Repast, StarLogo, and 

NetLogo. OpenABMa consortium of researchers, educators, and 

professionals interested in MBMs (founded in 2007) maintains an archive of 

meta-modeling platforms.307 

                                                   
306 For example, CNA’s EINSTein MBM simulation of combat was conceived for precisely this 
reason; namely, as a vehicle to take systematic  excursions away from behavior described as 
closed-form solutions to the Lanchester equations.  Ref: J. Taylor, Force-on-Force Attrition 
Modelling, Operations Research Society of America, Military Applications Section, 1980. 

307 https://www.openabm.org/modeling-platforms. 
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MBMs are particularly powerful modeling and simulation tools to use on systems 
that include a human decision-making and/or social/cultural component. Particularly 
important in the context of this report is the fact that MBMs are equally as adept at 
providing insights into what a system does, collectively, in terms of what its 
constituent parts do, as it is in providing insights into what happens to the 
individual components of a system because of what the systems does.308 

Words of caution 

While MBMs are inarguably powerful tools for understanding CASs (an assertion that 
is underscored, if not proven, by the breadth and depth of their application in a wide 
variety of subject-matter domains), their utility is not without costs. For example, 
despite many attempts at codifying fundamental principles (e.g., by Epstein,309 

Holland,310 and Weiss311), CAS theorythe universally agreed upon conceptual 

framework that underlies all MBMsitself remains more of a “work in progress” than 

final all-encompassing theory.312 As of this writing, no universal definitions of 
“complexity” and “emergence” exist (indeed, the meaning of these terms are still 
hotly debated);313 and there remains disagreements on core concepts and 
methodologies.  

Most significantly, in the context of this paper, is that Verification, Validation, and 
Accreditation (VV&A) for MBMs is less than satisfactory, at best (as an objective set of 
standard practices), and even less universally agreed upon than CAS theory, at worst. 
In practice, each MBM developer effectively applies her own home-grown version of 
whatever VV&A technique seems appropriate for a specific type of model; and the 
veracity of each approach is subject to vagaries of chance acceptance and peer review 

                                                   
308 S. Railsback and V. Grimm, Agent-Based and Individual-Based Modeling: A Practical 
Introduction, Princeton University Press, 2011. 

309 J. Epstein, Agent_Zero: Toward Neurocognitive Foundations for Generative Social Science, 
Princeton University Press, 2013. 

310 J. Holland, Signals and Boundaries: Building Blocks for Complex Adaptive Systems, 
MIT Press, 2014 

311 G. Weiss, Multiagent Systems, Second Edition, MIT Press, 2013. 

312 N. Johnson, Simply Complexity: A Clear Guide to Complexity Theory, Oneworld, 2009. 

313 M. Bedau and P. Humphreys, editors, Emergence: Contemporary Readings in Philosophy 
and Science, MIT Press, 2008; P. Humphreys, Emergence, Oxford University Press, 2016. 
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by subject matter experts (at least for cases in which whatever research the MBM was 
developed in support of is published in an accredited journal).314  

One noteworthy VV&A-like technique that has received attention in the MBM 
community is that of aligning (or “docking”) two or models. First proposed by Axtel 

at al.,315 and Axelrod,316 in the late 1990s, the idea is to see whether two models can 
produce the same results; i.e., using one model to “check” the output of another. The 
authors illustrate this concept by using, as their test-bed simulations, a model of 
cultural transmission designed by Axelrod317 and the Sugarscape MBM of evolution 

that takes place on a notional “sugar” field, developed by Epstein and Axtell.318 Since 
the models differ in many ways (and have been designed with quite different goals in 
mind), the comparison was not an especially easy one to make. Nonetheless, the 
authors report that the benefits of the sometimes arduous process of “alignment” far 
outweighed the hardships. In the end, the user communities of both models 
benefited from the alignment process by gaining a deeper understanding of how 
each program works, of their similarities and differences, and of how the inputs and 
outputs of each program must be modified before a fair comparison of what “really 
happens in either model” can be made. 

UASs as CASs 

On a fundamental level, UASs are prototypical complex adaptive systems, consisting 
of multiple nonlinearly interacting components such that the aggregate behavior is 
an emergent function of the entwined adaptive dynamics of their individual parts.319  

                                                   
314 For example: The Journal of Artificial Societies and Social Simulation: http://jasss.soc.surrey. 
ac.uk/JASSS.html; Advances in Complex Systems: http://www.worldscientific.com/page/acs/ 
aims-scope; and Swarm Intelligence (Springer-Verlag): http://www.springer.com/computer/ 
ai/journal/11721. 

315 R. Axtel, et al., “Aligning simulation models: a case study and results,” Computational 
and Mathematical Organization Theory 1, 1996. 

316 R. Axelrod, The complexity of Cooperation: Agent-Based Models of Competition and 
Cooperation, Princeton University Press, 1997. 

317 R. Axelrod, “The dissemination of culture: a model with global polarization,” Journal 
of Conflict Resolution 41, 1997. 

318 J. Epstein and R. Axtell, Growing Artificial Societies, MIT Press, 1996. 

319 F. Macias, “The test and evaluation of unmanned and autonomous systems,” ITEA Journal 
29, 2008. 
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Figure 17 shows, schematically, some of the key functional components and 
relationships of various subsystems that make up a typical UAS (excluding the part 
that involves human interaction and communications, but which will be described 
shortly). The left-hand-side of the figure highlights, notionally, the fact that an 
individual UAS may also be part of swarm, which entails an additional layer of 
“complexity.” In this section we will only briefly touch upon this aspect of UASs, 

leaving a detailed discussion to a later chapter (see Robotic Swarms). 

Figure 17.  Key functional components and relationships of an autonomous 
unmanned system (excluding human interaction and communications) 

After figure 3.1 in A. Finn and S. Scheding, Developments and Challenges for Autonomous 
Unmanned Vehicles, Springer-Verlag, 2010. 
 

The various parts of an UAS are both numerous and feature different capabilities and 
characteristics:320  

 Internal sensors: used to measure, for example, wheel velocity (odometers), 

steering angle, ground (radar or laser) or sea floor (acoustic) Doppler or 
depth/altitude (pressure sensors). Such sensors are, generally speaking, 

                                                   
320 Chapter 3 in A. Finn and S. Scheding, Developments and Challenges for Autonomous 
Unmanned Vehicles, Springer-Verlag, 2010. 
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proprioceptive; i.e., they perceive internal factors that are effected by the 

environment and the UAS’s own behavior. 

 External sensors: which provide data regarding the position and orientation of 

the UAS in some absolute frame of reference (e.g., inclinometer, magnetic 
compass, and GPS). Also usually considered to be proprioceptive. 

 Environmental sensors: which provide data (e.g. via radar, LADAR, EO, IR and 

acoustic sensors) to the UAS’s perception algorithms, allowing the UAS to 
observe and develop a map of its environment. Also called exteroceptive; i.e., 

they perceive external factors that are not under the control of the UAS.  

 Localization: provides estimates of the UAS’s position, velocity, attitude, 

altitude rate, and acceleration.  

 Perception: which is responsible for capturing, representing, and interpreting 

relevant environmental cues (e.g. location, geometry, spectral content, etc.), 
as observed by sensors, and relating these to features in the real world for 
the vehicle’s moment-to-moment control, mission and task planning, payload 
control, etc. 

 Navigation: which is responsible for generating a map of the UAS’s local 

environment, a path to navigate the vehicle from its current location to the 
next waypoint or final destination, and the detection of any hazards that 
might impeded the UAS’s progress. This module processes data from the 
localization and perception functions, and uses this information in 
conjunction with the behavior function to execute its mission. 

 Planning: defines the algorithm that generates the sequence of actions the 
UAS must take from a specified starting position to its final destination (or 
activity) while avoiding obstacles and other “unanticipated” impediments. 
While the planning function is not directly linked with the UAS’s sensory 
input, it may rely on other a priori forms of data (e.g., maps and mission 
objectives). 

 Behavior: translates the combined outputs of the navigation, planning, and 

perception functions into actuator commands that allows the UAS to execute 
specific actions (e.g., move and/or fire weapons). 

 Mobility: refers to the ability of the vehicle to traverse its environment. For 

unmanned ground vehicles, it is often expressed in terms of the size of a 
physical object that the vehicle can negotiate. For air and sea-based vehicles, 

mobility typically includes the aero and hydrodynamic properties of the 

platform.  
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 Targeting: in the event that the UAS is weaponized, the targeting module is 

responsible for aiming the weapon. If the UAS capable of autonomously 
deploying its weapons (an issue that will examined in detail in subsequent 
sections), the targeting module would likely be tightly coupled with both the 
planning and behavior modules. 

 Response: which is a generic label for the module responsible for the tasking 

of the UAS’s payloads to react to and/or engage with objects within the UAS’s 
environment (e.g., firing a weapon, or panning, tilting & zooming an ISR 
payload to create or enhance a situational awareness picture for the user, or 
to respond to and engage with objects within this picture 

Additional components (both those indicated on the figure and not) include payloads 

(e.g., radar, electronic warfare equipment, mine countermeasures, and weapons); 
energy (the rate at which power is used is a key parameter); propulsion systems 
(which are typically designed around specific tasks and missions); and health and 
usage monitoring systems (HUMS), by which the UAS can self-monitor and (if 

necessary) diagnose issues that may lead to (or are a result of) a system malfunction.  

Even a cursory comparison between the network of interacting parts and processes 
that make up a typical UAS and the basic “ingredients” that define a CAS suggests 
that UASs are prototypical complex systems: they are “agents” that respond and 
adapt to changing physical (and/or virtual) environments, act on only the local data 
or information that is available to them, and can alter their behavioral strategies 
based on the feedback they get either from their own sensors or from outside agents 
(including other UASs). If an individual UAS is also part of a swarm, the comparison 
becomes only that much more compelling. 

On an even deeper level, since neither the function nor performance of UASs (nor of 
their key components) can be described in situ, but require broader contexts of 

human control and interaction, physical environment, and mission space to furnish 
meaning, UASs are also textbook examples of complex adaptive System-of-Systems 
(CASoS).321 John Holland, a pioneer in the study of complex adaptive systems and an 
early member of the Board of Trustees and Science Board of the Santa Fe Institute,322  

likened a system-of-systems to an artificially created complex adaptive systems: “It is 
manufactured to achieve a predefined mission and will involve a large number of 
interacting entities with persistent movement and reconfiguration, changing based 

                                                   
321 A. Fereidunian, et al., “A Complex Adaptive System of Systems Approach to Human-
Automation Interaction in Smart Grids,” in Contemporary Issues in Systems Science and 
Engineering, edited by M. Zhou, IEEE-Wiley Press, 2015. 

322 https://www.santafe.edu/. 
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on changes in context, ordered through self-organization, with local governing rules 
for entities and increasing complexity as those rules become more sophisticated.”323 

Linking autonomy with AI 

UASs are not only CASoS, but their design, function, and performance depends 
critically on the efficacy of various forms of embedded AI. Figure 18 overlays a (far 
from exhaustive) taxonomy of AI techniques and methods on the schematic block of 
a UAS’s key functional components (shown in the previous figure), and adds explicit 
couplings to human interaction (i.e., human as operator and/or collaborator), 
physical environment, mission space, and other UASs.324 

Figure 18.  Generalizing a UAS as a CASoS and linking autonomy with AI  

Right-hand-side of figure based on figure 3.1 in A. Finn and S. Scheding, Developments 
and Challenges for Autonomous Unmanned Vehicles, Springer-Verlag, 2010. 
 

                                                   
323 J. Holland, Hidden Order: How Adaptation Builds Complexity, Addison-Wesley, 1995 

324 R. Brooks, Cambrian Intelligence: The Early History of the New AI, MIT Press, 1999. 
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Inherent “surprise” in complex systems 

Charles Perrow, in his seminal book Normal Accidents,325 argues that in tightly 

coupled complex systems, such as modern military weapon systems, accidents are 

“normal” events; that is, they are inevitable. The basic theme of Perrow’s bookand 

what has come to be known as Normal Accident Theory (NAT)326is that a priori 

innocuous individual and seemingly unrelated events accumulate and align to spawn 
major system malfunctions that can, in turn, induce catastrophic results. For 
example, in summarizing the forensic investigation of a CD-10 crash at Chicago 
O’Hare Airport in 1979, Perrow quotes from the National Transportation and Safety 
Board’s (NTSB’s) report: 

The loss of control of the aircraft was caused by the combination of 
three events: the retraction of the left wing’s outboard leading edge 
slats; the loss of the slat disagreement warning system; and the loss 
of the stall warning system – all resulting from the separation of the 
engine pylon assembly. Each by itself would not have caused a 
qualified flight crew to lose control of the aircraft, but together 
during a critical portion of the flight, they created a situation, which 
afforded the flightcrew an inadequate opportunity to recognize and 
prevent the ensuing stall of the aircraft.   

In his book, Perrow provides a wide set of examples to support his main thesis; e.g., 
air transport system, banking and financial systems, Three Mile Island (TMI), marine 
accidents, dams, hospitals, mines, petrochemical plants, weapon systems, and DNA 
research. Each of these systems is innately prone to failure because their function 
depends on the integrity of myriad interconnections among equipment, subsystems, 
operating procedures, human operators, and the environment. Despite any 
safeguards and redundancies that may be deliberately built into the system to act as 
buffers against possible malfunctions, it is inevitable (according to NAT) that there 

will be occasional failures, perhaps only minorand all-but-invisibleones 

unanticipated by the designers of a system (or via policies, procedures, and/or 
training) that collectively, via the network of systemic interactions, build one on the 

                                                   
325 Perrow was arguably the first to introduce the idea that accidents are inherent in the 
nature of complex systems, and that deliberate attempts (by humans in the loop) to avoid the 
consequences may actually engender rather than ameliorate catastrophic failure. Ref: 
C. Perrow, Normal Accidents: Living with High-Risk Technologies, Updated Edition, Princeton 
University Press, 1999. 

326 K. Weick, “Normal Accident Theory (NAT) as Frame, Link, and Provocation,” Organization 
& Environment 17, no. 1, 2004.  
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other, causing failures to cascade, ultimately bringing part or all of the entire system 
down.  

A system’s propensity for (i.e., risk of) accidents depend on the interactive complexity 
of, and strength of dynamic couplings among, its individual elements. Systems with 

lots of parts that are linearly coupled (so that the magnitude of system-wide effects 
scale proportionately to the size of small perturbations within the system) are less 
prone to unanticipated behaviors than systems with the same (or even fewer) number 
of components that are nonlinearly coupled, and in which small local changes can 
induce disproportionately large global effects. 

Figure 19.  Characteristics of the two major variables in Perrow’s Normal Accident 
Theory (NAT): interactions and couplings 

  

Figure 19 summarizes the characteristics of the two major variables, interactions and 
coupling (along the left-hand-side), and examples of where some systems generally 

fall within the two dimensional space (on the right). Interactions in a system span the 
space from linear to complex and coupling can be either loose or tight:327 

 LL  Linear Interaction, Loose Coupling: the system harbors few complex 

interactions; components that fail can be gracefully isolated without 
disrupting system function; accidents can be ameliorated in either a top-
down manner from a central authority or a decentralized, bottom-up 
manner. 

                                                   
327 T. Gale, “Normal Accidents,” Encyclopedia of Science, Technology, and Ethics, 2005. 
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 LT  Linear Interaction, Tight Coupling: tightly coupled systems are those in 

which: (1) processes happen very fast and cannot be turned off, (2) the failed 
parts cannot be isolated from other parts, and (3) there is effectively a single 
path that leads to a successful outcome. Systems with tightly coupled linear 
interactions are predictable, but improvised workarounds to local failures 
are not generally possible, and must be explicitly designed into the system. 
These systems have little slack (measured in terms of the time between when 
the local behavioral perturbations occur and when some internal/external 
control can be applied to the system in order to prevent a cascading failure), 
and delays typically disrupt their global behavior.  

 CL  Complex Interaction, Loose Coupling: system contains many complex 

interactions, with many control parameters and unplanned behaviors. Since 
system is loosely coupled, there is some slack in its behavior, and local 
adaptive “corrections” to malfunctions (such as finding alternative dynamic 
pathways for certain functions) will not necessarily disrupt the whole 
system, and may improve it. 

 CT  Complex Interaction, Tight Coupling: tight coupling of a complex 

network of interactions makes any failure potentially disruptive; local 
ameliorations can also potentially result in a system-wide failure (they 
compromise the functional integrity of vital parts of the system). Most 
problems in such systems are fundamentally unpredictable because of the 
combinatorial complexity of parts and connections. The only effective route 
to amelioration is a decentralized one, whereby those parts (and/or 
operators) that are closest to each malfunctioning/failing subsystem 
undertake a slow, careful analysis of a given failure to determine what went 
wrong and what can be done about it. 

We have highlighted the complex tightly coupled systems in bold to emphasize that it 

is this class of complex systemsinto which autonomous weapon systems 

inarguably fall (encompassing, notionally, the area that is highlighted in blue in 

figure 19)for which surprises and/or accidents will inevitably occur over a long 

enough period of time. These types of systems are the most prone to display 
“surprising behaviors” and to “fail” (to perform according to design specifications) 
because of the inherent unknowability of the complete set of global behaviors that 
can arise from their nonlinearly coupled parts. Failures can result via interactions 
within the system itself (e.g., the logic that defines how a robotic swarm ought to 
behave), via human-in-the-loop control (which may have unanticipated effects on an 
autonomous system’s behavior), and/or via a system’s dynamic coupling 
environment (in which a system may encounter contexts that were not anticipated by 
its designers). When there is sufficient slack (as defined above bullet describing LT 
systems), accidents can be ameliorated to avoid catastrophe. However, when the 
components of a system are tightly coupled, local failures can cascade rapidly from 
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one subsystem to another, and such systems offer little slack to act as a dynamic 
buffer. Accidents in complex tightly coupled systems thus become inevitable, or even 
“normal.” The potential for catastrophic system failure increases as the complexity 
of interactions and coupling strengths both increase; i.e., the closer one gets to the 
upper right corner in the plot on right-hand-side in figure 19. 

Control & risk of autonomy 

NAT provides a useful conceptual framework for discriminating among different 
kinds of systems, generally, and for characterizing why autonomous systems, in 
particular, are likely to be prone to displaying “surprising” behaviors. Implicit in this 
framework is that as the complexity of a system increases (in both of NAT’s 
dimensions), the ability to control the behavior of a system decreases; and any 
degradation of control entails risk. The risk in deploying an autonomous system is 

that the system may not perform the required operational task(s). Of course, some of 
the ways in which an autonomous system might fail to perform can be anticipated in 
advance (e.g., simple programming bugs, changing environmental conditions, human 
error), and human operators can, accordingly, adjust the system’s behavior to 
accommodate these malfunctions. Other performance failures may not be easily 
anticipatable. Indeed, as we have argued here and elsewhere throughout this paper, a 
fundamental property of all sufficiently tightly and nonlinearly coupled complex 
systems is that their global behavior space contains behaviors that cannot in 
principle be predicted from knowing the local rules by which its components interact 
(short of exhaustively probing the system for all possible behaviors, which is 
combinatorically impossible except for the simplest systems). Understanding the 

conditions under which an autonomous system might failor, equivalently, the 

conditions under which an autonomous system cannot be controlled by a human 

operatoris essential to assessing the risks involved in deploying such systems. 

And, given that our current general understanding of complex adaptive systems is 
insufficient to a priori account for all possible global system behaviors (such an 
understanding may be fundamentally impossible to achieve), new analytical methods 
may need to be developed for assessing risk in employing autonomous systems. 

Of course, even “simple” complex systemsthat is, “automated,” but not 

autonomous, systems that do not exhibit emergent behaviors or adapt and/or learn 

from past experiencescan spawn unexpected behaviors. Such behaviors can arise 

because of bugs in programming, flaws in engineering design, the sheer number of 
otherwise “simple to understand” parts (that may overwhelm the human operator), 



 

 

 

104 
 

and/or unanticipated interactions with the environment.328 Other modes of failure 
can arise in military systems, since they operate in inherently adversarial 
environments. For example,329 incomplete information, an accelerated pace of 
interactions, unanticipated interactions between adversarial systems, hacking (both 
by conventional means and by exploiting predictable behaviors), and spoofing (i.e., 
sending false data). 

                                                   
328 In 2007, eight F-22s experienced a catastrophic Y2K-like computer failure when their 
onboard computer systems all shut down as they crossed the international dateline (the 
impact of which had not been identified in during software testing). Ref: “This Week at War,” 
CNN, February 24, 2007: http://transcripts.cnn.com/TRANSCRIPTS/0702/24/tww.01.html. 

329 P. Sharre, “Autonomous Weapons and Operational Risk,” Center for a New American 
Security, Feb 2016. 
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Robotic swarms 

Robotic Swarms (RSs) refers to a young but burgeoning interdisciplinary research and 

development field that studies the collective cooperative dynamics of a large number 
of decentralized distributed robots through the use of “simple” local rules.330 It is 
directly inspired by how nature forms, and exploits, swarms; e.g., in which societies 
of insects can perform tasks that are beyond the capabilities of any individual 
member.331 In the following discussion, we will sometimes make a distinction (as per 
convention in the extant literature) between multi-robot systems (that contain a 
relatively few robots) and a bona-fide “swarm” (that contains a large number of 
robots; say, > 10); when the distinction does not matter, either type of system will be 
referred to generically as a “robotic swarm.”  

RS lies at the cusp of several interrelated research domains that have emerged over 
the last 20 to 30 years, including AI, artificial life,332 complex adaptive systems,333 and 
particle swarm optimization (which studies computational methods for finding close-

to-optimal solutions to combinatorial optimization problems; see below).334 RS also 
borrows from (and relies heavily on) multi-agent based modeling techniques to first 

simulate and understand the behaviors that must ultimately be instantiated in 
hardware.335 Since it is impossible to provide anything but a cursory look at any of 
these important fields, our discussion will focus on only those aspects that are 
directly applicable to the study; references for deeper dives are provided as needed. 

                                                   
330 E. Şahin, “Swarm robotics: from sources of inspiration to domains of application,” in 
Swarm Robotics Workshop: State-of-the-Art Survey, E. Şahin and W. Spears, editors, Lecture 
Notes in Computer Science, Springer-Verlag, no. 3342, 2005. 

331 E. Bonabeau, G. Theraulaz, and M. Dorigo, Swarm Intelligence: From Natural to Artificial 
Systems, Oxford University Press, 1999. 

332 M. Komosinski and A. Adamatzky, editors, Artificial Life Models in Software, Second 
Edition, Springer-Verlag, 2009. 

333 N. Boccara, Modeling Complex Systems, Second Edition, Springer-Verlag, 2010. 

334 A. Hassanien and E. Emary, Swarm Intelligence, CRC Press, 2015. 

335 U. Wilensky and W. Rand, An Introduction to Agent-Based Modeling, MIT Press, 2015. 
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One of the earliest suggestions of applying natural swarms to warfare was by Libicki 
in 1995:336 

Today, platforms rule the battlefield. In time, however, the large, the 
complex, and the few will have to yield to the small and the many. 
Systems composed of millions of sensors, emitters, microbots and 
mini projectiles, will, in concert, be able to detect, track, target, and 
land a weapon on any military object large enough to carry a human. 
The advantage of the small and the many will not occur overnight 
everywhere; tipping points will occur at different times in various 
arenas. They will be visible only in retrospect. 

Two groundbreaking monographs on the possible military benefits to swarming 
(albeit focused on swarms of conventional troops and weapons, not robots) were 
published in 2000337 and 2005 by the Rand Corporation.338 The latter, in particular, 
traces evolution of conflict across history: from melee, to mass, maneuver, and, 
finally, swarms. 

A key ingredient in swarm robotics is that of self-organization; i.e., the emergence of 
macro-level behavior from local nonlinear interactions among individual agents, and 
between system components and their environment. Self-organization results from 
the combination of four basic elements:339 positive feedback, negative feedback, 
randomness, and multiple interactions.  

Swarmswhether software-based or instantiated in hardwareare inextricably 

entwined with the study of complex adaptive systems (CASs) and multiagent-based 
modeling (as discussed in the preceding section). Indeed, one of the first general-
purpose simulation platforms for the study of complex adaptive systems is called 
Swarm,340 developed at the Santa Fe Institute during the 1990s.341 

                                                   
336 M. Libicki, “Mesh and the net: speculations on armed conflicts in an age of free silicon,” 
McNair Paper 28, National Defense University, 1995. 

337 J. Arquilla and D. Ronfeldt, Swarming and the Future of Conflict, Rand Corporation, 2000. 

338 S. Edwards, Swarming and the Future of Warfare, Ph.D. Thesis, Pardee Rand Graduate School, 
2004: http://www.rand.org/content/dam/rand/pubs/rgs_dissertations/2005/ 
RAND_RGSD189.pdf. 

339 A. Ilachinski, Artificial War: Multiagent-Based Simulation of Combat, World Scientific, 2004. 

340 http://www.swarm.org/wiki/Swarm_main_page. 

341 N. Minar, et al., “The Swarm Simulation System: A Toolkit for Building Multi-Agent 
Simulations,” Santa Fe Institute (SFI), SFI Working Paper 96-06-042, June 1996. 
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Examples of swarming in nature include colonies of bacteria (e.g., resistance to 

antibacterial agents by colonies of bacteria in biofilms has been observed to be 500 
times more than that of individual bacteria of the same kind),342 schools of fish (which 
fosters both foraging and help defend against predators),343 locust swarms (for which 

it has been shown that very high densities of individuals in a swarm induce a phase 
transition disordered to highly aligned collective movement),344 bee colonies (e.g., 

honeybee swarms allocate tasks dynamically and adaptively in response to changes 
in the environment),345 bird flocks (e.g., the evolution of cooperation for foraging and 
migration groups)346 and bird swarms (the “simple” modeling of which was pioneered 
by Craig Reynolds in the 1980s; see discussion below),347 termite colonies (e.g., the 
massive mounds built by the termite Macrotermes natalensis are built in a 
decentralized manner by the cooperative “engineering” of thousands of individuals, 
yet regulate the environment of the entire colony as though they were colossal heart-
lung machines),348 and ant colonies (in which individual members cooperate by 

communicate using pheromones to mark paths from their nest to food sources).349 
Natural swarms range in size from a few individuals to highly organized colonies 
that occupy large spaces and consist of many millions of individuals. Specific group 
behaviors include path planning, nest construction, architectural engineering, and 
task allocation. Social insects exchange information (e.g., to communicate the 
location of a food source or the presence of a predator) locally; i.e., without either 
having or relying on any information about the global environment. The implicit 
communication through any dynamic changes made in the environment (such as by 
leaving a pheromone trail) is called stigmergy.350 
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Of course, on the largest scale, human culture as a whole may also be viewed as a 
massive swarm of swarms.351 Human swarms (which can be of varying sizes and 
complexities) are facilitated, as are other forms in nature, by the cooperative sharing 
of information. Human swarms on smaller scales may spontaneously “self organize” 
when the conditions right. For example, in the 2011 London Riots,352 real-time 
dissemination of locations of police barricades (via Blackberrys) allowed rioters to 
avoid authorities and adaptively re-organize in other areas to continue looting. 
However, perhaps somewhat counterintuitively, it is generally harder for humans to 
self-organize as a “swarm” than insects or animals. This is because one of the key 
ingredients in the dynamics of cooperative behavior is that a swarm’s constituent 
agents need to be “simple” (in a way that will be defined more carefully below); i.e., 
human “agents” must be willing to relinquish “control” over anyone else’s actions 
other their own. This is easy to do for “simple minded” robots (as we will see); but, 
generally, not so easy to achieve for groups of humans. 

What do all natural swarms have in common? The answer is that each harbors certain 

key elements of a broader set of dynamical systems called complex adaptive systems 
(which are discussed in more detail later). The individual robots in a swarm are 
typically:353 

 Autonomous (i.e., not under a centralized control) 

 Situated in the environment (and can act to modify it) 

 Capable of sensing their local environment and other nearby robots  

 Able to communicate (locally) with other robots 

 Unaware of the global state of the environment (and other robots) 

 Able to cooperate with other robot to perform a given task(s) 

In addition, and taking a cue from natural swarms, robotic swarms are designed to 
be robust (i.e., to retain the ability to perform their assigned task(s) after the loss of a 
few or more individuals), scalable (i.e., so that their ability to perform well is not 
strongly affected by group size), and flexible (i.e., so that they can cope with a broad 

spectrum of different environments and tasks).354  

                                                   
351 W. Buckley, Society: A Complex Adaptive System, Routledge, 2013. 
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the swarm engineering perspective,” Swarm Intelligence 7, no. 1, 2013. 
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Real robot swarms may differ in some ways from their natural-born cousins. One 
obvious difference is that where natural swarms evolve on their own, robotic swarms 
must be deliberately designed. We will later examine the methods and challenges 
inherent in the design process. Another difference is that while natural swarms tend 
to be homogenous, robotic swarms can be heterogeneous (i.e., involve a mix of 
different types of robots performing various tasks). Real swarms are also prone to 
“hacking” (and other cyber concerns), such as a recent incident in which the control 
of a commercial drone was hijacked via intrusion into an unencrypted Wi-Fi.355 

The research literature is replete with surveys on the large number of basic swarm 
behaviors:356 

 Aggregation / rendezvous 

 Area coverage 

 Flocking and formation 

 Collective movement / transport 

 Collective mapping 

 Directed flocking 

 Dispersion 

 Pattern formation 

 Navigation 

 Simulating ant colonies 

 Task allocation 

 Obstacle avoidance 

 Foraging / search algorithms 

Arkin357 provides a list of general advantages and disadvantages of multi-robotic 
systems over those of single-robot systems. Advantages include: 

 Improved performance: if tasks can be decomposed and performed in 
parallel, groups can achieve tasks more efficiently 

                                                   
355 Samy Kamkar, “Skyjack,” samy.pl, December 2, 2013: http://samy.pl/skyjack/. 
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perspective,” Swarm Intelligence 7, no. 1, 2013. 
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 Task enablement: just as in natural systems, groups of robots can perform 
certain tasks that are impossible to accomplish for single robots 

 Distributed sensing: a group of robots effectively forms a “sensor grid” from 
which the collective information is potentially far wider than what is possible 
via the sensor range of a single robot 

 Distributed action: multiple simultaneous cooperative actions can be 
performed in different places at the same time 

 Fault tolerance: the failure of a single robot within a group does not 

necessarily imply that a given task cannot be accomplished 

Among the disadvantages and/or challenges of multi-robot systems are: 

 Interference: the actions of individual robots in a group (even otherwise 

“coordinated” ones) may mutually interfere (due to collisions, occlusions, 
loss of communications, etc.) 

 Uncertainty concerning other robots’ intentions: coordination requires that 

each robot “fully understands” what other robots are doing and what they 
expect other (nearby) robots to be doing; in the event of uncertainty (or less 
than threshold level  “clarity”) robots can compete instead of cooperate 

 Overall system cost: while single-robot systems are, typically, more “complex” 
(to account for the array of behaviors and actions that the multi-robot system 
presumably is being engineered to provide), and therefore also costlier, it is 
not a given that a swarm of individually less complex robots will, as a group 
(that performs required tasks at least as well as the presumptively “more 
complex” single-robot system), cost less than the single robot; for military-
grade autonomous robots and robotic swarms (discussed later) the total life-
cycle cost must include training, maintenance, and human operators 

Swarm intelligence 

Swarm intelligence (SI) is a catch-all phrase that refers to a large (and still growing) 
class of bio-inspired computational algorithms based on the decentralized 
cooperative behaviors of swarms of social insects, flocks of birds, schools of fish, 
and even the processes of natural evolution as a whole. Introduced over a half 
century ago,358 modern incarnations of SI include evolutionary programming (EP), 
genetic algorithms (GA), genetic programming (GP), differential evolution (DE), 
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evolution strategy (ES), ant-colony optimization (ACO), artificial bee colony (ABC), 
harmony search (HS), and particle swarm optimization (PSO).359  

In nature, the search for beneficial adaptations to a continually changing 
environment (i.e., “natural evolution”) is fostered by the cumulative evolutionary 
knowledge that each species possesses of its forebears. This knowledge is encoded in 
the chromosomes of each member of a species, and is passed on from one 
generation to the next by a mating process in which the chromosomes of “parents” 
produce “offspring” chromosomes. SI techniques mimic these natural processes by 
relying on heuristics directly inspired by their natural counterparts: reproduction, 
mutation, recombination, and selection. Of course, the details by which the analogy 
between nature and computer algorithm is drawn depend on the specific SI 
technique being employed. 

For example, GAs mimic the genetic dynamics underlying natural evolution to search 
for optimal solutions of general combinatorial optimization problems.360 They have 
been applied to the traveling salesman problem, VLSI circuit layout, gas pipeline 
control, the parametric design of aircraft, neural net architecture, models of 
international security, and strategy formulation.361 The basic idea behind GAs is very 
simple. Given a “problem”—which can be as well-defined as maximizing a function 
over some specified interval or as seemingly ill-defined and open-ended as evolution 
itself, where there is no a-priori discernible or fixed function to either maximize or 
minimize—GAs provide a mechanism by which the solution space to that problem is 
searched for “good solutions.” Possible solutions are encoded as chromosomes (or, 
sometimes, as sets of chromosomes), and the GA evolves one population of 
chromosomes into another according to their fitness by using some combination 
(and/ or variation) of the genetic operators of reproduction, crossover and mutation. 

ACO works by mimicking the way ants create and mark trails from their nest (N) to 
food (F) sources and back again (the general process is outlined in figure 20).362 
Foragers sense the pheromone markers and follow the path to food discovered by 
other ants, reinforcing the trail for still other ants to follow in their wake by 
depositing more markers. The shortest path to the food thus effectively forms over 
time as it is continually strengthened by positive feedback via the collective action of 
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the foraging ants. If the food source is exhausted and/or some obstacle along the 
path prevents ants from traveling toward the source, the extant path’s strength 
immediately diminishes since no more pheromone is deposited on that path. In time, 
as the original pheromone evaporates, fewer and fewer ants take the old path; and, 
assuming some new path is discovered, more ants take the new path, thereby 
adaptively creating a new optimal path. The “takeaway” is that the “intelligence” (that 
leads to the discovery of any viable path) does not reside in any one individual ant, 
but is instead distributed among the entire group of foragers. 

Figure 20.  Schematic illustration of the Ant Colony Optimization (ACO) algorithm 

Ref: J. Dreo, distributed under the provisions of the GNU Free Documentation License: 
https://upload.wikimedia.org/wikipedia/commons/a/af/Aco_branches.svg. 
 

Another kind of swarm that occurs in nature, and is mimicked by ABC algorithms, is 
the honeybee swarm. Honeybees dynamically allocate tasks (e.g., tending the queen 
and brood, communicating, foraging, storing and distributing honey and pollen) and 
cooperatively adapt to changes in the environment. As foragers, individual bees take 
cues from the environment (odor, presence of pother bees, etc.) and rely on memory 
(e.g., recall of source of pollen and direction of odor). Similar to how ants leave 
pheromone deposits to attract other ants to a particular “good” path (i.e., one that 
leads to a food source), bees perform a “dance” on the area of the comb as a way of 
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communicating information about the food source (e.g., its richness, distance, and 
direction ). The type of dance correspond to how far a given pollen source is: a round 
dance is performed if the distance is less than about 100 meters, a waggle dance if it 
is farther, and a round dance if there is no directional information. Longer distances 
cause faster dances. And a tremble dance is executed if a bee has determined that it 

will take a long time to deposit its nectar.363 A honeybee colony also determines how 
many individual bees to assign to each of the many tasks that must be performed. 

Some specific bee-inspired algorithms include: (1) the Bees algorithm,364 which 

mimics the foraging behavior of bees (and consists, effectively, of combing local 
neighborhood search with a random global search), (2) the BeeHive algorithm,365 
which mimics how honeybees communicate (and is intended mainly as a routing 
algorithm), and (3) the Artificial Bee Colony (ABC) algorithm,366 which more fully 

models the foraging dynamics of a real honeybee than the other algorithms, and is, 
arguably, the most widely used form of “bee swarm” intelligence. The ABC algorithm 
is defined using three types of bees (employed, onlookers and scouts), with one 
“employed” bee per food source. When employed bees come back to the hive from a 
source, they perform a dance. If the source runs dry, the bee turns into a scout and 
attempts to find another food source. Onlooker bees use the dances of employed 
bees to adjudicate selection of potential new food sources. The position of a food 
source denotes a possible solution to the optimization problem the ABC algorithm is 
being used to “solve,” and the amount of nectar corresponds to the quality (i.e., 
fitness) of the associated solution. 

As powerful as all SI-based methods are, and despite having been successfully 
applied to a wide variety of problems, it is important to note that no one technique 
represents a panacea solution to all types of problems. One finds that, in practice, 
certain problems are more amenable to this kind of solution scheme than others, and 
that it is not always a priori clear (from the nature of the “problem”) why that is so. 
To emphasize: this is not merely a reasoned observation, but rather derives from the 
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celebrated No Free Lunch Theorem (NFLT).367 The theorem asserts that the 

performance of all search algorithms, when averaged over all possible cost functions 
(i.e., averaged over all possible problems), is exactly the same. In other words, no 
search algorithm is better or worse on average than blind guessing. To the extent 
that autonomy implies adaptation (to changing conditions, environments, 
unanticipated behaviors, etc.), and adaptation is, at root, an optimization process, the 
NFLT implies that there cannot exist a general strategy defined in some absolute way 
that will apply to every situation.368 We will come back to this issue during a 
discussion of the risks and vulnerabilities associated with the design and deployment 
of autonomous systems, in general, and relying on bio-inspired computation in 
particular. 

To the extent that an ability to engage in goal-directed behavior in unpredictable 
dynamic environments is a key attribute of autonomous systems, SI represents a 
powerful suite of tools for design, development, and analysis. 

Big data 

An everyday example of the power of “swarm intelligence” is the commercial 
exploitation of Big Data. “Big data” colloquially refers to the increasingly massive 
data storage capabilities, the proliferation of mobile networks, digital sensor 
networks, cloud computing, and cluster computer systems, which collectively are 

generating incomprehensibly massive worlds of information.369 A recent report has 

found that, as of 2011, the total amount of digital content on the Internet is about 

1.8 zettabytes (=1.8 1012 gigabytes), distributed among ~1017 separate files; and that 

figure is more than doubling every two years.370 The opportunity to gain actionable 

insights from this data has already been recognized and increasingly relied on by 
businesses (mainly to tap into, and draw inferences from, user preferences, 
associations, and opinions about their products and services), and public and 
government agencies: 

                                                   
367 D. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE Transactions 
on Evolutionary Computation, 1996. 

368 R. Duro, J. Santos, and M Grana, Biologically Inspired Robot Behavior Engineering, Springer-
Verlag, 2003. 

369 V. M.-Schonberger and K. Cukier, Big Data: A Revolution That Will Transform How We Live, 
Work, and Think, Houghton Mifflin Harcourt, 2013. 

370 J. Gantz and D. Reinsel, The 2011 Digital Universe Study: Extracting Value from Chaos, IDC, 
June 2011: http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-
ar.pdf. 



 

 

 

115 
 

 Search engine companies such as Google, Yahoo, Facebook, and Microsoft thrive 

on the capture and proprietary analysis of the vast amount of freely available 
data on the World Wide Web (WWW). In 2012, Google released its Knowledge 
Graph,371 a semantic search knowledge base; and, 2013, Facebook released its 

own semantic search engine that contains intimate knowledge about (its over 
one billion) users.372 

 Google leverages its search data to estimate current flu activity (and predict 

outbreaks) around the world in near real-time.373  

 Netflix (which has 27 million subscribers in the U.S. and 33 million worldwide) 

uses data-mined statistics and patterns of its viewers to both optimize its 

recommendations to customers of what they “would like” to watch,374 and even 

help define original content to offer them.375 

 Walmart and Amazon, apply machine learning algorithms to their warehouse 

of user-generated data to better manage their inventory and supply chains 
(e.g., Walmart archives 4 petabytes (4000 trillion bytes) worth of data that 
consists of every single purchase recorded by their point-of-sale 
terminals―around 267 million transactions per day―at their 6000 stores 

worldwide376).  

 Credit card companies routinely scour over their reams of personal and 
financial information to identify patterns in consumer purchasing trends and 

detect fraud.377  
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 The advent of widespread use of social media has helped spawn an entirely 
new breed of commercial "big-data vendors," whose sole purpose is to collect 
and aggregate publicly available data (e.g., from forums, newsgroups, blogs, 
social networks, etc.) and to sell that data and/or their accompanying analysis, 
to help their clients (e.g., banks, car companies, retailers, etc.) exploit patterns 
in user preferences and behaviors, and craft better marketing strategies; e.g., 
the top three big-data vendors alone―Splunk, Opera Solutions, and Mu 
Sigma―generated $448 million in revenue in 2012, out of a total big-data 

market of $11.4 billion.378 

 Public health officials now routinely parse Twitter feeds and search-engine 

query statistics to help identify the possible emergence of pandemics;379 and 

psychologists are beginning to exploit SM to profile suspects in school 

shootings.380 

Law-enforcement agencies, in particular―whose INTEL needs ostensibly differ from 

those of the military, but share certain key characteristics; e.g., answers to basic 

questions such as Where?, When?, What?, and Who?―have seizes a potential treasure 

trove of social-media-derived data in tracking criminals. For example, the New York 
Police Department stood up a unit in 2011 to track people who discuss their crimes 
on Facebook, Twitter and MySpace;381  the Boston Police Department has used Twitter 

to monitor criminal activity in the city since 2009382 (an effort that paid unexpected 
dividends during the recent bombing at the Boston Marathon383); and the FBI has used 
SM to investigate securities fraud and insider trading in the $2 trillion hedge fund 
industry.384  
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Figure 21.  Natural flocking of birds 

upload.wikimedia.org/wikipedia/commons/d/d6/Fugle%2C_%C3%B8rns%C3%B8_073.jpg. 
 

Rule-based flocking 

One of the most breathtakingly beautiful displays of natureand a prototype of self-

organized emergenceis the synchronous, fluid like flocking of birds (see figure 21). 

Large or small, the magic of flocks is the impression they convey of some intentional 
centralized control directing the overall traffic. Though ornithologists still do not 
have a complete explanation for this phenomenon,385 evidence strongly suggests that 
flocking is a decentralized activity, where each bird acts according to its local 
perceptions of what nearby birds are doing. Flocking is therefore a group behavior 
that emerges from collective action. (A popular form of computational “swarm 
intelligence,” called particle swarm optimization,386  is explicitly based on flocking.) 
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In the 1980s, Craig Reynolds introduced a deceptively simple set of local behavioral 
“rules” which he programmed into a flock of artificial birds he called Boids (see 

figure 22): 

1. Move toward the perceived center of nearby Boids 
2. Maintain a minimum distance from other objects (including other Boids) 
3. Match the velocity of nearby Boids 

Figure 22.  Three basic rules for “flocking”  

 
Ref: C. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,” 
Computer Graphics, Vol. 21, No. 4, 1987. 
 

Each Boid “sees” only what its neighbors are doing and acts accordingly. The 
collective motion of all the Boids was remarkably close to real flocking, despite the 
fact that there is nothing explicitly describing the flock as a whole. The Boids initially 
move rapidly together to form a flock. The Boids at the edges either slow down or 
speed up to maintain the flock’s integrity. If the path bends or zigzags in any way, 
the Boids all make whatever minute adjustments need to be made to maintain the 
group structure. If the path is strewn with obstacles, the Boids flock around whatever 
is in their way naturally, sometimes temporarily splitting up to pass an obstacle 
before reassembling beyond it. There is no central command that dictates this action. 
The collective behavior is entirely unanticipated, and cannot be easily derived from 
the rules defining what each individual Boid does. 

Reynolds’ Boids rules (albeit along with a host of refinements) were used as the core 
set of local behaviors to drive the software-based “combat agents” in the ISAAC and 
EINSTein agent-based models of combat (developed by CNA in the late 1990s).387 
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These two models are among the earliest widely available simulation packages to 
apply “simple” flocking rules to military operations research analysis of combat 
dynamics. An AI-enhanced set of Boids-like rules was also used to build the Multiple 
Agent Simulation System in Virtual Environment (MASSIVE),388 a crowd-simulation 
software package that was first used to generate battle scenes in the movie trilogy 
The Lord of the Rings.389 

More recent examples that bridge the gap between software and hardware 
instantiation of rule-based flocking are: (1) autonomous drone flocks developed in 
2011 at the Swiss Federal Institute of Technology in Lausanne,390 and (2) a 
decentralized multi-copter flock developed in 2014 by a research team at the Eötvös 
University in Hungary.391 While the first example is closer to being a prototype 
demonstration of “drone flocking” than a mature technology (it consists of fixed-
wing fliers with no inter-drone interactions, and the drones can move only at 
constant speeds, and must fly at different heights to avoid collisions), the second 
example represents the first time that physical drones have actually flown as a 
resilient, coordinated dynamic flock.392 Similar attempts had been made before, but 
always involved some constraints, such as restricting flights to controlled indoor 
environments or having the flock controlled by a central computer. In contrast, the 
drones developed by the Eötvös researchers involve no caveats: they can coordinate 
their movements to form rotating rings or straight lines, and if the drone-swarm is 
faced with, say, an obstacle such as a wall with a gap in it, it queues up to squeeze its 
way through just as Reynolds’ software-based Boids did 30 years ago. The Eötvös-
swarm also underscores the fact that instantiating in hardware otherwise “simple” 
flocking rules entails solving a number of engineering challenges; e.g., accounting for 
drift and noise in GPS signals (that the drones relied on for positioning), speeding up 
reaction times (so that drones do not approach so close that are miss or overshoot 
their marks), and problems associated with relying on radio for communication. 
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Cooperative tasking 

An early example of an emergent “group mind” behavior that spontaneously appears 

without being centrally orchestratedand is among the earliest examples 

cooperative tasking by robot teamsis a decentralized sorting algorithm introduced 

in the 1990s.393 Inspired by the self-organized manner in which real ant colonies sort 
their brood, the algorithm has simple robots move about a fenced-in environment 
that is randomly littered with objects that can be scooped up. These robots: (1) move 
randomly, (2) do not communicate with each other, (3) can perceive only those objects 
directly in front of them (but can distinguish between two or more types of objects 
with some degree of error), and (4) do not obey any centralized control. The 

probability that a robot picks up or puts down an object is a function of the number 
of the same objects that it has encountered in the past. 

Coordinated by the positive feedback these simple rules induce between robots and 
their environment, the result, over time, is (a seemingly intelligent) coordinated 
sorting activity. Clusters of randomly distributed objects spontaneously and quite 
naturally emerge out of a simple set of autonomous local actions having nothing at 
all to do with clustering per se. The system’s simplicity, flexibility, error tolerance, 
and reliability compensates for their lower efficiency. While one can argue that this 
collective sorting algorithm is much less efficient than a hierarchical one, the cost of 
having a hierarchy is that the sorting would no longer be ant-like but would require a 
god-like oracle analyzing how many objects of what type are where, deciding how 
best to communicate strategy to the ants. Furthermore, the ants would require some 
sort of internal map, a rudimentary intelligence to deal with fluctuations and 
surprises in the environment (what if an object was not where the oracle said it 
would be?), and so on. In short, a hierarchy, while potentially more efficient, would of 
necessity have to be considerably more complex as well. A much simpler collective 
decentralized system can lead to seemingly intelligent behavior while being more 
flexible, more tolerant of errors, and more reliable than a hierarchical system. 

A more recent example of robotic-teams cooperatively building structures without a 
centralized controller is the TERMES system, developed at Harvard in 2014.394 

                                                   
393 R. Beckers, E. Holland, and J. Deneubourg, “From local actions to global tasks: stigmergy and 
collective robotics,” pages 181-189 in Artificial Life IV: Proceedings of the Fourth International 
Workshop on the Synthesis and Simulation of Living Systems, edited by R. Brooks and P. Maes, 
MIT Press, 1994. 

394 J. Werfel, K. Petersen, and R. Nagpal, “Designing Collective Behavior in a Termite-Inspired 
Robot Construction Team,” Science 343, no. 6172, 14 Feb 2014. A short video of the 
construction process is also available: E. Gibney, “Termite-inspired robots build castles,” 
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Inspired by the natural “engineering” abilities of termites, TERMES robots use foam 
bricks to build towers, castles, and pyramids, autonomously, adding bricks wherever 
they are needed, and even creating staircases in order to reach higher levels of their 
buildings. As with most hardware instantiations of software-driven Boids-like rules, 

the local behaviors are both few in number and simple; e.g., (1) move forward, 
backward, and turn in place; (2) climb up or down a step the height of one brick; (3) 
pick up a brick, carry it, and deposit it directly in front of itself; (4) Detect other 
bricks and robots in immediate vicinity; and (5) keep track of its own location with 
respect to a "seed" brick. The robots themselves are also simple, possessing four 

basic types of sensors and three actuators. Structures ariseor, more precisely, 

emergevia stigmergy; i.e., the aforementioned form of implicit communication 

within a swarm in which individual robots observe each other’s changes to the 
environment and act accordingly.  

The TERMES system is a proof-of-concept for robust scalable distributed swarm 
intelligence. Each robot executes its actions in parallel with the entire swarm, and 
without knowing what other robots are working on at the same time. Swarms are 
robust, in that the overall construction process continues unabated in the event that 
one or a few robots either malfunctions or, for whatever reason, fails to accomplish 
its local goal. And TERMES is scalable, since exactly the same rule set can be executed 
by 5 robots, 50, 500, or more. (A related effort by the same research team behind 
TERMES has also demonstrated self-assembly of a thousand-robot swarm, in which 

individual micro-bots are able to assemble into complex preprogrammed shapes). 395 

There are two “takeaways” from these examples: (1) “swarm intelligence” represents 
a powerful general method by which self-organized emergence (of complex adaptive 
systems) and distributed cooperative problem solving (through self-organization) can 
be used to design autonomous robotic swarms, and (2) despite the simplicity and age 
of the basic rule sets on which they based (e.g., the Boids rules were introduced in 

1987, and “decentralized sorting” dates back to 1994), essentially the same 
mechanisms can, and are, being used to “program” many of today’s state-of-the-art 
robotic swarms. This entails both benefits (e.g., the research community can rely on 
several decades’ worth of experience in designing and exploring the behaviors of 
“software swarms”) and challenges (e.g., essentially the same fundamental problems 

and questions that were asked when the first “software swarm” prototypes were 
being designed apply equally to their hardware-instantiated brethren; and not all 
such problems have been completely “solved”).  

                                                                                                                                           
Nature News, 3 Feb 2014: http://www.nature.com/news/termite-inspired-robots-build-castles-
1.14713. 

395 M. Rubenstein, A. Cornejo, R. Nagpal, “Programmable self-assembly in a thousand-robot 
swarm,” Science 354, no. 6198, 15 Aug 2014. 
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Engineering robotic swarms 

Among the most pressing questions for current robotic swarm technology is, “Can 
swarms be designed?”; i.e., can a specific set of desired emergent behaviors be 

“programmed” by specifying a set of local behavioral rules? Before answering this 
question, we first draw a suggestive analogy between the recent emergence of robotic 
swarms with that of neural networks (NNs) over the last 20 to 30 years.  

In the case of NNs (as per our earlier discussion), recent successes such as AlphaGo’s 

prowess in Go396 derive not from some radically new approachthe basic principles 

behind NNs (if not deep learning techniques, since even this most recent incarnation 

is, loosely speaking, an extension of the core NN model)but from the fact that 

computers have finally become fast enough and able to quickly access enough 
memory to instantiate what was heretofore a “proof of concept”-level-technology. 
The most recent development of Deep learning NN systems has also been greatly 
accelerated by using massively parallel Graphics Processing Units (GPUs) for 
training.397 And there has been an increasing drive toward a direct hardware 
implementation of artificial neural networks patterned after the human brain (via so-
called “neuromorphic circuits”).398 The takeaway is that all of these advances are, at 
their root, latter-day realizations of general techniques introduced decades earlier. 

The recent growth and development of robotic swarms has followed an analogous 
evolutionary path; i.e., from early conceptualization to modern implementation. It is 

also one thatarguably, even more so than for NNsis ripe with directly applicable 

“lessons learned” from several decades’ worth of multidisciplinary research in 
various interrelated fields such as complex adaptive systems (CASs),399 artificial life,400 
and multi-agent-based modeling.401  

                                                   
396 S. Byford, "Google's AlphaGo AI beats Lee Se-Dol again to win Go series 4-1," The Verge, 
March 15, 2016. 

397 S. Jones, “NVIDIA GPUs Power Deep-Learning Winners in World Cup of Image Recognition,” 
NVidia, 7 Sep 2014: https://blogs.nvidia.com/blog/2014/09/07/imagenet/. 

398 K. Ramanaiah and S. Sridhar, “Hardware Implementation of Artificial Neural Networks,” 
i-manager’s Journal on Embedded Systems 3, no. 4, Nov 2014 - Jan 2015. 

399 J. Miller and S. Page, Complex Adaptive Systems, Princeton University Press, 2007. 

400 C. Langton, Artificial Life: An Overview, MIT Press, 1997. 

401 S. Railsback and V. Grimm, Agent-Based and Individual-Based Modeling: A Practical 
Introduction, Princeton University Press, 2011. 
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Many of the rules and behaviors that are now being instantiated in individual robots 
and robotic swarms were first developed to support software-based studies of 
complex systems. Because the focus of early research (in the 1980s and 1990s) was 
mainly to achieve a basic understanding of the general behavior of complex 

systemswhich, by their nature, are not easily amenable to traditionally reductionist 

forms of mathematical analysessimulations were the primary tool for most studies. 

Out of the artificial life community (spawned in concert with the founding of the 
Santa Fe Institute (SFI) in 1984,402 which remains one of the world’s premier centers 

for CAS research), emerged a powerful new set of simulation methodscalled multi-

agent based models (MBMs)designed specifically for studying the dynamics of 

complex systems, in general, and swarms, in particular.  

Early MBMs were developed not to design behaviors, but to understand them.403 They 

were developed to help answer basic question such as “How, and under what 
conditions, do specific behaviors arise?”, “Which behaviors are unique to a given 
system, and which are generalizable?”, and “Are there universal sets of behaviors?” 
While MBMs continue to serve as key “go to” exploratory probes of basic CAS 
behaviors,404 the robotic swarm industry has moved away from “MBMs = simulations 
as distillations” (to gain insight) to “MBMs = simulation-based rules and algorithms 
as descriptions” of real (i.e., engineered) robots and behaviors. It is here, at the cusp 
between exploring behaviors and prescribing rules that generate them, that 

MBMsand modeling and simulation, in generalcan help mitigate some of the 

challenges and uncertainties of developing autonomous systems and robotic swarms. 

Turning our attention back to the question posed earlier, “Can swarms be 
designed?”… Since swarms represent a particular class of self-organized emergent 

behaviors that arise in complex adaptive systems, they are not generally amenable to 
conventional “design” processes.405 Indeed, as of this writing (Nov 2016), no general 
method exists that maps individual rules to (desired) group behavior.406 Nonetheless, 

“swarm engineering” methods exist to facilitate the unique design requirements of 
robotic swarms; though each has its own concomitant benefits, limitations, and 

                                                   
402 http://www.santafe.edu/about/the-history/founders/. 

403 The first widely available general purpose MBM modeling environment was developed at 
SFI, and was called SWARM http://www.swarm.org/wiki/Main_Page. 

404 Journal of Artificial Societies and Social Simulation: http://jasss.soc.surrey.ac.uk/JASSS.html. 

405 M. Prokopenko, “Design versus self-organization,” Chapter 1 in Advances in Applied Self-
Organizing Systems, Second Edition, edited by M. Prokopenko, Springer-Verlag, 2013. 

406 I. Navarro and F. Matia, “An Introduction to Swarm Robotics,” International Scholarly 
Research Notes 2013, 2013:  https://www.hindawi.com/ journals/isrn/2013/608164/. 



 

 

 

124 
 

challenges;407 one common challenge is Verification and Validation (V&V), and will be 
discussed later. All design methods fall into one of two general classes:408 (1) 
behavior-based design, and (2) automatic design. 

The simplest, and most common, behavior-based design approach to programming 
desired behavior is bottom-up, trial-and-error. That is, iteratively adjusting and 
tuning individual rules until the resulting collective behavior is achieved.409 The local 
rules themselves can assume a variety of interrelated forms; e.g., finite-state 
machines (in which specific local states are mapped to local actions via, say, a 
probabilistic response threshold function),410 virtual physics  (in which individual 

robots behave, locally, as virtual particles that exert attractive and repulsive forces 
on other robots),411 and property-driven design (in which a set of desired collective 

behaviors are first described as logical propositions, and the local rules consistent 
with that top-level description are iteratively defined).412 

Automatic design methodsi.e., those that do not explicitly require the direct 

intervention of the developerinclude:413 reinforcement learning (RL), in which local 

rules are “taught,” or self-learned, via trial-and-error interactions with the 
environment that provide positive and negative feedback,414 and evolutionary 

                                                   
407 “Swarm engineering,” as a robotic design methodology, was introduced, as a concept by 
Kazadi in 2000 (S. Kazadi, Swarm Engineering, PhD thesis, California Institute of Technology, 
Pasadeba, CA), and more formally in a seminal paper by Winfield, et al. in 2004 (A. Winfield, 

C. Harper, and J. Nembrini, “Towards dependable swarms and a new discipline of swarm 
engineering,” in Proceedings of the International Workshop on Simulation of Adaptive Behavior 
3342 of Lecture Notes in Computer Science, Springer-Verlag). 

408 V. Gazi, B. Fidan, L. Marques, and R. Ordonez, “Robot Swarms: Dynamics and Control,” in 
Mobile Robots for Dynamic Environments, edited by E. Kececi and M. Ceccarelli, Momentum 
Press, 2015. 

409 V. Crespi, A. Galstyan, and K. Lerman, “Top-down vs bottom-up methodologies in multi-
agent system design,” Autonomous Robots 24, no. 3, 2008. 

410 E. Bonabeau, et al., “Adaptive task allocation inspired by a model of division of labor in 
social insects, in Biocomputing and Emergent Computation: Proceedings of BCEC97, World 
Scientific Press, 1997. 

411 O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” The 
International Journal of Robotics Research 5, no. 1, 1986. 

412 M. Brambilla, et al., “Property-driven design for swarm robotics,” in Proceedings of the 11th 
International Conference on Autonomous Agents and Multiagent Systems, edited by L. Conitzer, 
et al., International Foundation for Autonomous Agents and Multiagent Systems, 2012. 

413 E. Kececi and M. Ceccarelli, editors, Mobile Robots for Dynamic Environments, Momentum 
Press, 2015. 

414 M. Kochenderfer, et al., Decision Making Under Uncertainty, MIT Press, 2015. 
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programming (EP), in which the dynamics of natural Darwinian selection and 
evolution are applied directly to breeding desired local and collective behaviors.415 

The main drawback to both methods is the computational cost incurred by searching 
through a vast space of possible behaviors and the complexity of robot-robot 
interactions. RL also suffers from the so-called “credit assignment” problem, which 
refers to need to identify and distribute the overall reward for “group behavior” 
among individual robots (thereby defining their local rules). Applications of EP to 
robotic design are also plagued by the fact that convergence to solutions (i.e., a set of 
local rules that gives rise to a desired set of global behaviors) is not guaranteed.416 
Additional problems with both automatic design methods include (1) the a priori 
difficulty of accounting for all possible environmental states and perceptions of 

states, whichduring the design phase, will necessarily be incompleteor even 

knowing when an “accounting” is sufficiently complete),417 and (2) dealing with 
dynamic environments (i.e., accounting for actions of other robots responding to 
changes the collective makes to the environment itself). Both issues remain “open” 
research areas in the design of robotic swarms. 

Controlling robotic swarms 

A second pressing question for robotic swarm technology is, “How can swarms be 
controlled (or supervised)?” Whatever are the means by which a swarm is engineered 
(as discussed in the previous section), there is the further issue of ensuring that a 
deployed swarm successfully accomplishes whatever set of tasks it is assigned. While 
the supervision of multiple vehicles builds on how they are individually 
programmed, actual control has not yet achieved a “plug and play” simplicity. For 
one thing, it requires the operator(s) to have an intimate familiarity with and an 
understanding of robot behavior (as semi-autonomous entities). For another, the 
operator(s) must be facile with the communication protocols and general interface 
between whatever primitives are under her own control and whatever consequent 
actions are induced on the part of individual robots. Since the latter, in turn, depends 

on the degree to which an individual member of a swarm is autonomous418which is 

generally a function not just of an agent’s innate properties, but also reflects an 

                                                   
415 S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelligence, and Technology 
 of Self-Organizing Machines, MIT Press, 2000. 

416 M. Brambilla, et al., Swarm robotics, IRIDIA Technical Report Series, R/IRIDIA/2012-014. 

417 L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in partially observable 
stochastic domains,” Artificial Intelligence 101, 1998. 

418 Autonomy is formally discussed in the next section of this report. 
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agent’s dynamic contextthere is an additional challenge of controlling or 

supervising a swarm with less than complete information (about robots’ local 
environments). 

Although there is extensive research on how to design swarms (e.g., via multiagent-
based modeling techniques; see pages []-[]), and control individual robots, the 

literature on human supervisory control of multiple semi-autonomous robots is more 
sparse; much of it remains cutting edge. Just as there is currently no general method 
that maps rules that describe context-dependent actions of individual robots to 
desired group behaviors (see previous section), there are (as of this writing) no 
validated schemes for scalable, flexible, and adaptive human control of robot teams.419 

The earliest research into a single operator controlling multiple robots appeared 
during the middle to late 1990s in Ph.D. dissertations.420 Since then, the majority of 
Human-Robot Interaction (HRI) studies takes place under the auspices of traditional 
human factors domains, including psychology, industrial engineering, and 
aeronautical engineering. Presentations on single-human control of multiple 

robotsincluding  unmanned ground vehicles (UGVs), unmanned aerial vehicles 

(UAVs), and unmanned underwater vehicles (UUVs)have appeared regularly in the 

past half-decade at major robotics conferences (e.g., IEEE Conference on Robots and 
Automation,421 IEEE/RSJ Conference on Intelligent Robots and Systems,422 and IEEE 
Symposium on Robots and Human Interactive Communication423). 

Figure 23 shows, schematically, the key components of a human-swarm system: the 
human operator (for whom a set of “cognitive complexity” functions is displayed on 
the left; and the meaning of which is discussed below), the swarm (highlighted in 
blue on the right, and consisting of multiple robots, {A1, …, Am}, some or all of whom 

may be linked by radio and/or stigmergic interactions via environment), and the 
human-swarm interface, shown in the center, through which the human supervises 

and/or controls the swarm, and the swarm informs the operator of its current state 
and behavior. 

                                                   
419 K. Sycara, Robust Human Interaction with Robotic Swarms, presentation at ICAART 2016: 
https://vimeo.com/161163755. 

420 J. Adams, Human management of a hierarchical system for the control of multiple mobile 
robots, Ph.D. Dissertation, University of Pennsylvania, Philadelphia, 1995; K. Ali, Multiagent 
telerobotics: Matching systems to Tasks, Ph.D. Dissertation, Georgia Institute of Technology, 
Atlanta, 1999. 

421 https://www.icra2016.org. 

422 http://www.iros2016.org. 

423 http://ro-man2016.org. 
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Figure 23.  Key components of human-swarm behavior and control  

After  A. Kolling, et al., “Human Interaction with Robot Swarms,” IEEE Transactions on 
Human-Machine Systems, Vol. 46, Feb. 2016. 
 

Taxonomies of multi-robot systems focus mainly on physical characteristics, tasking, 
and methods; while taxonomies of human-robot interaction (HRI) include roles and 
structure. For example, one early taxonomy that has been refined through the years 
uses seven factors to describe robot teams based on size, three communication-
related dimensions, reconfigurability, processing ability, and heterogeneity.424 Others 
have used essentially the same classification, but have emphasized the ability of a 
robot (within a swarm) to be aware of, and coordinate with, other robots.425 HRI 
taxonomies include those by Scholtz, et al.,426 which classifies the human role 
according to type of control exerted over the swarm (e.g., supervisor, operator, 

                                                   
424 G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “A taxonomy for swarm robots,” in Proceedings 
of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 1993; 
G. Dudek, M. Jenkin, and E.Milios, “A taxonomy of multirobot systems,” in Robot Teams: From 
Diversity to Polymorphism, edited by T. Balch and L. Parker A. K. Peters, 2002. 

425 A. Farinelli, L. Iocchi, and D. Nardi, “Multirobot systems: A classification focused on 
coordination,” IEEE Transactions on Systems, Man, and Cybernetics, Part B 34, 2004. 

426 J. Scholtz, M. Theofanos, and B. Antonishek, “Theory and evaluation of human robot 
interactions,” in 36th  Hawaii International Conference on Systems Sciences, IEEE, 2002. 
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mechanic, peer, or bystander); Yanco and Drury,427 which adds the possibility of 
interactions with swarms (factors include the numbers of humans and robots, and 
their possible links for communication and/or coordination); and Goodrich and 
Schultz,428 which distinguishes between remote and proximate interactions. 

Cognitive complexity 

A more recent HRI-based taxonomy of multi-robot systems, introduced by Lewis in 
2013,429 is based on ranking the difficulty of the operator’s tasks. Lewis introduces 

the concept of “cognitive complexity” (an offshoot of “computational complexity,” 
which is a measure used in computer science to describe the time it takes to solve a 
problem as a function of the size of its input)430 to describe the relationship between 
task types and command complexity. The operator's mental workload (defined in a 
classic text on human factors engineering as “a measurable quantity of the 
information processing demands placed on an individual by a task”)431 has been 
shown to be an important factor in determining the number of robots an operator 
can control.432 

The control of multiple robots is analogous to the execution of a computer algorithm 
in that both are defined by patterns of sequences of state-dependent decisions and 
actions. For example, if an operator is tasked with controlling or supervising n 

robots, each of whom executes its actions independently of other robots, the 
operator can devote an equal amount of attention to each robot, in turn; therefore 
his cognitive complexity is “of order n,” written O(n). This indicates that the required 

effort on the part of the operator devoted to controlling the swarm scales linearly 
with the number of the robots (e.g., search and rescue scenarios). Moreover, since 
operator actions do not interfere with one another for linearly scaled systems, the 
number of required controllers also scales linearly with the size of the swarm. 

                                                   
427 H. Yanco and J. Drury, “Classifying human–robot interaction: An updated taxonomy,” 
Proceedings of the IEEE Conference on Systems, Man and Cybernetics 3, 2002. 

428 M. Goodrich and A. Schultz, “Human–robot interaction: A survey,” Foundations and Trends 
in Human–Computer Interaction, Vol. 1, 2007. 

429 M. Lewis, “Human interaction with multiple remote robots,” Reviews of Human Factors 
and Ergonomics 9, no. 1, 2013. 

430 C. Moore and S. Mertens, The Nature of Computation, Oxford University Press, 2011. 

431 M. Sanders and E. McCormick, Human Factors in Engineering and Design, Mcgraw-Hill, 1993. 

432 D. Olsen and S. Wood, “Fan-out: Measuring human control of multiple robots," Proceedings 
of the SIGCHI Conference on Human Factors in Computing Systems, ACM, 2004. 
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If a swarm can be tasked with a single command (e.g., by designating an area to be 

reconnoitered, ormore generallywhere the members of the swarm are capable of 

coordinating autonomously, such as by flocking or rendezvous), the operator’s 
cognitive complexity will be independent of the number of robots; i.e., the cognitive 
complexity is fixed; or is O(1). O(1) tasks implicitly assume that individual robots are 

fully autonomous, a constant demand being placed only on the human operator. O(1) 

control thus describes situations in which there are a large number of robots that 
can be coordinated using  relatively simple goals (e.g., following a predefined plan of 
action). Bio-inspired swarms fall into this class. 

On the other hand, if the actions of one robot are dependent on the states and/or 
actions of other robots in the swarm, the operator’s cognitive complexity is 
nonlinear; i.e., it is of order O(>n). Such tasks cannot be specified simply and, 

depending on the details of robot-robot interactions, may require arbitrarily complex 
controls on the part of the operator. For example, a study of human control and 
coordination of box-pushing robots (via assignment of waypoints and monitoring 
formation following) found that the operators become rapidly saturated, with little 
time remaining for assigning additional tasks.433 

Of course, in practice, it is unlikely that swarms will be controlled at any fixed level 
of complexity. Rather, control over individual robots is likely to be distributed over 
different people (during various parts of a scenario and/or simultaneously) at 
different levels of complexity.434 “Cognitive complexity,” as a metric, is not intended 
as a panacea description of human-robot control; rather, its purpose is to merely 
focus attention on the level of effort required of human controllers to interact with 
multi-robotic systems, including swarms. Indeed, a complementary set of metrics 
describing “levels of autonomy” are discussed in the next section (and shown to be 
equally wanting in terms of completeness and utility), where it will be argued that a 
major current gap in the development of autonomous systems is a lack of a 
comprehensive conceptual framework in which to organize the multiple 
simultaneous dimensions of unmanned systems (including, but not limited to, the 
human-system control interface). 

An additional challenge to coordinating the actions of swarms (is getting the timing 

right (see bottom of figure 23). That is, making sure that the timing ofand 

between commands issued to individual robots of a swarm are commensurate with 

both their internal clocks (as defined by the “flocking algorithm”) and environment 

                                                   
433 G. Kaminka, and Y. Elmaliach, “Single operator, multiple robots: Call-request handling 
in tight coordination tasks,” Distributed Autonomous Robotic Systems 7, 2006. 

434 A. Kolling, et al., “Human-swarm interaction: an experimental study of two types 
of intercation with foraging swarms,” Journal of Human-Robot Interaction 2, no. 2, 2013. 
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(i.e. as dictated by the temporal rhythms of physical changes). The same command(s) 
issued to the same robot(s) at different times and/or in different dynamic contexts 
may lead to unpredictable and/or undesirable behavior. For example, a basic problem 
that arises in all flocking algorithms is to understand the conditions under which a 
swarm may fragment,435 and which commands are appropriate to issue at what time 
to help the swarm regain its cohesion. 

The three basic components of the human-swarm interface are (see central panel in 
figure 23):436 (1) communication, (2) state estimation and visualization, and (3) control 
methods. Optimizing communication between the human operator (who typically 

resides at a remote terminal, relative to the position and area of operations of the 
swarm) and individual robots is a key challenge for robotic swarm technology in 
general. Specifically, the problem is to convolve (the nature and behavior of) 
fundamentally decentralized distributed systems with some form of centralized 
control. Part of the challenge is of a conventional nature, in that it involves solving 
the same basic latency, bandwidth, and asynchrony issues that typically arise in 
traditional “non swarming” networked systems, though there are few studies 
dedicated to understanding how these issues impact swarm dynamics.437 Other 
challenges are unique to robotic swarms, and stem from myriad uncertainties 
associated with “less than perfect” physical realizations of mathematical 
idealizations. By design (since swarms are typically “engineered” to display desired 
behaviors using mathematical distillations; e.g., agent-based models), autonomous 
robots are assumed to perform perfectly without human intervention; and their 
behavioral profiles are predicated on this assumption holding true in real-world 
environments. Of course, real robots are guaranteed to behave imperfectly. 
Communications will not always be reliable (or possible at all, such as for underwater 
systems), aspects of a robot’s environment (which may be critical for human 

                                                   
435 For example, S. Nagavalli, L. Luo, and K. Sycara (“Neglect benevolence in human control 
of robotic swarms,” in International Conference on Robotics and Automation (ICRA), IEEE, 
2014) show that improper timing of control input could lead to swarm fragmentation. 

436 A. Kolling et al., “Human Interaction with Robot Swarms: A Survey,” IEEE Transactions 
on Human-Machine Systems 46, Feb. 2016. 

437 Generally speaking, bandwidth is more limited and latency and asynchrony are both higher 
in swarms than in other types of systems. One study found that an increase in latency led to 
deteriorating performance in a foraging swarm—though if the operator had the ability to 
predict behavior, the negative effects of latency could be ameliorated (P. Walker et al., “Neglect 
benevolence in human control of swarms in the presence of latency,” in IEEE International 
Conference on Systems, Man, and Cybernetics, IEEE, 2012). There is an irony in that many of the 
most powerful methods used to “solve” these otherwise conventional technical challenges are 
themselves derived from swarm-based optimization methods; e.g., M. Saleem, G. Di Caro, and 
M. Farooq, “Swarm intelligence based routing protocol for wireless sensor networks: Survey 
and future directions,” Information Sciences 181, 2011. 
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intervention or control) will not always be known (a robot may veer off course due to 
wind or other unforeseen random element), and, depending on the form of data that 
a robot is designed to communicate back to the operator, there may not even be 
enough time for the human to assimilate the requisite information to enact a desired 
change in a swarm’s behavior (i.e., the operator’s cognitive complexity may exceed 
her limit). 

Hayes and Adams438 provide numerous other examples of physical-state (e.g., 
position, speed, direction, group membership and local clustering), and virtual-state 

(e.g., the ID of which robot is the “leader” of the swarm, which may also change as a 
scenario unfolds) uncertainties, drawing parallels between known impacts on the 
behavior of biological swarms and the potential implications such uncertainties may 
have for robotic swarms.  

State estimation and visualization (middle of central panel in figure 23) refers to the 
need for an operator to be able to observe the state and evolution of a swarm, as well 
as predict its likely future states. More precisely, the operator must understand the 
possible dynamic impact(s) that specific “controls” may have on the swarm’s 
behavior. Of course, difficulties immediately arise when the information available to 
the operator is less than complete and/or is provided in a less-than-timely fashion. 
Kolling at al.,439 provide a survey of recent studies that explore the impact of 
constraints of bandwidth, latency, and display design on the operator’s ability to 
visualize a swarm. Not surprisingly, many of the same methods used to design 
swarms may also be used to predict and control their behavior. 

Methods of control 

There are four general (and partly overlapping) approaches to controlling multiple 
robots, all predicated on the supposition that the operator’s cognitive complexity will 
scale as O(1); i.e., that the swarm can be viewed as a single entity:440 

1. Behavior–based, in which the human controller uses a palette of primitive 
behaviors that each “agent” of the swarm is endowed with, and that it can 
perform autonomously. 

                                                   
438 S. Hayes and J. Adams, “Human-swarm interaction: sources of uncertainty,” in Proceedings 
of the 2014 ACM/IEEE international conference on Human-robot interaction, ACM, 2014. 

439 A. Kolling, et al., “Human Interaction with Robot Swarms: A Survey,” IEEE Transactions 
on Human-Machine Systems 46, Feb. 2016. 

440 G. Coppin and F. Legras, “Autonomy Spectrum and Performance Perception Issues in 
Swarm Supervisory Control,” Proceedings of the IEEE 100, no. 3, March 2012. 
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2. Policy-based, in which the human operator issues group goals and/or 

constraints on (expected) behavior, leaving the individual members of the 
swarm to choose their own course of action; rather than direct each robot. 

3. Playbook-based, in which the human operator issues a specific plan of action 

from a master “playbook” (analogous to book of plays used by players on a 
football team), that can be defined on different levels of granularity, 
depending on tactical context. 

4. Proxy-agent-based, in which a software interface is used as an intermediary 

between the human operator and individual agents of the swarm; one that 
communicates (and negotiates) on behalf of the swarm. 

Behavior–based approaches are arguably the most straightforward to apply, in the 
sense that the main element involved, namely the set of rules that the individual 

agents are programmed to followe.g., loiter, move forward, and rally at a given 

position are all fixed beforehand and are known to the human operator. 

The basic method is to augment an agent’s innate primitive “flocking rules” (see 
figure 22) with rules that infuse an operator’s influence. Typical “control” rules 
include:441 leading (by which the human operator needs to manage only one swarm 
member, with other agents “following” by virtual attraction), acting as predator 

(similar to leading but in which swarm members are repelled by the leader rather 
than attracted; this seemingly counterintuitive method of control can more readily 
split swarms into groups), and control via stakeholders (or “special” agents, whereby 

certain privileged members of a swarm are controlled by the human operator but are 
not otherwise recognized as “different” by other members of the swarm; such 
methods have been found to useful in selectively guiding the collective behavior of 
the swarm442). Control can also be enacted at various levels:443 (1) switching between 
specific algorithms that implement desired behaviors, (2) changing the value of 
selected parameters of a given algorithm, (3) indirectly altering a swarm’s behavior 
by selectively changing features of the environment. 

In principle, operators can have at their disposal as large a library of algorithms 
implementing specific swarm behaviors as deemed necessary to execute a given 
mission. And behavior-based control generally works best when the robots have a 

                                                   
441 B. Pendleton and M. Goodrich, “Scalable Human Interaction with Robotic Swarms,” 
AIAA Infotech@Aerospace (I@A) Conference, Boston, MA, 2013 

442 S. Kerman, D. Brown, and M. Goodrich, “Supporting human interaction with robust robot 
swarms," 5th  IEEE International Symposium on Resilient Control Systems, IEEE, 2012. 

443 A. Kolling, et al., “Human Interaction with Robot Swarms: A Survey,” IEEE Transactions 
on Human-Machine Systems 46, Feb. 2016. 
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sufficiently high degree of autonomy (some metrics for which are introduced in the 
next section); i.e., they are able to perform their tasks with minimal error and 
minimal human oversight (between “controls”).  

In all of this, the operator’s challenge is to understand (and be able to anticipate the 
consequences of) those rules well enough to be confident that the agents will 
perform desired actions, and that the swarm will perform as desired as a whole. Of 
course, as outlined in the previous section, neither of these outcomes is a given; nor 
is it a given that the operator will be able to monitor the progress of a swarm in 
uninterrupted fashion. Whether a swarm is controlled by switching between different 
algorithms or making selective changes to parameter values (regulating an otherwise 
fixed algorithm), there is an irreducible uncertainty in the effect any 

changehowever smallwill have on the swarm’s overall behavior; effects of 

changes emerge from the interactions within individual robots making up the swarm, 
and the environment. 

Behavior–based approaches are most useful in cases for which a small number of 
rules are sufficient to cover basic operational needs (for simple scenarios). They 
become increasingly difficult to apply as the complexity of a mission scales up, 
and/or the number of required robots increases (for which the ability to predict and 
“micro-manage” group behavior rapidly becomes infeasible).444 

Policy-based approaches have the virtue that they spare the human operators the 
“complication” of issuing orders to individual agents of a swarm. Of course, the 
presumption is that the policies have been engineered well enough beforehand to 
ensure that the swarm, as a whole, behaves as desired. The policies themselves may 
assume a variety of forms; e.g., notification, delegation, supervision, or constraints. 
The “devil is in the details” resides in designing an appropriate “language” that 
describes policy-orders in a way that is precise (read: mathematical) enough to yield 
unambiguous swarm behavior, yet is “simple” enough to understood by a human 
operator who may not be programming savvy. Specific technologies supporting such 
an interface are usually text or speech based (the latter of which also involves 
aspects of natural language processing), and require a detailed understanding of 
autonomy. A major challenge is to make sure that the interface between human-
operator-issued policies and swarm behaviors is able to continuously and robustly 

                                                   
444 M. Wilson and M. Neal, “Diminishing returns of engineering effort in telerobotic systems,” 
IEEE Trans. Syst. Man Cybern. A, Syst. Humans 31, Special Issue on Socially Intelligent Agents: 
The Human in the Loop, no. 5, Sep. 2001. 
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adjust the degree of autonomy that is appropriate for whatever dynamic context the 
swarm happens to be in at a given time.445 

Playbook-based approaches446 rely on tailoring actions (selected from a “master set” 
of pre-defined plans-of-action and/or tactics to use) to dynamic contexts, giving the 
operator a range of autonomous behaviors to use in various situations. The idea is 
for operators to call out “plays” that then trigger desired patterns of behavior. Since 
all members of the swarm “know” the same playbook and “understand” what their 

(and other agents’) roles are for all actions, regulating their behavior oughtin 

principleto entail less of a communications burden than some other approaches to 

controlling the swarm.  

 

                                                   
445 J. Bradshaw et al., “Dimensions of Adjustable Autonomy and Mixed-Initiative Interaction,” 
in Agents and Computational Autonomy 2969 of the series Lecture Notes in Computer Science, 
Springer-Verlag, 2004. 

446 C. Miller and R. Parasuraman, “Designing for flexible interaction between humans and 
automation: delegation interfaces for supervisory control,” Human Factors 49, 2007. 
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Autonomy 

Although “autonomy” is nowadays a seemingly ubiquitous concept, lying at the heart 
of most discussions (including this report) that pertain to AI and robotics, in general, 
and unmanned systems, in particular, it is notoriously difficult to define (examples 
of this “difficulty” appear throughout this section). And yet, given its growing 

importance toindeed, given its key role in shaping DoD’s future acquisition 

ofmodern weapon systems, it is a concept that needs to be understood precisely. 

Yet, as mentioned earlier, even the otherwise laudably comprehensive Defense 
Science Board’s most recent report on autonomy provides but a cursory definition.447  

Etymologically, the word comes from Greek, and is a fusion of autos (meaning "self") 
and nomos (meaning "law"); meaning, “self-governing.” But the word’s meaning has, 

over the centuries, been muddled by its diffused appropriation by multiple 
disciplines.  For example, in the 18th century, Kant argued that autonomy is to 
understood as a moral action consistent with one’s free will;448 and Piaget later 

suggested that autonomyi.e., the ability to self-governis a critical component of 

child development.449  

More recently, autonomy has entered the lexicon of robotics, where itas a 
conceptstraddles an ambiguous middle-ground between sets of properties that 
define a robot’s “human like” qualities (including analogues of a “moral code” that 
may underlie decisions) and a robots engineering-level characteristics and 
capabilities. That the meaning of the word remains muddled owes itself mostly to 
the fact that the use of the term reflects the multi-disciplinary nature of the field.450 
Since robotics itself is a complex amalgam of engineering, computer science, 
cognitive science, and artificial intelligence, there is (as yet) no definitive universally-

                                                   
447 Summer Study on Autonomy, Department of Defense, Defense Science Board, Task Force 
Report, Office of the Under Sec. of Def. for Acquisition, Technology and Logistics, June 2016. 

448 Manuel Kant, Correspondence, Cambridge University Press, 2007. 

449 Jean Piaget, The Moral Judgment of the Child, Free Press, 1997. 

450 J. Beer, A. Fisk, and W. Rogers, “Toward a Psychological Framework for Levels of Robot 
Autonomy in Human-Robot Interaction,” Journal of Human-Robot Interaction 3, 2014. 
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agreed on definition of autonomy. Indeed, there are references to all of the 
following:451 

Adaptive autonomy, adjustable autonomy, agent autonomy, basic 
autonomy, behavioral autonomy, belief autonomy, biological 
autonomy, causal autonomy, constitutive autonomy, energy 
autonomy, mental autonomy, motivational autonomy, norm 
autonomy, robotic autonomy, shared autonomy, sliding autonomy, 
social autonomy, subservient autonomy, user autonomy, among 
many others. 

“Autonomy” is also often confused with “automatic.” Automatic systems refer to 
simple systems that functions with no (or limited) human operator involvement, 
typically in structured and unchanging environments, and whose performance is 
limited to the specific set of actions (usually, well-defined tasks that have 
predetermined “scripted” responses).  

More complex automatic systems are sometimes referred to as “automated,” and are 
usually defined as rule-based dynamical systems (e.g., self-driving cars, and many 
military weapon systems fall into this category). Neither “automatic” nor 
“automated” systems require external control or guidance. And, even as “autonomy,” 
as a term, is (as yet) ill-defined as an operational concept, it is also often confused 
with general “intelligence”; i.e., with systems that are capable of human-level 
cognition and understanding. And, even here, there is added confusion between 
“intelligent” systems that do well on specific problems (referred to before as “narrow 
AI”; e.g., IBM’s computer chess AI Deep Blue) and those that mimic human ability 
across multiple problem domains (“general AI”). Unfortunately, there are no objective 
boundaries between any of these categories. 

Further complicating the issue is that a system’s innate complexity (however it is 
defined!) is independent of: (1) the type/degree of human control to which it is tied, 
(2) the tasks and missions it performs, and (3) the complexity of the environment in 
which it must execute its mission.  

All of this can (and does) lead to serious semantic confusion, as a system may be 
“autonomous” in the sense that it operates entirely without human intervention, but 
otherwise functions relatively simply, leading some to describe it as “automatic” or 
“automated.”452 An example of a framework that attempts to account for this 
multidimensional aspect of autonomy is discussed later in this section. 

                                                   
451 D. Vernon, Artificial Cognitive Systems: A Primer, MIT Press, 2014; L.G. Shattuck, 
“Transitioning to Autonomy: A human systems integration perspective,” Presentation at 
Transitioning to Autonomy: Changes in the role of humans in air transportation, March 11, 
2015: https://humanfactors.arc.nasa.gov/workshop/autonomy/download/presentations 
Shaddock%20.pdf. 

452 P. Scharre, Autonomous Weapons and Operational Risk, Center for a New American Security, 
Feb 2016. 
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Figure 24.  A sampling of definitions of “autonomy” and “autonomous systems” 

1 Merriam-Webster on-line dictionary: http://www.merriam-webster.com/. 
2 M. Wooldridge and N. Jennings, “Intelligent agents: theory and practice,” The 
Knowledge Engineering Review, Vol. 10, 1995. 
3 S. Franklin and A. Graesser, “A Taxonomy for Autonomous Agents,” in Proceedings of the 
Third International Workshop on Agent Theories, Architectures, and Languages, Springer-
Verlag, 1996. 
4 R. Alami, et al., “An Architecture for Autonomy,” Inter. Jour. of Robotics Res.17, 1998. 
5 R. Murphy, An Introduction to AI Robotics, MIT Press, 2000. 
6 S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Pearson , 2009. 
7 S. Thrun, “Toward a framework for human-robot interaction,” Human-Computer 
Interaction, 2004. 
8 Autonomy Levels for Unmanned Systems (ALFUS) Framework, Volume I : Terminology, 
Version 2.0, National Institute of Standards and Technology, Special Publication 1011-I-2.0, 
October 2008. 
9 The Role of Autonomy in DoD Systems, Department of Defense, Defense Science Board, 
Task Force Report, Office of the Under Secretary of Defense for Acquisition, Technology 
and Logistics, July 2012. 
10 Technology Investment Strategy: 2015‐2018, Autonomy Community of Interest (COI),  
TEVV Working Group, ASD(R&E) , May 2015. 
11 Unmanned Systems Integrated Roadmap: FY2013-2038, U.S. Department of Defense. 
12 DoD Directive 3000.09, Autonomy in Weapon Systems, Nov 2012. 
13 Summer Study on Autonomy, Department of Defense, Defense Science Board, Task 
Force Report, Office of the Under Secretary of Defense for Acquisition, Technology and 
Logistics, June 2016. 
14 Autonomous Horizons: System Autonomy in the Air Force, A Path to the Future, Volume I: 
Human-Autonomy Teaming, U.S. Air Force, Office of the Chief Scientist, June 2015. 
 
Figure 24 shows a small sampling of definitions of “autonomy” and “autonomous 
systems,” culled from both the academic research community and recent DoD 
memos and reports (references are provided at the bottom of the figure). Highlighted 
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in red are the most commonly appearing fragments and phrases: act separately… 
self-governing… without direct intervention… control over own actions… self-directed 
behavior… modify own behavior… adapt to changes in environment… independently 
compose and select actions… accommodate variations in environment… select / 
engage targets without intervention by human operator… achieve mission goals 
independently. (We note in passing that, as of this writing, Nov 2016, the most 

current on-line version of DoD’s dictionary of military terms does not include any 
entries on either “autonomy” or “autonomous systems.”453) 

The Defense Science Board’s recent study on autonomy454 defines an autonomous 
system as one that is able to independently compose and adjudicate among a set of 
possible actions to accomplish goals based on its knowledge and understanding of 
the world and itself, and able to adapt to dynamic contexts in its environment.  

Before amplifying on this definition, and discussing ways of moving beyond 
definitions to articulating differences among levels of autonomy, and toward 

developing a conceptual framework that embraces the multidimensional aspects of 
autonomy, we pause briefly to summarize the potential operational benefits of 
autonomy (however it is defined). 

Operational benefits of autonomy 

There are a number of ways in which (varying degrees of) autonomous capabilities 
may potentially benefit military operations. Some extend and complement human 
performance, some provide direct replacements of humans (in parts of the loop), and 
still others may portend entirely new operational capabilities:455 

                                                   
453 Though it does provide definitions for an “unmanned system” (=“an aircraft that does not 
carry a human operator and is capable of flight with or without human remote control”) and 
“unmanned aircraft system” (=“[a] system whose components include the necessary equipment, 
network, and personnel to control an unmanned aircraft”), along with an entry 
for (human based) “autonomous operations.” Ref: JP 1-02, Department of Defense Dictionary 
of Military and Associated Terms, 8 November 2010 (as amended through 15 Feb 2016): 
http://www.dtic.mil/doctrine/new_pubs/jp1_02.pdf. 

454 Summer Study on Autonomy, Department of Defense, Defense Science Board, Task Force 
Report, Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, 
June 2016; http://www.acq.osd.mil/dsb/reports/DSBSS15.pdf.  

455 G. Zacharias, Autonomous Horizons: System Autonomy in the Air Force, Presentation at 
CogSIMA 2016, San Diego, CA, 24 March 2016; Technical Assessment: Autonomy, Department 
of Defense, Office of Technical Intelligence, Office of the Assistant Secretary of Defense for 
Research and Engineering, Feb 2015; Summer Study on Autonomy, Department of Defense, 
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 Reduced costs: depending on mission domain, autonomy may potentially 

reduce system cost (e.g., long duration and continuous-operation data-
acquisition-intensive missions, which traditionally require great manpower, 
self-diagnosing autonomous systems would reduce maintenance costs); the 
caveat is that since DoD has only recently started to seriously consider 
autonomy-related issues, details of the true life-cycle costs involved are 
unclear. Since autonomy will involve a considerable technological investment, 
may require greater overall manning, and will need networks with 
significantly higher capacity than existing systems, life-cycle costs may just 
as likely increase as they are to decrease. For example, Predator, Global 
Hawk, and many other operational UAVs may all require a minimal set of 
human operators to fly, but need a significantly larger support staff for 
planning, maintenance, analysis, etc.456 

 Reduced risk (of human injury/death): autonomous systems reduce the 

number of humans required to operate in dangerous areas, thereby 
fundamentally reducing risk (e.g., contested operations, route clearance and 
mine sweeping, chemical, biological, and/or radiological environments). 

 Freedom from certain human limitations: workload, fatigue, stress, emotions 

(anger, fear, etc.); longer flight times for unmanned aerial vehicles and the 
ability to loiter in larger geographic areas. 

 Reduced risk (of cyber-attack): since remotely piloted unmanned systems 

typically rely on a satellite tether to a human pilot and are unable to 
complete their mission if the communication link is severed, the mission of 
an autonomous system can potentially continue unimpeded even in heavily 
contested A2/AD environments. Enable operations with denied or degraded 
communication links. 

 Increased persistence and endurance: autonomy increases both mission 

duration (e.g., enabling unmanned vehicles) and persistent surveillance. 

 Mission expansion: autonomy introduces the potential to tap into heretofore 

unexplored new types of operations and CONOPS (e.g., heterogeneous 
autonomous swarms).   

 Enhanced mission performance in time: autonomy effectively both extends 
and shortens timescales, encroaching on, and far transcending, extremes of 
human ability (e.g., missile defense, long duration ISR acquisition and 

                                                                                                                                           
Defense Science Board, Task Force Report, Office of the Under Secretary of Defense for 
Acquisition, Technology and Logistics, June 2016.  

456 P. J. Springer, Military Robots and Drones, ABS-CLIO, 2013. 
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analysis, cyber operations); it is likely that only autonomous systems will be 
able to keep pace with the increasingly face tempo of warfare.457 

 Enhanced assimilation/understanding of data: greater autonomy affords 
increased ability to cope with high volume data and diversity of data types 
(e.g., imagery, intelligence data analysis, ISR data fusion). Synchronization of 
activities of platforms, software, and operators over wider scopes and ranges 

(e.g., mannedunmanned-system teaming). 

 Reduced “mission space” complexity: autonomy militates against the 

increasingand otherwise potentially paralyzingcomplexity in multimodal 

decision making situations (e.g., a Combined Air Operations Center (CAOC), 
multi-mission operations). 

 Mitigation of data loss: autonomy militates against intermittent and or denied 

communications in contested environments and/or undersea operations. 

Figure 25 illustrates the challenges to existing human-machine systems and potential 
benefits and opportunities for autonomy. The inverted “U” (highlighted in blue) 
denotes, notionally, the current limit of human-machine performance as viewed in 
the context of task duration (x-axis) and complexity (y-axis = complexity of task × 

environment). Current limits are imposed by physical bounds on human 
performance, technology, research and development budgets, and ethics. The arrows 
depict some of the key challenges to existing capabilities; e.g., imperceptibly fast 
execution of tasks, extended mission timelines that strain human endurance, and 
increasing complexity of mission environments. 

The elements highlighted in blue in figure 25 depict mission areas in which 
autonomy can potentially enhance performance, reduce risk, and/or reduce costs 
over what is currently possible, For example, to the extent that cyber operations and 
hypersonic strike weapon warfare already represent mission spaces that proceed on 
time-scales far too short to allow for meaningful human decision-making to 
intervene, autonomy is indispensable. At the other extreme of the “task duration” 
spectrum, autonomy would allow otherwise interminably long missions (for 

humans)such as Intelligence, Surveillance, and Reconnaissance (ISR) operationsto 

                                                   
457 P. W. Singer, Director of the 21st Century Defense Initiative at the Brookings Institute, 
suggests in his book, Wired for War (Penguin, 2009) that the human location “in the loop” is 
already becoming that of a “supervisor who serves in a fail-safe capacity in the event of a 
system malfunction,” and that the speed, confusion, and information overload of modern 
combat will soon push the process outside of “human space” altogether. Future weapons, “will 
be too fast, too small, too numerous, and will create an environment too complex for humans 
to direct.” 
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proceed virtually continuously. Unburdened by the nominal 12-hour limit of a human 
in the cockpit, autonomy would allow sensors and precision weapons to be placed in 
areas of interest at greater distances for longer periods of time than now possible, 
thereby enhancing situational awareness to all levels of command. 

Figure 25.  Challenges to existing human-machine systems and opportunities 
for autonomous capabilities 

Combines figures 1  4 in: Technical Assessment: Autonomy, DoD, Office of Technical Intelligence, 
Office of the Assistant Secretary of Defense for Research and Engineering, Feb 2015 

In addition to enhanced performance at the extremes of task durations, autonomy 
can also help militate against the increasing complexity of the mission space itself, 
such as in A2/AD environments (albeit, only if the autonomous system(s) are 

equipped with the most sophisticated AI, sinceto be of any real help to the 

warfighter/mission-commandersuch systems must be able to process, and derive 

inferences from, a litany of raw data and changing conditions: from integrated air-
defense systems, to jamming, to mobile intelligent targets). At the very least, even in 
less-than-extreme complex environments, autonomy can help mitigate risk to 
manned systems by eliminating the need for human presence. This is already done, 
to a limited extent, by use of unmanned ground vehicles to reconnoiter potential 
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IEDs, althoughdue to current limits on image-recognition and cognitive 

abilitiesthe actual disposal still requires a manned presence).458  

Domain-specific capabilities  

The Defense Science Board’s 2012 Task Force report on autonomy459 and RAND’s 
recent study on designing unmanned systems with greater autonomy460 summarize 
the current capabilities and potential benefits of autonomy in four operational 
domains: 

 Unmanned Aerial Vehicles (UAVs): UAVs are already capable of performing a 

variety of missions to support both the military and intelligence 
communities, from ISR (which has also been integrated with strike on the 
same unmanned platform), to over the horizon targeting, anti-ship missile 
defense, ship classification, electronic warfare and signals intelligence, to 
deception operations, to direct connectivity of UAV operators to ground 
forces.461 Existing technology permits autonomous landing capability using 
on-board sensors (though some information regarding the landing site must 
still be preloaded);462 which, when refined, can help reduce the number of 
human operators needed to operate a fleet of UAVs. Notably, due to 
developments in sense-and-avoid technologies, the accident rate for most 
unmanned systems is now essentially that of manned aircraft. The concept of 
Remote-Split Operations (RSO), in which the human control of UAVs in 
multiple locations can be switched between controlling aircraft in different 
theaters as mission and weather requirements dictate and conduct shift 
changes in mid-flight, was introduced by the Air Force in 2003.463  

                                                   
458 A. Amanatiadis, et al., “The AVERT project: Autonomous Vehicle Emergency Recovery Tool,” 
in Robotics and Automation (ICRA) IEEE International Conference, 2015. 

459 Section 2 in The Role of Autonomy in DoD Systems, DoD Defense Science Board, Task Force 
Report, Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, 
July 2012. 

460 D. Gonzales and S. Harting, Designing Unmanned Systems with Greater Autonomy, Rand 
Corporation, 2014. 

461 S. Gupta, M. Ghonge, and P. Jawandhiya, “Review of Unmanned Aircraft System (UAS), Inter. 
Journal of Advanced Research in Comp. Eng. and Tech 2, no. 4, April 2013. 

462 Paul Williams and Michael Crump, “Intelligent Landing System for Landing UAVs at 
Unsurveyed Airfields,” Proceedings of the 28th Inter. Congress of the Aeronautical Sciences, 
2012: http://icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/131.PDF. 

463 Megan Orton, “General Underscores Commitment to Fielding Unmanned Aerial 
Systems,” American Forces Press Service, 14 January 2009. 
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Current gaps include: (1) no high-fidelity training environments for UAV 
pilots; (2) no computer-based training system for Predator crews to operate 

in conjunction with real-world weapons tactics training; and (3) no full 
simulation training system exist to ensure that the level of proficiency of 
aerial unmanned crews is maintained. Moreover, the different military 
services take vastly different approaches to training (e.g., the Air Force 
requires ten months to fully train a Predator crew member, but the Army 
requires only three months). 

 Unmanned Ground Vehicles (UGVs): the key benefit of UGVs is similar to that 

of the UAV; namely, they provide a persistent standoff capability. They are 
currently deployed mostly in support of counter-IED and route clearance 
operations, using robotic arms attached to, and operated by, modified Mine 
Resistant Ambush Protected (MRAP) vehicles and remotely controlled robotic 
systems; to a lesser extent, UGVs are used for reconnaissance in dismounted 
and tactical operations.464  

The key challenges for incorporating autonomy in UGVs include: (1) dynamic 
terrain negotiation and obstacle avoidance, and (2) performing kinetic 
operations within the Rules of Engagement (ROE). The first challenge requires 
basic image and pattern recognition skills; while the second requires a more 
sophisticated capacity to reason (e.g., the system must be able to make quick 
“on the fly” decisions that are both consistent with the ROE and reflect the 
changing conditions of the mission space). Current state-of-the-art UGVs are 
designed to operate only within a well-defined environment. As long as the 
conditions are consistent with that environment, the UGVs perform as 
expected. However, when conditions are “sufficiently different” (the drivers 
for which are impossible to exhaustively pre-test for), the UGV’s behavior will 
no longer be predictable. The UGV must be “smart enough” to perceive, 
understand, and adapt to the changing dynamic contexts of its 
environment.465 

DARPA was a pioneer in the development of autonomous ground vehicles, 
holding the first of its “grand challenges” in 2004 (with others following in 
later years; the most recent one was held in 2012 DARPA).466 The challenges 

                                                   
464 “Mine Resistant Ambush Protected (MRAP) Armored Vehicles,” Defense Update: 
http://defense-update.com/products/m/mrap.htm.  

465 Unmanned Systems Integrated Roadmap: FY2013-2038, Under Secretary of Defense, 
Acquisition, Technology and Logistics, Reference Number 14-S-0553, Washington, DC: 
Department of Defense, 2013. 

466 Special Issue on the DARPA Grand Challenge, Part 1, Journal of Field Robotics 23, issue 8, 
August 2006. 
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are essentially races in simple urban and rural environments, in which 
competing teams must field systems that can navigate a racecourse filled 
with various obstacles, and be first to reach the finish line. In recent years, of 
course, every major automaker is developing (and/or deploying) autonomous 
vehicle technologies.467 Notably, the “amount of research and development 
funds going into civilian autonomous vehicle development will likely greatly 
exceed that available for UGV R&D in the DoD budget over the next 
decade.”468 

 Unmanned Maritime Vehicles (UMVs): which is a category that encompasses 

both surface (USVs) and underwater (UUVs) vehicles. UMVs may be used for 
ensuring security within harbors, scanning for problems on a ship hull, 
sweep for mines, secure critical waterways, and provide ocean tracking. 
Unlike UAVs (which cannot operate in bad weather or low visibility), UMVs 
can operate in poor weather conditions. However, although persistence is a 
key capability, since water attenuates radio waves and other wireless signals, 
maintaining communication with UUVs (and even with surface vehicles) is 
technically challenging, particularly at longer ranges. Although there are 
technologies available to militate against this fundamental limitation (e.g., the 
use of laser communication systems), they are generally expensive and 
require massive amounts of power.469 Thus, there is an essential need for 
UUVs to have an autonomous ability to plan and execute their own paths, and 
to avoid obstacles and other unanticipated underwater terrain elements.  

UUVs already have varying levels of autonomous capabilities. Examples 
include:470 GPS/Doppler-aided navigation; autonomous path planning and 
execution based on onboard world map; terrain-following, and keep-out zone 
avoidance; autonomous decision making and cue generation for noncombat 
missions; dynamic replanning based on sensor input (acoustic, radio 
frequency (RF), chemical, etc.), vehicle health, and mission objectives and 
priorities; cross-deck advanced autonomy on multiple classes of vehicles 
(interface to various vehicle controllers and payload controllers). 

                                                   
467 J. Anderson et al., Autonomous Vehicle Technology: A Guide for Policymakers, RAND 
Corporation, RR-443-1-RC, 2014. 

468 Page 30 in D. Gonzales and S. Harting, Designing Unmanned Systems with Greater Autonomy, 
Rand Corporation, 2014. 

469 M. Scholz, “Using Laser Communication Above Water and Underwater,” Sea Technology 
Magazine, 2011: https://www.sea-technology.com/features/2011/0511/ 
laser_communication.php. 

470 D. Ashton (Capt), “Unmanned Maritime Systems Autonomy,” presentation at 10th 
International MIW Technology Symposium, 7-10 May 2012. 
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Examples of technologies permitting higher levels of autonomy that are 
currently being developed include:471 long transit and autonomous planning 
and control to precise local insertion without GPS-aided navigation (i.e., 
bottom map-matching/feature-based navigation); adaptive area surveys with 
automated target detection, classification, and recognition; robust sense and 
avoidance of hard-to-image/classify obstacles (e.g., surface vessel detection 
and avoidance, threat avoidance, and RF spectrum threat counterdetection); 
autonomous sensor data fusion; collaborative behaviors; and fault detection 
and response. 

Capabilities still out of reach for UUVs include many of the same limitations 
that currently apply to other unmanned systems, including: counterdetection 
awareness and response, real-time sensor processing, dynamic threat 
perception and adversary intent, autonomous decision making to support the 
use of weapons, and advanced collaborative behaviors. 

USV missions include:472 antisubmarine warfare (ASW), maritime security, 
surface warfare, special operations forces support, electronic warfare and 
maritime interdiction operations support. 

USV challenges include: autonomous implementation of the international 
regulations for preventing collisions at sea,473 mine detection and 
classification, surface threat detection and perception, tracking and targeting 
a moving surface target (e.g., high-speed swarm), detection and tracking of 
submerged targets, autonomous target lock for kinetic action, and decision 
making for targeting and weapon release. 

While the challenges and opportunities outlined above are all well understood by the 
defense community, there is as yet no overarching universally agreed upon 
conceptual framework in which the myriad tradeoffs can be objectively assesse; the 
pathway toward which is discussed next (starting with DoD’s basic definition of 
autonomy). 

                                                   
471 Ibid. 

472 The Navy Unmanned Surface Vehicle Master Plan, July 2007: 
http://www.navy.mil/navydata/technology/usvmppr.pdf. 

473 COLREGS: International Regulations for Preventing Collisions at Sea,  Articles of the 
Convention on the International Regulations for Preventing Collisions at Sea, 1972, 
International Maritime Organization, 2005.  
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DoD’s current definition of autonomy 

DoD’s Directive (DoDD) 3000.09 (Autonomy in Weapon Systems) establishes policy, 

organizational responsibilities, and “…guidelines designed to minimize the 
probability and consequences of failures in autonomous and semi-autonomous 
weapon systems that could lead to unintended engagements.”474  

The directive defines three (partly overlapping)475 categories of autonomy in terms of 
the degree to which a human is involved in an autonomous system’s performance 
(see figure 26):  

 Semi-autonomous: human “in the loop” 

 Human-supervised: human “on the loop” 

 Autonomous: human “out of the loop” 

Figure 26.  Definitions of various levels of autonomy that appear in DoD 3000.09 

 

                                                   
474 Under Secretary of Defense for Policy, DoD Directive 3000.09, Autonomy in Weapon Systems, 
Washington, DC, Nov 2012: http://www.dtic.mil/whs/directives/ corres/pdf/300009p.pdf 

475 The possibility for overlap is intentional, and allows for the fact that a given system may 
have subsystems that operate in different modes of autonomy during different phases of a 
particular mission. Also, DoD distinguishes between autonomy and remote control: “When the 
aircraft is under remote control, it is not autonomous. And when it is autonomous, it is not 
under remote control.” (Unmanned Systems Integrated Roadmap: FY2013-2038, Under 
Secretary of Defense, Acquisition, Technology and Logistics, Reference Number 14-S-0553, 
Washington, DC: Department of Defense, 2013, p. 15.) 
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Human “in the loop” 

In a semi-autonomous system, the machine stops and waits for human approval 
before continuing after each task is completed. The human operator is assumed able 
to monitor the environment and the machine’s actions, and gives a “go ahead” to the 
machine once it has been confirmed that the machine’s performance is adequate and 
consistent with operational mission requirements.  

Human operators can play any of three essential roles (sometimes simultaneously) in 
terms of target selection and engagement:476 

 As essential operators: in which the weapon system cannot effectively 

complete engagements without the human operator. 

 As moral agents: in which the human operator makes value-based judgments 
regarding the use of force; e.g., weighing the probability of destroying a 
military target versus potentially incurring collateral damage. 

 As fail-safes: in which the human operator has the ability to intervene and 

either change or halt the weapon system’s operation in the event that the 
weapon malfunctions or conditions no longer warrant an engagement. 

This hybrid “human-machine teaming” has recently been christened “Centaur 
Warfighting,”477 after the half-human, half-horse creatures in Greek mythology.478 An 
example of the power of this approach has recently been demonstrated in the world 
of chess, with Gary Kasparov’s founding of the field of “advanced 

chess”479essentially a form of Centaur chessin which human chess-players and AI-

chess playing systems cooperatively compete against opponents; humans still make 
the final moves, but they are based on a vastly richer base of information: “[the] idea 
was to create the highest level of chess ever played, a synthesis of the best of man 
and machine…[humans can] concentrate on strategic planning instead of spending 
so much time on calculations.” Kasparov recounts how, in a chess tournament in 
2005 that welcomed all players (amateurs and professionals) and allowed the use of 

                                                   
476 P. Scharre, Autonomous Weapons and Operational Risk, Center for a New American Security, 
Feb 2016. 

477 S. Freedberg, Jr., “Centaur Army: Bob Work, Robotics, & The Third Offset Strategy,” 
Breaking Defense, 9 Nov 2015. 

478 http://www.greekmythology.com/Myths/Creatures/Centaur/centaur.html. 

479 G. Kasparov, “The Chess Master and the Computer,” The New York Review of Books, 
11 Feb 2010: http://www.nybooks.com/articles/2010/02/11/the-chess-master-and-the-
computer/. 
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computers, two noteworthy results stood out: (1) teams of human plus machine 
dominated even the strongest computers (a single Deep Blue caliber chess-AI player 

lost badly to a strong human player using a relatively weak laptop), and (2) the 
winner of the tournament was not a grandmaster using a state-of-the-art AI program, 

but rather two amateur chess players using three “ordinary” computers.  

“Their skill at manipulating and “coaching” their computers to look 
very deeply into positions effectively counteracted the superior chess 
understanding of their grandmaster opponents and the greater 
computational power of other participants. Weak human + machine + 
better process was superior to a strong computer alone and, more 
remarkably, superior to a strong human + machine + inferior 
process.”480 

Human “on the loop” 

In a supervised-autonomous system, once activated, the machine performs a task 

under human supervision, and will continue performing the task until the human 
operator intervenes to halt its operation. However, in practice, there will always be a 
time delay between when a malfunction or failure occurs and when the operator 
exerts whatever “control” is necessary to adjust the machine’s behavior. For example, 
it may take some time for the human operator to simply “recognize” (and/or 
understand the reasons for) a malfunction, and there may be some delay in deciding 
on what commands are appropriate to send to the machine to correct its behavior. 

Examples of human-supervised autonomous weapon systems include:481 

 Drones 

 X-47B: Northrop Grumman’s fighter-size drone prototype; designed 
for autonomous launch and landing capability on aircraft carriers and 
able to navigate autonomously 

 Taranis: U.K.’s combat drone prototype; designed to autonomously 
search, identify and locate targets, but allowed to engage target only 
when authorized by mission command (also has autonomous self-
defend capability) 

 Harpy:482 Israel Defense Forces (IDF’s) “fire-and-forget” AWS; designed 
to detect, attack and destroy radar emitters 

                                                   
480 Ibid. 

481 Appendix B in An Introduction to Autonomy in Weapons Systems, P. Scharre and M. Horowitz, 
Center for a New American Security, Feb 2015. 
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 Air/Missile Defense Systems 

 Aegis Combat System:483 Centralized, automated, command-and-
control (C2) and weapons control system 

 Goalkeeper:484 Dutch Close-In Weapon System (CIWS); deployed with a 
number of operators including the Royal Navy, Belgian Navy and 
South Korean Navy 

 Iron Dome:485 IDF’s air defense system, deployed since 2011 

 Kashtan:486 Russian CIWS provides defense against anti-ship missiles, 
anti-radar missiles and guided bombs 

 Mk-15 Phalanx CIWS:487 Fast-reaction, detect-through-engage, radar 
guided, 20-millimeter gun weapon system; C-RAM (Counter Rocket, 
Artillery and Mortar system) is essentially a land-based equivalent488 

 Patriot:489 Long-range, all-altitude, all-weather air defense system to 
counter tactical ballistic missiles, cruise missiles and advanced 
aircraft 

 Ground Robot Active Protection Systems (APSs) 

 AMAP-ADS:490 German APS; also known as AAC in Sweden and as 
Shark in France; modular design can be adapted to a broad range of 

vehicles 

                                                                                                                                           
482 P. Spielman, “Israeli killer robots could be banned under UN proposal,” The Times of Israel, 
3 May 2013. 

483 Aegis Weapon System, United States Navy fact File: http://www.navy.mil/navydata/ 
fact_display.asp?cid=2100&tid=200&ct=2. 

484 “Thales to upgrade Goalkeeper weapon system for Dutch Navy,” Naval-technology.com, 
3 Dec 2012: http://www.naval-technology.com/news/newsthales-upgrade-goalkeeper-weapon-
system-dutch-navy. 

485 R. Wootliff, “Israel successfully tests shipborne Iron Dome missile interceptor,” 
The Times of Israel, 18 May 2016. 

486http://www.navyrecognition.com/index.php/east-european-navies-vessels-ships-
equipment/russian-navy-vessels-ships-equipment/weapons-a-systems/123-kashtan-kashtan-m-
kashtan-lr-cads-n-1-close-in-weapon-system-ciws-.html. 

487 Mk-15 Phalanx CIWS, United States Navy fact File: http://www.navy.mil/navydata/ 
fact_display.asp?cid=2100&tid=487&ct=2. 

488 https://www.msl.army.mil/Pages/C-RAM/default.html. 

489 Patriot Missile Long-Range Air-Defence System, Army-technology.com: http://www.army-
technology.com/projects/patriot/. 

490 B. Dodson, “Rheinmetall tests new Active Defense System under live fire,” New Atlas, 
1 Feb 2012: http://newatlas.com/rheinmetall-ads-live-fire-test/21278/. 
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 ARENA:491 Russian APS designed to protect armored fighting vehicles 
from destruction by light anti-tank weapons, anti-tank guided 
missiles (ATGM), and missiles with top attack warheads 

 DROZD (Thrush)/DROZD-2: Russian tank active protection system 
originally installed on T-55 and T-62 series main battle tanks (MBTs), 
and more recently (2005+) installed on T-62, T-72, T-80, T-90 types. 

 Iron Curtain:492 originated as a DARPA program (2005); uses high-

speed sensing and parallel processing to intercept and destroy a 
multitude of threats inches from their targets 

 SGR-A1:493 Samsung’s military robot sentry; deployed in DMZ between 

South/North Korea, autonomously detects targets, semi-autonomous 
engagements (but, reportedly, equipped with “full auto” mode) 

 SWORDS:494 the Special Weapons Observation Reconnaissance 
Detection System (SWORDS) robot that can carry lethal weaponry 
(M240 or M249 machine guns, or a .50 caliber rifle); three were used 
in in Iraq and Afghanistan. A new Modular Advanced Armed Robotic 
System (MAARS) version is in development.495 

 Trophy:496 IDF’s APS intercepts and destroys incoming missiles and 

rockets with a shotgun-like blast; also known as ASPRO-A 

As of this writing (Nov 2016), at least 30 nations use some form of supervised 
autonomous defensive systems in which humans are “on the loop” for selecting and 
engaging specific targets.497 However, to date, these systems have been used only 
defensively, and to target objects (e.g., missiles, rockets or aircraft), not people. 

                                                   
491 A. Geibel, "Learning from their mistakes: Russia's Arena Active Protection System," 
ARMOR magazine, 1 Sep 1996. 

492 http://artisllc.com/iron_curtain_active_protection_system/. 

493 http://www.globalsecurity.org/military/world/rok/sgr-a1.htm. 

494 “The Inside Story of the SWORDS Armed Robot "Pullout" in Iraq,” Popular Mechanics, 
30 Oct, 2009: http://www.popularmechanics.com/technology/gadgets/a2804/4258963/. 

495 https://www.qinetiq-na.com/products/unmanned-systems/maars/. 

496Trophy Active Protection System, Defense Update: http://www.defense-
update.com/products/t/trophy.htm. 

497 Australia, Bahrain, Belgium, Canada, Chile, China, Egypt, France, Germany, Greece, India, 
Israel, Japan, Kuwait, the Netherlands, New Zealand, Norway, Pakistan, Poland, Portugal, Qatar, 
Russia, Saudi Arabia, South Africa, South Korea, Spain, Taiwan, the United Arab Emirates, the 
United Kingdom, and the United States. Ref: P. Scharre and M. Horowitz, An Introduction to 
Autonomy in Weapons Systems, Center for a New American Security, Feb 2015. 
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Human “out of the loop” 

In fully-autonomous systems, once activated, the machine performs its tasks without 
any assistance on the part of the human operator, who neither supervises the 
operation nor has an ability to intervene in the event of a system failure. 

To date, there have been few human “out of the loop” autonomous weapon systems 
that select and engage its own targets. One example is the class of loitering attack 
munitions (LAMs).498 LAMs are cruise missile-like devices that are launched into a 

general area and whose mission is to loiter, looking for targets according to pre-
programmed targeting criteria (e.g., enemy radars, ships or tanks); once a target is 
detected, the LAM will fly into the target to destroy it. The only currently operational 
LAM is the Israel Defense Forces (IDF’s) Harpy, a “fire-and-forget” anti-radar weapon 

that flies a general search pattern over a designated area to search for enemy radars, 
which, if one is found, then dive-bombs into it to destroy it. Examples of 
experimental LAMs that were not operationally deployed include the low-cost 
autonomous attack system (LOCAAS),499 designed to target tanks, and Tacit Rainbow, 
a loitering anti-radar munition.500 

DoD Directive 3000.09 prohibits lethal fully autonomous robots. And semi-
autonomous robots cannot “select and engage individual targets or specific target 
groups that have not been previously selected by an authorized human operator,” 
even in the event that contact with the operator is cut off. Autonomous weapon 
systems may be used to apply non-lethal, non-kinetic force, such as some forms of 
electronic attack, against materiel targets; however, it specifically excludes: 

“Cyberspace systems for cyberspace operations; unarmed, unmanned 
platforms; unguided munitions; munitions manually guided by the 
operator (e.g., laser- or wire-guided munitions); mines; or unexploded 
explosive ordnance.”501 

                                                   
498 Andrea Gilli and Mauro Gilli, “The Diffusion of Drone Warfare? Industrial, Organizational 
and Infrastructural Constraints: Military Innovations and the Ecosystem Challenge,” Security 
Studies 25, 2016: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2425750. 

499 M. Hanlon, “Low-Cost Autonomous Attack System successfully flight tested,” New Atlas, 
4 Nov 2005. 

500 C. Kopp, “Precision guided munitions: Rockwell AGM-130A/B and Northrop AGM-136A 
Tacit Rainbow, Air Power Australia, May 1988. 

501 DoDD 3000.09, pp. 1-2. It has been pointed out that this seemingly well-defined policy 
distinction of applicability may nonetheless introduce a disconnect into DoD policy with 
respect to “unarmed, unmanned platforms,” since such systems, if they malfunction, maystill 
inflict injury or collateral damage to individuals and property. For example, a malfunctioning 
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Levels of autonomy 

Various definitions, classification systems, models, performance assessment metrics, 
and taxonomies of autonomy have been proposed over the last several decades, each 
with their own advantages, disadvantages and potential applications to military 
operations. The first categorization scheme was introduced by Sheridan and 
Verplank502 in 1978 (and subsequently expanded by Sheridan503 in 1992), and still 

used as the basis of many modern incarnationsorganizes autonomy according to a 

10-point scale, with higher numbers denoting higher levels of autonomy (e.g., on 
level 10, the machine acts completely on its own), and lower levels denoting 
decreased autonomy (e.g., on level 1, the human operator has full control): 

 Level 1 = computer offers no assistance; the human must make all decisions 

and take all actions 

 Level 2 = computer offers a complete set of decision/action alternatives 

 Level 3 = Level 2 + narrows the selection down to a few 

 Level 4 = Level 2 + suggests one alternative 

 Level 5 = Level 4 + executes that suggestion if the human operator approves 

 Level 6 = Level 4 + allows the human a restricted time to veto before 

automatic execution, or 

 Level 7 = Level 4 + allows the human a restricted time to veto before 
automatic execution, or 

 Level 8 = Level 4 + informs human after execution only if it is asked 

 Level 9 = Level 4 + informs human after execution only if it decides to 

 Level 10 = computer decides everything and acts fully autonomously, 
ignoring the human 

                                                                                                                                           
automated convoy vehicle may injure a person or cause damage that is similar in its effect 
to collateral damage from an errant autonomous weapon system. This is but one instance 
of a slew of ambiguity-ridden and ethics-related issues regarding the use of autonomy, 
a few of which are discussed later in this report. Ref:J. Caton, Autonomous Weapon Systems: 
A Brief Survey of Developmental, Operational, Legal, and Ethical Issues, U.S. Army War College, 
Strategic Studies Institute, Carlisle, PA, Dec 2015. 

502 T. Sheridan and W. Verplank, Human and Computer Control of Undersea Teleoperators, 
Man-Machine Systems Laboratory Report, MIT, 1978. 

503 T. Sheridan, Telerobotics, Automation, and Human Supervisory Control, MIT Press, 2003. 
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An alternative to this basic construct (introduced by Ensley and Kaber504 in 1999) 
uses a similar 10-level scale, but is explicitly organized according to four basic 
functions: (1) monitoring (i.e., scanning displays); (2) generating (i.e., formulating 
options or strategies to meet goals); (3) selecting (i.e., adjudicating an option or 
strategy); and (4) implementing, or acting upon the selected option. A more recent 

variant, proposed by Parasuraman, et al.,505 proceeds from the observation that 
previous taxonomies focus too much on a system’s output functions (i.e., to decision 
and action) at the expense of input functions (i.e., sensing and gathering 
information). 

Though also including an autonomy scale that varies from low to high, unlike prior 
categorizations, Parasuraman, et al. apply their scale to specific types of functions 
(that describe different stages of automation): (1) acquisition (of information), (2) 
analysis, (3) decision and action selection, and (4) implementation (of action). The 

acquisition stage includes systems that scan and observe the environment; analysis 
includes tasks similar to what human operators would naturally do (e.g., 
summarizing and fusing disparate pieces of information, predicting future state of 
environment, and other manipulations of gathered data); decision refers to 
adjudicating among possible courses of action (e.g., choosing a navigational route 
from several alternatives); and action implementation refers to automation that 
actually executes the selected action(s). Parasuraman, et al.’s taxonomy adds primary 
and secondary evaluative criteria, designed to evaluate the need for automation in 

the context of what can be generally expected of a human operator. Primary criteria 
consist of measures of consequences of human performance (e.g., mental workload, 
situation awareness, complacency, etc.); secondary criteria focus on consequences of 
automation (e.g., reliability, costs, etc.). In practice, the taxonomy has to be applied 
iteratively: first the primary criteria are evaluated, and the level of automation is 
adjusted accordingly; next, the secondary criteria are evaluated, and the level of 
automation is adjusted again. The goal was to define an objective method to 
determine a level of automation that is appropriate for a specific system.  

Of course, myriad other generalizations of these basic multi-level schemes exist.506 
Some emphasize the details related to a system’s output functions (i.e., to its 
decision capability); others focus on making detailed distinctions among input 

                                                   
504 M. Endsley and D. Kaber, “Level of automation effects on performance, situation awareness 
and workload in a dynamic control task,” Ergonomics 42, no. 3, 1999. 

505 R. Parasuraman, T. Sheridan, and C. Wickens, “A model for types and levels of human 
interaction with automation,” IEEE Trans. on Systems Man and Cybernetics Part A: Systems 
and Humans 30, no. 3, 2000. 

506 J. Beer, A. Fisk, and W. Rogers, “Toward a Psychological Framework for Levels of Robot 
Autonomy in Human-Robot Interaction,” Journal of Human-Robot Interaction 3, 2014. 
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functions, such as how the system acquires information and formulates options. 
Most variants of this basic multi-level construct lack specificity for intermediate 
levels of autonomy, and generally suffer from having too many subjective 
components.  

On the one hand, autonomy is far from being a “new” concept. Autonomy has been 
part of military systems for over three quarters of a century, with the first guided 
munitions appearing during World War II, and human-supervised automated 
defensive systems now being used by many militaries throughout the world.507 On the 
other hand, as more and more AI-derived technologies find their way into modern 
weapon systems, and as the complexity, decision-making, and problem-solving 
capabilities of machines (which, as discussed earlier, now frequently exceeds human 
performance in specific problem domains) continue to increase, autonomy as a 
“single-word” concept is myopically shallow, at best, and misleading, at worst. Even if 
used as a placeholder for split-level gradations in meaning, its utility is limited since 
all such gradations involve subjective elements, and none (as of this writing) include 
a mission-centric context. Indeed, the U.S. Defense Science Board’s 2012 report on 
autonomy suggests doing away with defining “levels” of autonomy altogether, and to 
instead shift the focus from “viewing autonomy as an intrinsic property of 
unmanned systems in isolation, [to] the design and operation of unmanned systems 
… in terms of human-systems collaboration.”508 The report recommends replacing 
definitions and levels with a conceptual framework (see next section). 

Categorizations of autonomy based purely on innate autonomous behaviors (that is, 
conceptualized in terms of what an autonomous system does, independent of 
context) include those based on: (1) “sense, plan, and act” (SP&A) primitives, (2) 
“think, look, talk, move, and work” (TLTM&W)  primitives, and (3) John Boyd’s 
“observe, orient, decide, and act” (OODA) loop concept.509  

SP&A models were popular mostly during the 1960s through 1980s, but were 
eventually supplanted by a behavior-based robotics approach, which is characterized 
by low level sensor-action loops (i.e., the “plan” primitive plays no role).510 Beer, et al., 

                                                   
507 B. Watts, Six Decades of Guided Munitions and Battle Networks: Progress and Prospects, 
Center for Strategic and Budgetary Assessments, March 2007. 

508 The Role of Autonomy in DoD Systems, Department of Defense, Defense Science Board, 
Task Force Report, Office of the Under Secretary of Defense for Acquisition, Technology 
and Logistics, July 2012. 

509 Col. John Boyd, USAF, The Essence of Winning and Losing, Briefing Slides, 28 June 1995: 
https://web.archive.org/web/20110324054054/http://www.danford.net/boyd/essence.htm. 

510 R. Arkin, Behavior-Based Robotics, MIT Press, 1998. 
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have recently introduced a 10-level autonomy scale based on the SP&A primitives 
(see figure 27). 

Figure 27.  Sense-Plan-Act-based levels-of-autonomy (H = human, R = robot)* 

* J. Beer, et al., “Toward a Framework for Levels of Robot Autonomy in Human-Robot Interaction,” 
Journal of Human-Robot Interaction, Vol. 3, No. 2, 2014. 

The most recent TLTM&W model was introduced by the Army Research Laboratory’s 
(ARL’s) Robotics Collaborative Technology Alliance (RCTA) consortium,511 and is 
summarized in figure 28 (which also includes some technical challenges associated 
with each of the five primitives. 

                                                   
511 Robotics Collaborative Technology Alliance (RCTA): 2012 Annual Program Plan, Army 
Research Lab, March 2012: https://www.arl.army.mil/www/pages/392/RCTA_FY12_APP.pdf. 
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Figure 28.  Think-Look-Talk-Move-Work-based levels-of-autonomy* 

* Robotics Collaborative Technology Alliance (RCTA): 2012 Annual Program Plan, Army Research Lab, 
March 2012: https://www.arl.army.mil/www/pages/392/RCTA_FY12_APP.pdf. 

Figure 29 shows a basic Observe-Orient-Decide-Act (OODA) loop overlaid with 

elements pertaining to properties expected of autonomous systems. The OODA loop 
is a simple model of decision making introduced by USAF Col. John Boyd in the late 
1960s.512  Intended originally as a conceptual backdrop to facilitate discussion and 
analyses of air combat (and military strategy in general),513 it has since been applied 
to widely diverse fields that involve decision-making in adversarial environments 
(e.g., business, law enforcement, and sports).514 The OODA loop has also been used to 
model planning and human supervisory control of physical systems.515  

                                                   
512 R. Coram, Boyd: The Fighter Pilot Who Changed the Art of War, Back Bay Books, 2004. 

513 The OODA loop was originally used to help understand why American fighter pilots were 
more successful than their adversaries in the Korean War. Although MiG-15’s were technically 
superior to the American F-86 Sabres, Boyd argued that it was because of the F-86’s superior 
cockpit visibility that American pilots were able to decide and act faster than their opponents; 
i.e., American pilots were generally able to get into a good firing position before their Korean 
countgerparts could react. Ref: F. Osinga, Science, Strategy and War, Routledge, 2006. 

514 G. Hammond, The Mind of War: John Boyd and American Security, Smithsonian Books, 2004. 

515 T. Grant, “Unifying Planning and Control using an OODA-based Architecture,” Proceedings 
of SAICSIT, 2005 
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Figure 29.  OODA loop and elements pertaining to properties expected 
of autonomous systems* 

 
* After figure 1 in M. Francis, “Unmanned air systems: challenge and opportunity,” 2011 AIAA Wright 
Brothers Lecture, Journal of Aircraft, Vol. 49, No. 6, Nov-Dec 2012.  

Observe refers to the stage during which information about the environment is 

collected, including characteristics of the physical environment, and the disposition, 
capabilities and intentions of enemy, friendly, and noncombatant forces; the Orient 

stage consists of aggregating, correlating and analyzing collected information and 
compiling a real-time situational awareness picture; the Decide step involves 

weighing various factors and options against the assigned (and/or locally 
determined) objectives to determine a course of action; and the Act step consists of 

following through on the decision (e.g., striking a target, applying navigational course 
correction, or engaging radar jamming). Implicit in the OODA construct is that it is 
not a static loop, but rather consists of multiple interlinking processes containing 
many inputs and decision steps. It is a continuous loop, with myriad simultaneous 
decisions that must be adjudicated in parallel. Information, too, is a fluid construct 
that is transformed continuously throughout all parts of the cycle, and by both sides 
of an adversarial confrontation. Indeed, one of the fundamental challenges of 
information-based warfare is the adaptive control and management of data and 
decision processes distributed within a networked force.516 

                                                   
516 R. Deakin, Battlespace Technologies, Artech House, 2010. 
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An autonomous system must perform an analogous set of functions to what a 
human needs to accomplish a given task. While the Observe and Act phases are 

straightforward robotic “stand ins” for their human-centric counterparts (mechanical 
sensors act as surrogates for human perception, and actions are executed by one or 
more robotic effectors)517 the functions that make up the Orient and Decide phases of 

the OODA-loophighlighted in blue in figure 29contain the autonomous system’s 

key AI and other computation-based capabilities.  

Orient is arguably the richer of the two (in terms of the complexity of the required 

algorithms), since it involves functions that determine how well the system is able to 
“understand” its environment: aggregating and fusing asynchronous data from 
multiple data sources; hypothesizing about, and deducing features to describe from 
current conditions; and incorporating historical data, past and/or learned experience 
in “making sense” of a situation. Higher levels of autonomy may require systems to 
make reasoned inferences and abductions (recall earlier discussion on page []), 
something that state-of-the-art algorithms are getting increasingly better at. General 
“perception” algorithms that are able to fuse and draw inferences from multiple 
forms of sensory input at the edge of what has been achieved as of this writing. 

The Decide stage requires almost as complex a set of functions as Orient, since it 

includes such tasks as choosing (and applying) an appropriate set of features and 
weights to accommodate real-time decision making; adapting decision criteria to a 
dynamic environment (that may contain elements that themselves evolve according 
to  disparate time-scales; and (borrowing from DeepBlue’s “look ahead” capability in 
chess) anticipating adversarial countermeasures in  the next Decision cycle. Many of 
these elements are, just for those just recounted for the Orient stage, at the cutting 

edge of AI capability. Specific methods (and requirements, depending on operational 
context) span the gamut from simple physics-based move-and-act rules to the most 
sophisticated AI-driven (and/or swarm-based) adaptive behaviors and real-time 
learning. 

An 11-level autonomy taxonomy (introduced by the Air Force Research Lab) that is 
organized around the OODA loop is shown in figure 30. 

                                                   
517 In robotics parlance, an “effector” is any device that affects the environment (e.g., legs, 
wheels, arms, fins); the details depend on the application of the robot. An “actuator” is the 
actual mechanism that enables the effector to execute an action (e.g., electric motors, hydraulic 
or pneumatic cylinders, etc.). “Effector” and “actuator” are sometimes (erroneously) used 
interchangeably to denote whatever mechanism is required to “make the robot take an action."  
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 Figure 30.  OODA-loop-based autonomy taxonomy* 

* E. Sholes, “Evolution of a UAV Autonomy Classification Taxonomy,” IEEE Aerospace Conference, 2007 

A similar taxonomy based on the OODA loop (that uses 8 levels instead of the 10 
levels shown in figure 30) was used by the National Aeronautics and Space 
Administration (NASA) as a method for helping assess an appropriate level of 
autonomy to design into a human spaceflight vehicle.518  

                                                   
518 R. Proud, J. Hart, and R. Mrozinski, “Methods for Determining the Level of Autonomy 
to Design into a Human Spaceflight Vehicle: A Function Specific Approach,” presented 
at Performance Metrics for Intelligent Systems, held 16-18 Sep 2003, Gaithersburg, MD. 



 

 

 

160 
 

Toward a conceptual framework of 
autonomy 

As we have seen, there is no universally agreed upon definition of “autonomy.” 
However, it may be possible to develop a general conceptual framework that can be 
used to both anchor theoretical discussions and serve as a frame-of-reference for 
understanding how theory, design, implementation, and operations are all 
interrelated. The framework would have to provide a method of objectively (or, as 
objectively as possible) distilling and convolving all of the individual key elements of 
autonomy. 

To appreciate (at least on an intuitive level) how technically difficult a task it is to 
find an appropriate set of metrics to describe both what an autonomous system is 

and how well it is performingnot to mention the even more difficult task of 

developing a comprehensive conceptual framework in which these metrics have both 
a well-defined meaning for existing systems but are flexible and deep enough to 

anticipate the development of future systemsit is enough to recognize that the 

closer systems come to achieving full autonomy, the more closely aligned will any 
description of their behavior be to that of describing the behavior of humans.  

Therefore one ought not be surprised to learn that the autonomy-related research 
literature is replete with just about every combination of factors that may be used to 
categorize human, machine, and human-machine (hybrid) behaviors.  

Different approaches may be distinguished according to which functions are 
emphasized at the expense of others. General categorizations include those that:519 

 Distinguish among the number of systems required for a given task  in which 

a system’s overall degree of autonomous functionality is tied to the number of 
vehicles required to complete a task; single-machine functionality is 
distinguished from multi-vehicle operations, from full swarm behavior. 

 Segregate functions according to the nature of the tasks involved  in which 

tasks that are unique to the machine are distinguished from those that are 
machine-agnostic; machine intrinsic autonomous functions might include basic 
flight control, stabilization, and landing; machine-agnostic (i.e., task or mission 
oriented) functions might include navigation, route-planning, obstacle 
avoidance, and auto-determination of operational objectives. 

                                                   
519 M. Francis, “Unmanned air systems: challenge and opportunity,” 2011 AIAA Wright 
Brothers Lecture, Journal of Aircraft 49, no. 6, Nov-Dec 2012. 
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 Emphasize the degree of objectivity required in the decision-making process  

in which deterministic physics-based autonomous functions (e.g., stabilization, 
takeoff, landing) are distinguished from functions that must accommodate 
uncertainty and stochastic elements (variability in weather, turbulence, and 
other unpredictable elements, including enemy actions). 

 Evaluate functionality in the context of situational difficulty  in which an 

autonomous system’s ability to perform in complex but “simply characterized” 
environments (the objective description of which entails little or no 
uncertainty, and for which physics-based methods are appropriate) are 
distinguished from its ability to perform in highly uncertain environments 
(that require increasingly sophisticated AI). 

 Focus on the degree of complexity required of human-control  in which the 

degree of autonomy is explicitly linked with the frequency (and sophistication) 
of command and control by the human operator.  

Of course, none of these categorizations stands entirely apart from the others, and 
overlaps are unavoidable; e.g., the number of vehicles required to complete a mission 
is, in part, a function of environment, the degree of objectivity of decision-making is 
obviously dependent on context, and the complexity of human interaction arguably 

spans across all other categories. Indeed, with respect to this last categoryand 

though it might be argued that any attempt to conceptualize autonomy for non-
human systems must, inevitably, start with characterizing how non-human systems 

interact with human operatorseven at this most basic level one finds disagreement 

in the literature:520 some research groups start with the premise that higher robot 
autonomy entails lower levels (or less frequent) human-robot interaction (HRI); 
others assume that higher of system autonomy require higher levels (or more 
sophisticated forms) of HRI.521 In reality, no objective one- or two-dimensional 
representation of autonomy can possibly capture the full extent of the functionality 
and behavior of autonomous systems. The DoD’s Defense Science Board’s (DSB’s) 
2012 report on autonomy (DSB/2012) argues that while a “level of autonomy” 

                                                   
520 J. Beer, A. Fisk, and W. Rogers, “Toward a Psychological Framework for Levels of Robot 
Autonomy in Human-Robot Interaction,” Journal of Human-Robot Interaction 3, 2014. 

521 Autonomy frameworks based on the second viewpoint also exist, but, because they are 
typically focused more on establishing guidelines for robots that assist humans in social 
situations, and are therefore less relevant for military operational contexts, will not be 
considered in this paper. Ref: S. Thrun, “Toward a framework for human-robot interaction,” 
Human-Computer Interaction 19, 2004; M. Goodrich and A. Schultz, “Human-robot interaction: 
A survey,” Foundations and Trends in Human-Computer Interaction 1, 
no. 3, 2007; R. Murphy and D. Woods, “Beyond Asimov: The Three Laws of Responsible 
Robotics,” IEEE Intelligent Systems, July-August, 2009. 
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description may capture the essence of what makes a system autonomous, it fails to 
describe the specific milestones necessary to design and build such systems; 
moreover, it “deflects focus from the fact that all autonomous systems are joint 
human-machine cognitive systems, thus resulting in brittle designs.” 522 In the end, 
DSB/2012 recommends that the DoD should abandon the debate over definitions of 
levels of autonomy altogether, and instead focus on developing a conceptual 
framework to help program managers and acquisition officers (and developers) 
holistically shape technology programs. 

What all of the above categorizations have in common is that they all involve aspects 
of the “complexity” (objective measures of which are “to be determined” of course!) 
of various components of the coupled human-machine-mission-environment space: 

 The complexity of an autonomous system as a physical machine 

 The complexity of autonomous swarm as a system-of-systems  

 The complexity of the environment the autonomous system interacts with 

and makes adaptive decisions in 

 The complexity of the decision space the system’s AI-logic must contend with 

 The complexity of the humanmachine command-and-control relationship 

Figure 31 emphasizes the importance of the mission space and operational 
environment by embedding an earlier schematic depiction of the human-machine 
“system” (see figure 23) within a broader context, details of which appear in the 
ensuing discussion. 

We conclude this section by introducing two most recentand, as of this writing, 

only extantattempts at formulating a multidimensional conceptual framework for 

assessing autonomy in unmanned systems: ALFUS and ASRF. 

 

                                                   
522 The Role of Autonomy in DoD Systems, Department of Defense, Defense Science Board, 
Task Force Report, Office of the Under Secretary of Defense for Acquisition, Technology 
and Logistics, July 2012. 
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Figure 31.  Key components of human-swarm behavior and control (figure 23) 
embedded within broader context of environment and mission 

After  A. Kolling, et al., “Human Interaction with Robot Swarms,” IEEE Transactions on 
Human-Machine Systems, Vol. 46, Feb. 2016. 

ALFUS 

The ALFUS (Autonomy Levels for Unmanned Systems) framework was developed at 
the National Institute of Standards and Technology (NIST) to serve as a framework to 
facilitate characterizing and articulating autonomy for unmanned systems.523 ALFUS 
offers standard terms and definitions for requirements analysis and specification, 
and contains tools for evaluating and measuring the performance of unmanned 
autonomous systems. The framework is not a specific test or set of metrics, rather it 
represents one model of how a set of multidimensional metrics can be combined to 
generate an autonomy level. ALFUS’s definitions are kept deliberately broad to 
encompass a variety of specific domains, ranging from logistics, manufacturing, 

                                                   
523 H. Huang, E. Messina, J. Albus, Autonomy Levels for Unmanned Systems (ALFUS) Framework, 
Volume II: Framework Models Version 1.0, Ad Hoc Autonomy Levels for Unmanned Systems 
Working Group, National Institute of Standards and Technology, 2008: http://www.nist.gov/ 
customcf/get_pdf.cfm?pub_id=823618. 
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search and rescue, medicine, and military applications. Introduced at the 2004 
International Society for Optics and Photonics (SPIE) Defense and Security 
Symposium,524 ALFUS is still under active development (as of this writing), though has 
not had significant changes over the last few years.  

 The general framework includes the following four components: 525 

1. Basic terms and definitions 

2. Detailed model for autonomy levels 

3. Summary model for autonomy levels 

4. Guidelines, processes and use cases 

ALFUS’s detailed model derives from a three-dimensional decomposition of 
autonomous capability called Contextual Autonomous Capability (CAC); see figure 
32.  

Each axis refers to a particular metric group: (1) mission complexity (MC), (2) 
environmental complexity (EC), and (3) (the complexity of the) human interface (HI; or 

human independence). The decomposition is interpreted on two layers of 
abstraction:526 low level, on which a system is characterized by a set of metric scores, 
such as the percentage of a mission that is planned and executed by the UMS 
onboard processors, the levels of task decomposition, and how easy it is to find a 
solution in the operating environment; and above-metric level, on which a system is 

assigned a total autonomy “score,” which is effectively a weighted average of the 
individual metric scores.  

ALFUS flexibly provides additional layers of details below the metrics layer to 
facilitate application to specific systems. For example, the metric of human interface 
(HI) may be decomposed to actuation time, monitoring time, sensory data acquisition 
time, etc. Generally, the higher layers facilitate requirements specification and 
communication requirements, while the lower levels facilitate implementation and 
testing and evaluation. 

 

                                                   
524 H. Huang, et al., “Specifying Autonomy Levels for Unmanned Systems: Interim Report,” 
Proceedings of the 2004 SPIE Defense and Security Symposium, Orlando, Florida, 2004. 

525 H. Huang, Autonomy Levels for Unmanned Systems (ALFUS) Framework, Volume I: 
Terminology, Version 2.0, Ad Hoc Autonomy Levels for Unmanned Systems Working Group, 
National Institute of Standards and Technology, 2008: https://www.nist.gov/document-8274. 

526 Ibid. 
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Figure 32.  Schematic of ALFUS’s Contextual Autonomous Capability (CAC) 

 
Ref: figure 5 in http://www.nist.gov/customcf/get_pdf.cfm?pub_id=823618 
 

Note that CAC is devoid of any real meaning (certainly is incapable of assigning any 
measures of autonomy by itself) until one determines: (1) what makes a mission 
complex, (2) what makes an environment complex, and (3) what makes an unmanned 
system human-independent. Different sets of factors and (by implication) different 

sets of associated weights will result in different ALFUS-facilitated CACs, and, in 
turn, different assessments of a given system’s level of autonomy.527 For example, 
factors that may contribute to mission complexity include: mission time, required 
level of collaboration, synchronization of events, rules of engagement, sensory and 
data processing requirements, etc.; factors that may make an environment complex 
include the signal environment (including electromagnetic interference), the dynamic 
nature of the environment (including stigmergy), meteorological conditions, light, 
terrain, etc.; and factors that may contribute to making an unmanned system human-
independent include increasing ability to sense wider areas of the environment, 
increasing ability to understand and analyze dynamic contexts, increasing ability to 

                                                   
527 H. Huang, E. Messina, J. Albus, Autonomy Levels for Unmanned Systems (ALFUS) Framework, 
Volume II: Framework Models Version 1.0, Ad Hoc Autonomy Levels for Unmanned Systems 
Working Group, National Institute of Standards and Technology, 2008. 
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generate high-level complex plans, and an increasing ability to communicate with 
other systems without oversight. 

Figure 33 shows a schematic distillation of ALFUS’ three-dimensional CAC 
decomposition into a single-value of autonomy. The highest level of autonomy is one 
in which the system “completes all assigned missions with highest complexity; 
understands, adapts to, and maximizes benefit/value/efficiency while minimizing 
costs/risks on the broadest scope environmental and operational changes; and is 
capable of total independence from operator intervention.”528  

Figure 33.  Schematic distillation of ALFUS’ three-dimensional CAC decomposition 
into a single-value of autonomy 

 
HRI = Human-robot interface. Ref: figure 4 in http://www.nist.gov/customcf/ 
get_pdf.cfm?pub_id=823618.  
 

A Mid-level autonomous system can plan and execute tasks to complete an operator 
defined mission, has a limited understanding of and response to environmental 
information and operational changes, and relies on about 50% operator input. The 
lowest-level autonomous system requires remote control even for simple tasks in 
simple environments. Note that the autonomy level generally refers to the HI aspect, 
with the other two axes serving as context. ALFUS’s design allows for autonomy level 

                                                   
528 H. Huang, K. Oavek, J. Albus, and E. Messina, “Autonomy Levels for Unmanned Systems 
(ALFUS) Framework: An Update,” SPIE Defense and Security Symposium, Orlando, Florida, 2005. 
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to be interpreted as a nominal value, while instantaneous values may be dynamic, as 
a system adapts to specific mission conditions and changes in the environment. No 
attempt is made to describe the detailed differentiation among consecutive levels. 

Of course, none of these levels, or interpretations are well-defined. As of this writing, 
only a few standard bench tests exist to facilitate filling in even the basic CAC axes; 
and there are, as yet, no analytical methods (at least none that have been 
incorporated into ALFUS; other stand-alone attempts exist and are referenced later) 
for objectively combining the orthogonal metrics into a single-valued measure of 
“autonomy.” Indeed, ALFUS utility derives principally from its generality as a 

conceptual framework. In its current form, it is little more than a skeletal structure 

that begs further brainstorming and elucidation. Howeveranticipating a discussion 

of how DoD’s existing acquisition process does not easily accommodate the lifecycle 

of autonomous systems (that appears a bit later in this report)if the approach 

described here is generalized to accommodate specific mission operational 
requirements (across the individual military Services), an ALFUS-like framework can 
be used in concert with (and to inform) an autonomous-system-centric generalization 
of DoD’s acquisition process. 

Advantages of the ALFUS approach include:529 

 It does not myopically focus just on a system’s innate physical characteristics 

 It includes a notional "mission space" as a context for assigning autonomy  

 It is not tied to a specific domain (leaving many options for generalizing the 
basic method to, say, “realistic” mission types and objectives) 

 It represents a sustained, long-term effort to define a common standard for 
autonomy (albeit one that both demonstrates the possibility of such an 

endeavor, and the difficulty of the overall task, given that ALFUS has been 
under development for well over a decade). 

Shortcomings of the ALFUS approach include:530 

 Since ALFUS is an ongoing effort (albeit one whose details have not changed 
much over the last five years or so), all results are provisional  

 ALFUS does not provide any tools to decompose tasks in a standard way 

                                                   
529 E. Sholes, “Evolution of a UAV Autonomy Classification Taxonomy,” presented at IEEE 
Aerospace Conference, IEEE, 2007 

530 P. Durst and W. Gray, Levels of Autonomy and Autonomous System Performance Assessment 
for Intelligent Unmanned Systems, US Army Corps of Engineers, Engineer Research and 
Development Center, Geotechnical and Structures Laboratory, ERDC/GSL SR-14-1, April 2014. 
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 While ALFUS provides a general method to assess the autonomy of a system, 
it does not provide an objective way to map a system's autonomous 
capabilities onto an overall autonomy level (i.e., there remain irreducibly 
subjective components to the decision process) 

 ALFUS may provide too much granularity (offering, in principle, 103 = 1000 

different possible levels of autonomy for a given system); there is no 
provision for any domain-specific scaling 

Another basic shortcoming of ALFUS is that it does not account for the variation of 
desirability of a given level of autonomy with type of mission or environment. For 

example, if the mission objective is to detect and deactivate an explosive device, full 
autonomy may be less effective than a teleoperated robot. However, as currently 
configured, ALFUS simply assumes that higher levels of autonomy are de facto more 
desirable. In terms of its applicability to T&E issues, ALFUS remains “too vague and 
too complex… [and] does not provide any guidelines describing test procedures. The 
complexity that ALFUS adds to the T&E process by requiring the environment metrics 
to be measured hampers the ability to assess autonomy for a broad range of 
applications.”531 

Autonomous System Reference Framework 

The Autonomous System Reference Framework (ASRF) is a notional conceptual 
framework for autonomous systems that was introduced in the DoD’s Defense 
Science Board’s (DSB’s) 2012 report on autonomy (DSB/2012).532 Intended only as a 
point of departure, it may also be regarded as an extension of the ALFUS framework 
(albeit one that takes only the top-most level view, and includes even less specificity 
than ALFUS). 

DSB/2012’s point of departure is to visualize the challenges of autonomy from the 
perspective of three key stakeholders: the commander, the operator, and the 
developer. For the commander, the key issue is how a given mission will be 
accomplished, and for which autonomy matters only to the extent that it may alter 
how a mission must be managed. For the operator, autonomy is experienced directly, 
as in the human-machine interface and collaboration. And for the developer, 
autonomy is a euphemism for AI software (since that is where all autonomous 
behavior effectively originates); and, as such, generally falls outside DoD’s current 
hardware-centric development and acquisition process.  

                                                   
531 Ibid., p. 14. 

532 The Role of Autonomy in DoD Systems, DoD Defense Science Board, Task Force Report, 
Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, July 2012. 
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A framework’s ability to support the requirements specification, design, 
development, and review/approval phases of the acquisition process (discussed in a 
later section) is therefore contingent upon it embodying three classes of design 
decisions for autonomy that reflect the larger abstract space in which each of the 
three notional stakeholders live (see figure 34): 

Figure 34.  Schematic distillation of the Autonomous System Reference Framework 

After section 3.3 and figures 3-1, 3-2, and 3-4 in DSB/2012. 
 

1. The cognitive echelon class (CEC), which represents the space in which 
decisions on how autonomous systems are to be used are made (and includes 
different perspective of users with different spans of control; e.g., from 
vehicle pilot to section leader to mission commander). 

2. The mission dynamics class (MDC),  which represents the space in which the 

tradeoffs between potential benefits and challenges of autonomy may be 
described as functions of the times at which key decisions are made and 
specific actions executed (e.g., the degree of autonomy sufficient for take-off 
and landing may be different from what is required for navigation or 
targeting; and operators and systems may be generally expected to 
interchange  initiatives and roles throughout a mission and across echelons, 
as the coupled human-machine system adapts to new events, disruptions and 
opportunities as they arise. 

3. The human-machine system trades space class (HMSTSC), which denotes the 

space of factors that describe (and lie at the cusp between) human and 
autonomous system performance (e.g., reliability, manpower, and training 
costs). 
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DSB/2012’s third class, HMSTSC, is introduced with a view toward providing 
developers and acquisition officers a tool for predicting unintended consequences 
(by linking potential symptoms of human-machine-interface imbalances), and 
describes it using a balloon metaphor: while autonomy (however it is defined) can 
increase the capability or capacity of a system, there are tradeoffs that can limit its 
expansion; i.e., that can “pop the balloon.” Tradeoffs include:533  

 Fitness: which describes the balance between optimal performance for 

expected missions and the need for resilience and adaptability for new 
missions and/or unexpected conditions; a possible “unintended 
consequence” is increased brittleness in the system 

 Plans: which describes the balance between achieving an efficiency in 

following an existing plan with the ability to detect when a given plan is no 
longer valid (and being able to adapt); a possible “unintended consequence” 
is being locked into a wrong plan of action and/or increased difficulty in 
revising a plan 

 Impact: which describes the balance between accessing and relying on viable 

information as a means toward achieving mission objectives and 
inadvertently putting a given mission at risk by incorporating nefarious 
information; a possible “unintended consequence” is a high cost of 
coordination 

 Perspectives (i.e., ability to gain situation awareness): which describes the 

balance between focusing attention on local action on one system, from a 
human control point of view, with distributing and coordinating across 
multiple systems; possible “unintended consequences” include data overload 
and a reduced speed in decision making 

 Responsibility, which describes the balance between short term and long term 

goals, and resolving between multiple-simultaneous goals (a perennial 
general technical challenge for AI-driven machine learning systems); an 
“unintended consequence” may be a break down in collaboration and 
coordination 

The CEC is illustrated in figure 34 with elements that highlight the kinds of decisions 
made across echelons, and the varying levels of impact those decisions can have on a 
mission; e.g., increasing “scope of control” from bottom to top, and decreasing the 
effective “reach into the world” from top to bottom. There is also an implied adaptive 
capacity that reaches from upper to lower levels. For example, autonomy may use 

                                                   
533 Ibid., Section 3.3. 
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higher-level routes and waypoints as references for controlling vehicles, and to 
translate raw sensor data into “higher levels” of information (e.g., targeting). At the 
highest levels, autonomy may be used to assist in allocating tasks, managing 
resources (e.g., assigning actions to individual sensors and/or defining weapon load 
outs), and processing and fusing raw Intelligence (INTEL) data. The point of the 
schematic shown in figure 34 (or of this discussion) is not to provide an exhaustive 
list of all possible ways in which autonomy can be used to assist the 
warfighter/analyst, but merely to provide a notional framework, much like ALFUS, 

that indicates where and when autonomy isor can beused. 

The cognitive echelon component in figure 34 also highlights the relative status of 
technology deployment for a given capability: orange means that an existing 

capability is determined by DSB/2012 to be underutilized for a given mission 
component (e.g., scenario planning and decision making on the highest echelon, and 
vehicle health management on the pilot/sensor operator level), and red represents a 
an open technical challenge for which future investment is indicated.  

DSB/2012 identifies six key areas in which advances in autonomous technology 
would have significant impact on the deployment and performance of unmanned 
systems:534 (1) perception (including both hardware sensors and software-based 
“sensing”), (2) planning, (3) learning, (4) human-robot interaction, (5) natural 
language understanding, and (6) multi-agent coordination. 

Perception 

Perception for unmanned systems can be categorized into four (partly overlapping) 
classes: navigation (e.g., for guidance, navigation and control functions, to support 

path planning and dynamic replanning and to enable multi-agent communication and 
coordination), mission sensing (e.g., for mission planning, scenario planning, 
assessment and understanding, multi-agent communication and coordination and 
situational awareness), system health (e.g., for fault detection and vehicle health 
management,) and manipulation (which becomes increasingly important as missions 

move from perceiving-at-a-distance to acting-at-a-distance: e.g., opening doors, IED 
disposal, and general material handling). 

Obvious advantages of increased autonomy for navigational perception include 
vehicle safety (since an autonomous system can react much faster in dangerous 
situations than humans), and a reduced cognitive workload of a human operator.  

                                                   
534 Section 3.4 in The Role of Autonomy in DoD Systems, DoD DSB, Task Force Report, Office 
of the Under Secretary of Defense for Acquisition, Technology and Logistics, July 2012. 
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Increased autonomy for mission sensing can potentially: (1) enable covert operations 
without network connectivity (reducing network vulnerability and the cognitive load 
of the human operator), (2) reduce the number of human analysts needed to 
assimilate large amounts of raw data (via autonomous recognition, cueing, and/or 
prioritization of areas of interest), (3) reduce network demands (using onboard 
identification, and/or prioritization of data), (4) enhance navigation (e.g., by enabling 
onboard adaptive “decisions” to be made to hover, loiter, etc.). 

Increased autonomy for monitoring system health has at least three benefits: (1) 
enabling a more graceful degradation of performance than otherwise possible via 
human reaction), (2) increasing trust in the system (via self-monitoring for 
unexpected behaviors, particularly during critical phases of a mission), and (3) 
reducing the cognitive workload of operators (by freeing them from monitoring 
diagnostic displays). 

Finally, increased autonomy for manipulation would both decrease the time and 
workload needed for manipulation tasks, and potentially reduce the number of 
robots needed for a  mission (since a second robot would no longer be required to 
“observe” the dynamics between manipulator and the object being manipulated). 

DSB/2012 identifies several critical gaps in current state-of-the-art autonomy 
technology for perception:  (1) situation awareness in complex battle spaces (studies 
focus more on increasing navigational autonomy for individual or related swarms of 
platforms than on integrating battlespace-wide data, UGV navigation in urban 
environments, with dense foliage, and with people remains nascent, as does multi-
sensor fusion and comprehensive world-modeling); (2) too strong a focus on the 
development of new sensors at the expense of developing enhanced algorithms for 
existing sensors, particularly vision (e.g., lack of high-speed obstacle detection and 
recognition in complex terrain); (3) evidential reasoning about system health (the 
state-of-the-art of which is adequate for detecting independent faults in systems for 
which a full model exists, but fails at detecting, identifying and recovering from 
multiple dependent faults; additional research is also needed to understand how 
less-than-complete models of a system can be made accurate enough to support 
evidential reasoning); and (4) perception for manipulation generally remains a major 
gap for UGV. 

Planning 

Planning is the process of deciding upon a course of action designed to achieve a 
desired mission objective (while minimizing resources). Planning also lies at the very 
heart of all multiagent-based (MBM) approaches to AI, and requires: (1) a 
mathematically precise representation of the factors and conditions that describe the 
environment (and that agents can “sense” and “react” to), and (2) algorithms that 
assign “weights” (that denote lesser or greater required attention) to elements of the 
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environment and an agent’s internal state, to adaptively compute “optimal” resources 
and actions, subject to whatever limitations and constraints are deemed necessary.  

While decades of basic MBM research has unearthed (and bequeathed) a veritable 
warehouse of insights and methodologies for AI-based planning, major gaps remain, 
and are likely to persist because of their fundamental nature. Specifically, there is no 
generally applicable technique for developing planning algorithms that account for 
multiple simultaneous objectives in dynamic environments (the nature of which 

cannot, In general, be accounted for a priori). Moreover, the objectivesand 

therefore weights, and action-adjudication algorithmscan (and typically will) also 

change as an autonomous system gains “experience” while operating in a not-fully-
described environment. The technology that would allow for a graceful continuous 
remapping of an environment, and an “on the fly” adjustment to an autonomous 
system’s onboard “reasoning faculty” is still nascent. 

Learning 

Machine learning (ML) lies at the heart of most state-of-the-art research into 
developing intelligent, autonomous systems (see discussion on pages []-[]). Indeed, 
some of the best-known AI “successes” in recent years (e.g., IBM’s Watson535 and 
Google’s AlphaGo536) were made possible by advances in ML. However, a limitation 
that applies to all extant ML methods as they apply to “narrow AI” problems is that 

they are effectively “black boxes” that do not easily reveal the “logic” behind the 
“reasoning.”537 This may be innocuous when playing an AI-system in chess, say, but 
assumes an entirely new (and serious) dimension if the “narrow AI” in question is 
embedded within a military autonomous system. For example, how does one ensure 
(during, say, the testing and evaluation phase of DoD’s acquisition process) that 
whatever autonomous system being developed will not perform “surprising” (i.e., 
unanticipated) actions during a mission? 

A second issueat least as egregious as displaying impenetrably surprising 

behaviorsis that otherwise well-performing “narrow AI” systems can also 

sometimes (and unpredictably) provide bad solutions to problems, with counter-

                                                   
535 A. Sostek, “Human champs of 'Jeopardy!' vs. Watson the IBM computer: a close match,” 
Pittsburgh Post Gazette, 13 Feb 2011. 

536 S. Byford, "Google's AlphaGo AI beats Lee Se-Dol again to win Go series 4-1," The Verge, 
March 15, 2016. 

537 In the context of AI-based text-processing systems, MIT has recently introduced a method 
to train neural networks so that they provide rationales for their otherwise (and traditionally) 
opaque classifications. Ref: T. Lei, R. Barzilay, and T. Jaakkola, Rationalizing Neural Predictions, 
Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, 2016. 
https://people.csail.mit.edu/taolei/papers/emnlp16_rationale.pdf. 
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intuitive properties. For example, two recent studies of state-of-the-art visual 
classifiers show that: (1) changing an image that has already been correctly classified 
(say, that of a panda) in a way that is imperceptible to humans can cause a deep-
learning neural network (DNNs) to classify the image as something entirely different 
(as, say, a gibbon),538 and (conversely) (2) it is easy to produce images that are 
completely unrecognizable to humans, but that are “classified” by state-of-the-art 

DNNs with 99.99% confidence (e.g. labeling with certainty that white noise static is a 
lion).539  

Finally, most current ML methods require vast amounts of supervised training data, 
the development of which requires significant time and effort of human subject 
matter experts (e.g., required to label and/or annotate large number of image and 

video exemplars for training). Unsupervised learning methods certainly existthe 

general technique of reinforcement learning540 and Harvard’s recent method called 

Turing Learning541 are but two examplesbut their applicability to the kinds of 

unstructured dynamic environments that military autonomous systems are expected 
to perform well in remains uncertain. 

Human-robot interaction 

Human-robot interaction (HRI) is a still-nascent multidisciplinary field, and is a 
subset of a broader field of study of human-system interaction (where the “system” 
may consist of multiple simultaneous linked robots, including those both physically 
situated and virtual. DSB/2012 identifies six basic HRI research issues:542 (1) how 
humans and robots communicate; (2) how to model the relationship between humans 
and robots; (3) how to study and enhance human-robot teamwork;543 (4) how to 

                                                   
538 C. Szegedy, et al., “Intriguing properties of neural networks,” presented at the International 
Conference on Learning Representations, 2014: https://arxiv.org/abs/1312.6199. 

539 A. Nguyen, J. Yosinski, and J. Clune, “Deep Neural Networks are Easily Fooled: High 
Confidence Predictions for Unrecognizable Images,” Computer Vision and Pattern Recognition 
(CVPR), IEEE, 2015: http://www.evolvingai.org/files/DNNsEasilyFooled_cvpr15.pdf. The authors 
of this study believe that all AI techniques that derive from creating decision boundaries 
between classes (not just deep neural networks) are 
subject to this “self fooling” phenomenon. 

540 R. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT Press, 1998. 

541 G. Templeton, “Turing Learning breakthrough: Computers can now learn from pure 
observation ,” ExtremeTech, 30 Aug 2016. 

542 Section 3.4.4 in The Role of Autonomy in DoD Systems, DoD DSB, Task Force Report, Office 
of the Under Secretary of Defense for Acquisition, Technology and Logistics, July 2012. 

543 Our earlier discussion of human control of robotic swarms is worth recalling in the present 
context. The literature on human supervisory control of multiple semi-autonomous robots is 
sparse, and much of it remains cutting edge. Just as there is currently no general method that 
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predict usability and reliability in the human-robot teaming; (5) how to capture and 
express the HRIs for a particular application domain; and (6) how to characterize 
end-users. The study of HRI thus spans a broad spectrum of research domains: 
unmanned systems, human factors, psychology, cognitive science, natural language 
processing, communication, computer supported work groups, and sociology. (The 

problem of developing a taxonomy and set of metrics to describe HRI isas we will 

see later in this sectiona microcosm of the problem of developing a framework for 

describing autonomy in general; a recent survey544 references 29 papers containing 
no less than 42 metrics, most of which still fall short of providing measures for HRI-
derived capabilities and not just capabilities that stem from robots alone.) 

The key benefits to DoD on focusing on HRI and human-robot teaming, rather than 
on robots alone include: reduced cost of operating and designing platforms, 
increased adaptability to new situations, and (assuming successful teamwork can be 
established) faster performance of tasks with fewer errors. Two teamwork styles are 
possible: remote telepresence (in which a human operator works through the 
unmanned system to perceive and act in real-time at a distance) and taskable agency 

(in which the robot is delegated sole responsibility for the mission). “Trust” becomes 
a major factor for taskable agents (and is discussed briefly later, in the context of 
testing and evaluation of autonomous systems). 

There are two key gaps in HRI for unmanned systems (emphasized by DSB/2012 to 
highlight the likelihood of increasing use of human-robot teaming): (1) natural user 
interfaces, to enable trusted human-system collaboration (e.g., operator control 
interfaces, interfaces that facilitate human-robot dialog, and visual-centric interfaces 
that make visible what the unmanned system is doing and why), and (2) 
understandable autonomous system behaviors. The latter denotes a fundamental 

limitation due to current state-of-the-art practice in the modeling, prescribing, 
predicting, and/or testing (the veracity of) the “behavioral space” of autonomous 
systems (aspects that relate to testing and evaluation are discussed later in this 
section).  

                                                                                                                                           
maps rules that describe context-dependent actions of individual robots to desired group 
behaviors (see previous section), there are (as of this writing) no validated schemes for scalable, 
flexible, and adaptive human control of robot teams. Ref: K. Sycara, Robust Human Interaction 
with Robotic Swarms, presentation at ICAART 2016. 

544 R. Murphy and D. Schreckenghost, “Survey of metrics for human-robot interaction,” 
presented at the 24th IEEE International Symposium on Robot and Human Interactive 
Communication, 2015. 



 

 

 

176 
 

Natural language understanding 

Natural language processing (NLP) is broad interdisciplinary field focused on 
developing methods by which humans and computers can communicate using 
conventional “human” languages. Dating back to the roots of computer science in the 
1940s and 1950s,545 today it is a mix of computer science, artificial intelligence, and 
computational linguistics. 

Since natural language is obviously the preferred way for humans to interact with 
other humans, HRI researchers are naturally interested in finding ways for human 

operators to communicatee.g., issue orders to, extract high-level information from, 

collaborate in real-time withautonomous systems. The drawback is that meaningful 

communication entails understanding (on the part of the robot); and achieving 

understanding is difficult because of the inherent ambiguity of information in 
changing contexts. Traditionally, and because the state-of-the-art in natural language 
understanding (NLU) is adequate only for basic tasks (e.g., simple instruction codes 
using a limited vocabulary, such as been commercially available via Amazon’s Alexa 
program, Apple’s Siri, and Google’s Home),546 human-machine interfaces have relied 

primarily on graphical user interfaces (GUIs). However, it is easy to imagine 
situations (such as when a human operator’s hands are engaged in some other 
concurrent activity) that a NLU-interface would be highly preferable. 

NLP, by itself, does not denote any specific method or algorithm, and is instead best 
thought of as a label for a broad rubric of related techniques and research. Examples 
include (and ordered roughly by “degree of difficulty” of achieving): text 
summarization, in which a given document is distilled to manageably small 
summary; named entity recognition, which is the task of identifying text elements 

that belong to certain predefined categories, such as the names of persons, 
organizations, locations, expressions of times, etc.; relationship extraction, in which 
the relationship between various named parts of a chunk of text are identified (“an 
object O belongs to person P”); semantic disambiguation, in which a priori ambiguous 

meanings of words (or chunks of text) are automatically disambiguated from a 
deeper analysis of context and/or information that may be culled from an “ontology” 
(see discussion below); sentiment analysis, in which certain kinds of subjective 
information is extracted from a document or set of documents (e.g., extracting a 
range of emotional reactions to public events from social media posts); speech 

                                                   
545 S. Lucci and D. Kopec, AI in the 21st Century, Mercury Learning and Information, 2013. 

546 S. Adee, “It's just common sense,” New Scientist 232, no. 3094, 8 Oct 2016; J. Dunn, “We put 
Siri, Alexa, Google Assistant, and Cortana through a marathon of tests to see who's winning the 
virtual assistant race — here's what we found,” Business Insider, 4 Nov 2016. 
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recognition, which refers to the textual representation of sound recordings of people 

speaking.  

NLU, in which semantic content is extracted from free-form text and speech, falls 
towards the tail end of this ranked list, and is arguably “the” most difficult open-
research problem of NLP. To highlight the enormous difficulty involved in developing 
NLU systems, recall two notable recent examples discussed in an earlier section: (1) 
IBM’s Watson, and (2) CyCorp’s CyC. Watson is an ongoing research effort (initiated in 

2007 by IBM), whose original goal was to develop an AI system that performs 
sufficiently well on open-domain (free-form based) question-and-answering to 
compete with human champions at the game of Jeopardy!547 In 2011, Watson beat the 
two highest ranked Jeopardy! players of all time in a two game match (played on 

14/15 Feb 2011).548 As a benchmark of the research and development time required 
to build a sophisticated question-and-answer system capable of defeating the best 
human players of Jeopardy!, it took IBM four years of dedicated effort by a staff of 
20.549 Although IBM’s Watson research team is no longer focused on Jeopardy!, 

development work continues on applying the underlying learning method (deep 
learning and reinforcement learning)550 to other problems (e.g., health care). The 
challenge has been to adapt Watson to a specific domain, which has proven to be a 
highly nontrivial enterprise (see earlier discussion). 

The Cyc Project551 (its name is derived from encyclopedia) is predicated on the idea 

that a HAL/9000-like artificial intelligence system552 can only be developed by first 
codifying, in machine-usable form, a significant fraction of millions of pieces of 
knowledge that comprise human common sense (e.g., “an automobile is driven on a 
highway,” “a playground is a place,” and “a lemon is sour”). Started in 1984 by 

                                                   
547 http://www.jeopardy.com/. Some sample Jeopardy! questions: (1) “ On Sept. 1, 1715 Louis 
XIV died in this city, site of a fabulous palace he built” (ans: “What is  Versailles?”); (2) 
“Pseudonym of labor activist & magazine namesake Mary Harris Jones” (ans: “What is Mother 
Jones?”); and (3) “Sakura cheese from Hokkaido is a soft cheese flavored with leaves from this 
fruit tree” (ans: “What is Cherry?”). Ref: “Sample 'Jeopardy!' questions,” Arizona State Univ., 
2010: https://asunews.asu.edu/20101103_jeopardyquestions. 

548 S. Baker, Final Jeopardy: Man vs. Machine and the Quest to Know Everything, Houghton 
Mifflin Harcourt, 2011. 

549 http://researcher.watson.ibm.com/researcher/view_group_pubs.php?grp=2099 

550 D. Ferrucci, et al., Building Watson: An Overview of the DeepQA Project, AI Magazine, 2010.  

551 http://aitopics.org/link/cyc-project. 

552 HAL/9000 is the fictional human-like artificial intelligence system depicted in the movie 
2001: A Space Odyssey. 
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Douglas Lenat at the Microelectronics and Computer Technology Corporation,553 the 
Cyc Project moved under the auspices of an independent company, Cycorp, Inc. in 

1994 (with Lenat still serving as President and CEO),554 where it continues to do 
research on ontology, knowledge representation, knowledge acquisition, natural 
language processing and machine learning. Nearly half of Cycorp’s revenue comes 
from U.S. government agencies.555 An open source version of its knowledge base and 
functionality was released to the public under the OpenCyc project in 2002.556 As of 
2012, OpenCyc contains approximately 240,000 concepts and 2,000,000 “rule of 
thumb” assertions (the full Cyc knowledge Base contains around 500,000 concepts 
and 5,000,000 assertions). Cyc is currently the world’s largest existing commonsense 

knowledge base ontology and symbolic-AI inference reasoning engine.557  

A typical deductive inference by Cyc is “Bob is wet,” generated from the statement 
“Bob is completing a marathon.”558 Cyc uses its commonsense rules to deduce, first, 

that a marathon is a form of race; second, that any human (i.e., “Bob”) who runs a 
marathon must physically exert himself; third, that people sweat when exerting 
themselves; and, finally, that when anything sweats it is wet. However, Cyc’s ability to 

infer new knowledge from an existing base is limited. For example, the system does 
not currently support either inductive or abductive reasoning. Questions regarding 
the potential of Cyc’s long-term growth include: (1) the “brittleness” of its assertions 
(currently treated as simple binary true/false statements; i.e., there is no room for 
probabilistic “fuzziness”), and (2) the scalability (the system’s performance must 

both degrade gracefully as the knowledge base grows largeCyc’s current inference 

engine sometimes “slows down to a crawl” during particularly large searches through 

its entire knowledge base559and be free of reification (i.e., the inadvertent 

interpretation of “possibly true” facts  as definitely true). The “takeaway” is that 
though CyC, like Watson, arguably represents the current apex of the state-of-the-art, 

                                                   
553 A history of the project is described by Lenat in an interview with S. Laningham: IBM 
DeveloperWorks, podcast, 16 September 2008: http://www.ibm.com/developerworks/ 
podcast/ dwi/cm-int091608txt.html. 

554 http://www.cyc.com/. 

555 L. Wood, “Cycorp: The Cost of Common Sense,” Technology Review, March 2005. 

556 http://sourceforge.net/projects/opencyc/files/; http://www.opencyc.org/images/opencyc-
kb-browser.gif. 

557 D. Ramachandran, P. Reagan, and K. Goolsbey, “First-Orderized ResearchCyc: Expressivity 
and Efficiency in a Common-Sense Ontology,” in AAAI Workshop on Contexts and Ontologies: 
Theory, Practice and Applications, 2005. 

558 Example based on B. Copeland, Cyc, Encyclopedia Britannica online: 
http://www.britannica.com/EBchecked/topic/752898/CYC 

559 J. Friedman, “The Sole Contender for AI,” Harvard Science Review, 2003 
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it is both limited in terms of its innate ability to “understand” and draw general 
inferences, and required a prodigious amount (25+ years) of research of 
development. 

Multi-agent coordination 

Multi-agent coordination refers to the problem of distributing a task over multiple 
autonomous robots, software agents, and/or humans. Group coordination may either 
emerge from the agents interacting or negotiating with each other either directly 
(distributed coordination) or by being explicitly directed by a human operator 
(centralized coordination).  However coordination is achieved, the method must 
synchronize the activities of all agents involved, and accommodate real-time changes 
to the environment. 

Apart from introducing potentially new CONOPS (such as swarm tactics), the ability 
to coordinate multiple autonomous systems has at least four benefits:560 (1) increased 
coverage, (2) decreased costs, (3) redundancy, and (4) specialization. Multiple 

autonomous systems can provide persistent coverage over wider areas than 
individual platforms. Having many low-cost systems can potentially provide the same 
performance effectiveness as a single high-cost platform, while also providing 
redundancy to militate against dangers in contested areas. If multi-agent 
coordination can be combined with autonomous planning, each would enhance the 
benefit of the other (e.g., the actions of multiple robots could be coordinated in real-
time in communications-denied areas). 

The main caveat to achieving these capabilities was discussed in an earlier section in 
the context of state-of-the-art practices in engineering robotic swarms:561 no general 
method currently exists that maps individual rules to desired group behavior. The 

design of multi-agent systems has, to date, been mostly ad-hoc, with little or no 
(meta) coordination of effort among different research groups (and specific 
algorithms and details of their implementation remaining proprietary).  

Other gaps in technology include:  

 Unpredictability of emergent behavior, which refers to one of the core 

attributes of  complex adaptive systems (namely, that there is no general 
method to predict the global behavior of a system from knowing only its 
constituent parts and low-level rules of interaction) 

                                                   
560 Section 3.4.6 in The Role of Autonomy in DoD Systems, DoD DSB, Task Force Report, Office 
of the Under Secretary of Defense for Acquisition, Technology and Logistics, July 2012. 

561 I. Navarro and F. Matia, “An Introduction to Swarm Robotics,” International Scholarly 
Research Notes, Vol. 2013, 2013:  https://www.hindawi.com/ journals/isrn/2013/608164/. 
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 Spectre of unanticipated interference, refers to the possibility that individual 

robots will unintentionally interfere with one another (and is a partial 
consequence of the main caveat and gap #1) 

 Communication, in the sense that the fundamental problem of identifying 
what to communicate (both to and within a robotic swarm), and when to 

communicate it, remains an open question in multi-agent design research 

 Levels of intelligence, which refers to another open research problem that 

seeks to determine an “optimal” balancewhich may need to be maintained 

dynamically, as a mission unfoldsbetween onboard intelligence (that 

enables individual robots to adapt to changing conditions), swarm 
intelligence (in which one member, or at most a few members, of a swarm are 
endowed with an ability to direct other members of the swarm), and external 
control (in which a human directs and coordinates behaviors).  

Technical challenges 

The academic, commercial, and military research communities have identified a 
number of outstanding technical challenges that must be solved (to varying degrees) 
in order to develop fully autonomous systems; most stem directly from the cadre of 
as-yet unsolved problems associated with AI and the behavior of complex systems:562 

1. Fundamental “Devil is in the details” R&D hurdles: while it is easy to formally 
anoint an unmanned system as “autonomous” and engage in Einsteinian 
Gedankan563 (or “Thought”) experiments to examine, and develop CONOPS 

for, various operational environmentsas though such systems already 

existin order to actually develop an autonomous system requires 

confronting many of the same fundamental problems that the academic and 
commercial AI and robotic research communities have struggled for decades 
to “solve.” To survive and successfully perform missions, autonomous 
systems must be able to sense, perceive, detect, identify, classify, plan, decide, 
and respond to a diverse set of threats in complex and uncertain 

                                                   
562 A. Finn and S. Scheding, Developments and Challenges for Autonomous Unmanned 
Vehicles: A Compendium, Springer-Verlag, 2010; J. M. Bradshaw, et al., “The Seven Deadly Myths 
of Autonomous Systems," IEEE Intelligent Systems 28, no. 3, 2013; and 
J. Bornstein, “DoD Autonomy Roadmap – Autonomy Community of Interest,” Presentation 
at NDIA 16th Annual Science & Engineering Technology Conference, March 2015.  

563 S. Perkowitz, “Gedankenexperiment,” Encyclopedia Britannica Online: 
https://www.britannica.com/topic/Gedankenexperiment. 
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environments (see below). While aspects of all of these “problems” have been 
solved to varying degrees, there is, as yet, no system that fully encompasses 
all of these features. The reason is simple: the anticipation of the perceived 
benefits of autonomy is not (yet) in sync with the reality of what is currently 
possible (or has yet been demonstrated) in the AI and robotics research 
communities.564 

2. Complex and uncertain environments: autonomous systems must be able to 

operate in complexpossibly, a priori unknownenvironments that possess 

a large number of potential states that can neither all be pre-specified nor be 
exhaustively examined or tested. Systems must be able to assimilate, 
respond, and adapt to dynamic conditions that were not considered during 

their design. This “scaling” problemi.e., being able to design systems that 

are developed and tested in static and structured environments, and then 
have them perform as required in dynamic and unstructured 

environmentsis highly nontrivial.  

3. Emergent behavior: if an autonomous system is to be able to adapt to 

changing environmental condition, it must have a built-in capacity to learn; 
and to do so in an unsupervised fashion. Under such conditions, it may be 
difficult to predict, and be able to account for, the system’s emergent 
behavior. 

4. Human-machine interactions: the operational effectiveness of autonomous 

systems depends on the dynamic interplay between the human operator and 
the machine(s) in a given environment, and how the system responds, in real-
time, to changing operational objectives as the human adapts to dynamic 
contexts. The innate unpredictability of the human component in human-
machine collaborative performance only exacerbates the other challenges 
identified by this list.  

5. Human-machine communication: the interface between human operators and 

autonomous systems will likely include a diverse space of tools that include 
visual, aural, and tactile components. In all cases, there is the challenge of 
translating human goals into computer instructions (e.g., “solving” the long-
standing “AI problem” of natural language processing), as well being able to 

                                                   
564 See earlier discussion of the state-of-the-art in AI and these references: G. Bekey, 
Autonomous Robots: From Biological Inspiration to Implementation and Control, MIT Press, 
2005; G. Weiss, editor, Multiagent Systems, Second Edition, MIT Press, 2013; S. Lucci and 
D. Kopec, Artificial Intelligence in the 21st Century, Mercury Learning and Information, 2013; 
E. Davis, “The singularity and the state of the art in artificial intelligence,” presented 
at the Technological Singularity Ubiquity Symposium, Ubiquity, October 2014. 
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depict the machine’s “decision space” in a form that is understandable by the 
human operator (e.g., allowing the operator to answer the question, “Why did 
the system choose to take action X?”)  

6. Predictability/control: as autonomous systems increase in complexity, we can 

expect a commensurate decrease in our ability to both predict and control 
such systems; i.e., the “spectre of complacency in complexity.” As discussed 
earlier, and to extent that, say, “deep learning” techniques will play a key role 
in shaping the “AI/software component” of autonomous systems, recall that 
there is a fundamental tradeoff between being able to achieve a given 
performance level (e.g., AlphaGo’s super-human ability to play Go) and to 
simultaneously know how that performance is achieved (e.g., the innate lack 

of access of the “outside world”including the programmersto AlphaGo’s 

internal “rule set” that determines why given moves are selected). 

7. Commercial-military focus disconnect: while we have argued that many key 

innovations in AI, robotics, and autonomy are coming (and are likely to 
continue to come) from the commercial sector, the innovation thrusts in the 
commercial sector are not completely aligned with military needs: the 
problem-solving environments are typically “simpler” and easier to pre-
specify; relegating “hard parts of problems” to humans to solve is more often 
an acceptable option; and, except for cyber-attacks, commercial systems 
rarely deal with intelligent adversaries. 

Interoperability 
DoD policy565 mandates that IT and National Security Systems (NSS) shall be 
interoperable with existing and planned systems and equipment of joint, combined, 
and coalition forces, other U.S. Government departments and agencies, and 
nongovernmental organizations. Specifically, the policy requires DoD components to 
develop, acquire, test, deploy, and maintain ITs that are “interoperable and 
supportable with existing, developing, and proposed (pre-Milestone A) ITs through 
architecture, standards, defined interfaces, modular design, and reuse of existing IT 
solutions,” and “are interoperable with host nation, multinational coalition, and 
federal, state, local, and tribal agency partners.”566 And DoD Directive 5000.01567 
requires that “systems, units, and forces shall be able to provide and accept data, 
information, materiel, and services to and from other systems, units, and forces and 
shall effectively interoperate with other U.S. Forces and coalition partners.” 

                                                   
565 CJCSI 6212.01F, Net Ready Key Performance Parameter (NR KPP), 21 March 2012. 

566 Ibid., p. 3. 

567 DoDD 5000.01, The Defense Acquisition System, 12 May 2003. 
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Since DoD unmanned systems have up until now been driven by quick-development 
timelines to accommodate operational requirements (and developed primarily for 
Service-specific needs), deployed systems have typically demonstrated only limited 
interoperability with other manned and unmanned platforms across Services.568 While 
there are efforts to develop interoperability standards of message formats, 
architectures, and data protocols for unmanned systems (e.g., the NATO Standard 
Agreements, STANAG 4586, STANAG 4609, or the Joint Architecture for Unmanned 
Systems, JAUS),569 they have thus far been used mainly to drive modular and re-
usable designs of unmanned platforms and components, not facilitate operational 
machine-machine collaboration or cross-domain autonomy.570 It is reasonable to 
expect that, as autonomous capabilities increase, and as the operational push 
towards integrating, say, air and ground vehicles also strengthens, there will be a 
concomitant impetus to develop a robust set of interoperability protocols. However, 
this will be impossible without a set of accepted set of standard T&E procedures for 
assessing autonomous unmanned system performance, something that DoD’s 
acquisition currently lacks (see discussion in next section). 

Trust 

Research by the general HRI community has shown that trust plays a critical role in 

shaping an operator's interaction with an autonomous system.571 However, trust is 
not an innate trait of the system; rather, it is a relative measure of how a human 

operator (or operators)whose own performance depends, in part, on collaborating 

in some way with the systemexperiences and perceives the behavior of the system; 

or, better, how a human operator perceives the behavioral pattern of a system. Trust 

is “an attitude that an agent will help achieve an individual’s goals in a situation 
characterized by uncertainty and vulnerability.”572 Though there are many alternative 
formulations of this basic description, attempts at a more formal definition, and lists 
of basic attributes needed, to varying degrees, for the creation of trust in a system, 

the underlying truthand, as will be argued, a key reason why autonomy is so hard 

to certifyis that trust is an abstraction that cannot be easily mathematized. No 

                                                   
568 Unmanned Systems Integrated Roadmap: FY2013-2038, U.S. Department of Defense: 
http://archive.defense.gov/pubs/DOD-USRM-2013.pdf. 

569 P. Durst and W. Gray, Levels of Autonomy and Autonomous System Performance Assessment 
for Intelligent Unmanned Systems, US Army Corps of Engineers, Engineer Research and 
Development Center, Geotechnical and Structures Laboratory, ERDC/GSL SR-14-1, April 2014. 

570 Ibid., p. 8. 

571 P. Hancock, et al., “Human-Automation Interaction Research: Past, Present, and Future,” 
Ergonomics in Design: The Quarterly of Human Factors Applications 21, April 2013. 

572 J. Lee and K. See, “Trust in automation: designing for appropriate reliance,” Human Factors 
46, no. 1, 2004. 
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absolute measure of trust exists; rather, it is a relative measure that can be described 
only in terms of how an a priori level of trust has changed. 

HRI research has also found that trust must be properly calibrated to ensure safe 
operation of an autonomous system. Too much trust can lead to abuse of the 
autonomous system; too little trust can lead to disuse of the autonomous system.573 

Both the 2012574 and 2016575 Defense Science Board (DSB/2012 and DSB/2016, 
respectively) studies on autonomy have recognized the importance of trust in the 
development and deployment of autonomous systems. DSB/2012, in the context of 
summarizing the challenges inherent in the adoption of autonomy, states that for 
“commanders and operators in particular, these challenges can collectively be 
characterized as a lack of trust that the autonomous functions of a given system will 

operate as intended in all situations.”576 In DSB/2016, trust is a major issue around 
which much of the narrative is woven:  

Trust is complex and multidimensional. The individual making the 
decision to deploy a system on a given mission must trust the 
system; the same is true for all stakeholders that affect many other 
decision processes. Establishing trustworthiness of the system at 
design time and providing adequate indicator capabilities so that 
inevitable context-based variations in operational trustworthiness can 
be assessed and dealt with at run-time is essential, not only for the 
operator and the Commander, but also for designers, testers, policy 
and lawmakers, and the American public.577 

Trust has been studied extensively both for human teaming578 and in the general 
industrial robotics and automation literature,579 and entails at least as many 
philosophies and approaches as does the literature on autonomy itself. For example, 

                                                   
573 M. Desai, et al., “Effects of Changing Reliability on Trust of Robot Systems,” in Proceedings of 
the 7th Annual ACM/IEEE International Conference on Human-Robot Interaction, Boston, 
Massachusetts, March 2012. 

574 The Role of Autonomy in DoD Systems, DoD DSB, Task Force Report, Office of the Under 
Secretary of Defense for Acquisition, Technology and Logistics, July 2012. 

575 Summer Study on Autonomy, DoD, DSB, Task Force Report, Office of the Under Secretary 
of Defense for Acquisition, Technology and Logistics, June 2016. 

576 Executive Summary, The Role of Autonomy in DoD Systems, 2012. 

577 Section 2, Summer Study on Autonomy, 2016. 

578 N. Stanton, editor, Trust in Military Teams, Ashgate Publishing Company, 2011. 

579 M. Dzindolet, et al., “The role of trust in automation reliance,” International Journal 
of Human-Computer Studies 58., 2003. 
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Lee and See580 summarize no less than 14 separate studies on how to define “trust” in 
automated systems. The key to all of these studies is a set of “dimensions” that 
describe the basis of trust. Examples include:581  

 Benevolence: does the system support the mission and operator? 

 Directability: can a system’s actions be redirected by the operator? 

 False-alarm rate: are a system’s error rates known and acceptable? 

 Perceived competence: does the operator believe the system can perform its 
assigned tasks? 

 Reliability: the system has only a small probability of failing during a mission 

 Robustness: how gracefully does the system respond to perturbations? 

 Understandability: are the reasons behind a system’s behaviors clear? 

 Utility: do a system’s actions add demonstrable value to a mission? 

 Validity: is the system solving the correct set of problems? 

Of course, just as for autonomy, for which there exist myriad taxonomies and 
dimensions (see figures 27, 28, and 29), there is no objective absolute measure of 
“trust.” It is, at best, a relative concept, such that terms such as those that appear in 
the above list can be used to measure the relative differences between (e.g., “Is 
system A more or less ‘reliable’ than system B for a given set of tasks?”). If, and 
when, trust is established (by human operator, P, in a given system, S), it will not be 

the result of some “trust threshold” being exceeded (and measured in a 
mathematically precise manner). Rather, the trust will emerge over time, as P trains 

and works with S, and eventually determinespartly as a result of objective 

measures, and partly as a result of a subjective assessment of S’s patterns of 

behaviorthat S can adequately perform the set of tasks assigned to it. Even so, trust 

is more of a dynamic attribute of an ongoing series of human-machine collaborations 
than it is a static measure (that, once achieved, remains fixed). Relationships between 
human operators and robots can evolve and mature just as they do between 
humans.582 They can strengthen, weaken, and transform (in unanticipated ways) over 

                                                   
580 J. Lee and K. See, “Trust in automation: designing for appropriate reliance,” Human 
Factors 46, no. 1, 2004. 

581 G. Palmer, A. Selwyn, and D. Zwillinger, “The Trust ‘V’: Building and Measuring Trust in 
Autonomous Systems,” Chapter 4 in Robust Intelligence and Trust in Autonomous Systems, 
edited by R. Mittu, et al., Springer-Verlag, 2016. 

582 We do not have the space here to examine the detailed similarities and differences 
between trust of humans and trust of machines. While some similarities may be self-evident 
(as evidenced by the intuitive appeal of the list of basic dimensions of trust), there are 
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periods of time, and the degree of trust that an operator bestows on a machine, in 
general, depends on specific contexts and mission goals. 

DSB/2016 identifies six key issues and barriers to establishing trust in autonomous 
systems:583  

 Sensing and thinking disconnect: autonomous systems are likely to perceive 

the environment (using a variety of sensors and data sources not available to 
human teammates) and “reason” about it very differently from the way 
humans do (e.g., scene analysis derived from deep learning neural networks). 

 Lack of situational awareness: even if an autonomous system is able to 
perform its tasks adequately for a fixed environment and when it is in its 
nominal state (and thereby, at least, provisionally, be deemed “trustworthy”), 

one of the key technical challenges for autonomy in generalnamely, the 

ability of a system to self-inspect and to be generally aware of the 

environment, and any changes to itis also an issue for establishing trust. 

 Predictability and directability: autonomous systems must not only be able to 

inform their human teammates of any relevant information about their 
mutual environment (and to do so in an understandable way), but must also 
be able to anticipate events as they might unfold (e.g., it is hard to “trust” a 
system that may lead teammates into a dangerous situation because of an 
inability to predict it). In the event that something goes wrong (because of an 
action taken by the machine), the system must be able to both inform its 
teammates of the reasoning behind its action(s), and be amenable to 
redirection. 

 Commensurability of human-machine goals: trust is difficult to achieve in 

human-machine teaming unless there is a mutual understanding of the goals 
of a mission.584 DSB/2016 cites the example of how many of the commercial 
aircraft accidents that occurred in the 1990s resulted from a basic disconnect 
between human goals (e.g., stay on the glide slope during landing) and 
machine goals, in this case the flight computer (e.g., execute a go-around). As 
the software driving autonomous systems becomes more sophisticated, and 

                                                                                                                                           
differences. For example, humans are generally more forgiving of trust breeches by other 
humans than they are of breeches by machines. Also, while humans may quickly “forgive” 
a breech if it is followed by a “quick confession” and/or explanation, by another human, the 
same is not true for a machine. Ref: R. Hoffman, et al., “Trust in Automation,” IEEE Intel. Sys. 
28, no. 1, 2013. 

583 Section 2, Summer Study on Autonomy, 2016. 

584 This is also an issue that lies at the heart of ethics issues surrounding the use of lethal 
autonomous weapons (discussed in a later section). 
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recedes more and more from “simple” outside inspection (not just from the 
developers, who may be using, say, neural-net-based algorithms, but from 
operators as well, who may erroneously “trust” that a system is driven by a 
published set of “high level” goals, but whose behavior, in reality, derives 
from a set of “low-level” goals that are invisible to the operator), the potential 
for disconnects between what an operator expects a machine to do and what 
the machine does obvious increases. 

 Human-machine interfaces: to the extent that trust is a product of effective 

collaboration between humans and machines, traditional interfaces (such as 
mouse point-and-click) that slow rather than enhance real-time coordination 
and cooperation create barriers to developing trust. Ideally, human-machine 
teaming will rely on voice-command and dialogs powered by natural language 
processing algorithms, but such capabilities are beyond current state-of-the-
art. 

 Adaptive machine learning: since (full) autonomy requires that a machine be 

able to learn and adapt to changing environmental conditions, it is not only a 
difficult technical challenge on its own, but impacts both trust (i.e., how does 
the trust that has been “earned” by a system when operating in a fixed 
environment translate to different environments, and/or different machines 
as new team members?)585 and verification and validation, since the 
conditions under which verification and validation is initially performed may 
no longer be valid. 

Establishing and maintaining trust in an autonomous system requires a continual 
feedback between human (developers, operators, and commanders) and machine 
during the entire lifecycle of the system; and includes not just development and 
experimentation, but operational contexts as well. Palmer, et. al.,586 introduce a basic 
framework that combines a list of trust attributes with factors that describe 
autonomy, and show how it can be used to modify the systems engineering 

modelbuilt into the existing DoD acquisition processto enhance the ability to 

“build in” trust. We will touch on aspects of this framework when we discuss the 
inherent limitations of the test and evaluation (T&E) and verification and validation 
of autonomous systems in the following section. 

                                                   
585 Palmer, et al. (“The Trust ‘V’: Building and Measuring Trust in Autonomous Systems,” 
Chapter 4 in Robust Intelligence and Trust in Autonomous Systems, edited by R. Mittu, et al., 
Springer-Verlag, 2016), add systems-of-systems integration to their list of “dimensions” that 
describe the basis of trust, by which they mean the undesirable emergent behaviors that may 
emerge when multiple systems (autonomous or not) are combined. 

586 Ibid., Section 4.5. 
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Acquisition process 

The DoD Acquisition Process (DAP) is one of three procurement processes that make 
up the Defense Acquisition Management System (DAMS), and is implemented by DoD 
Instruction (DoDI) 5000.02.587 Acquisition programs consist of a series of milestone 
reviews and other decision points that authorize entry into a new program phase. 
This instruction defines the policies that govern the DAS and forms the management 
foundation for all DoD programs that include weapon systems, services, and 
Automated Information Systems (AIS). DoD Instruction 5000.02 also establishes a 
program management framework for translating user needs and technology 
opportunities into stable, affordable and well-managed acquisition programs; and 
identifies specific statutory and regulatory reports and other information 
requirements for each milestone and decision point (defined below).  Since there are 
many more layers of detail to the DAS than space permits,588 we focus our discussion 
only on those aspects that directly impact the subject matter of this report. 

Figure 35 shows a generic schematic of the DAP. Two notable time scales are: (1) 91 
months, on average, from start of an Analysis of Alternative (AoA) study to Initial 
operational capability (IOC), and (2) historically, Information Technology (IT) 
programs have averaged 81 Months. Intermixed on this main timeline are two other 
telling time-scales: an average of 3 years to accommodate personnel rotation, and a 
roughly two-year cycle of technology change. 

The DAP is predicated on a user need being identified (i.e., the first requirements 
authority review block shown center-left in figure 35). DoDI 5000.02 defines this first 
step in the acquisition process as the “capability needs and acquisition management 
systems shall use Joint Concepts, integrated architectures, and an analysis of 
doctrine, organization, training, materiel, leadership and education, personnel, and 
facilities (DOTMLPF) in an integrated, collaborative process to define needed 
capabilities to guide the development of affordable systems.”589 

                                                   
587 DoD Instruction 5000.02, Operation of the Defense Acquisition System, January 7, 2015: 
http://acqnotes.com/wp-content/uploads/2014/09/DoD-Instruction-5000.02-Operations-of-
the-Defense-Acquisition-System-7-Jan-2015.pdf. 

588 The most recent release of the Defense Acquisition Guidebook (16 Sep 2013) contains 1248 
pages: acc.dau.mil/docs/dag_pdf/dag_complete.pdf. 

589 Enclosure 2, DoDI 5000. 
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Figure 35.  Generic DoD acquisition process  timeline 

Ref: DoD, Defense Science Board, Policies and Procedures for the Acquisition of 
Information Technology, March 2009. 
 

The generic DAP (as depicted in figure 35) consists of five core phases:590 

1. Materiel Solution Analysis (MSA): assesses potential solutions for a needed 

capability as defined in an Initial Capabilities Document (ICD), and requires 
an Analysis of Alternatives (AoA) study (the purpose of which is to evaluate 
the mission effectiveness, operational suitability, and estimated life-cycle 

cost of alternative solutions for meeting an ICD-specified mission capability).  

2. Technology Maturation & Risk Reduction (TMRR): the goal of which is to 

produce a working prototype that allows for a basic assessment to be made 
of the technology, risk, and design. This phase includes competitive 
prototyping of system elements, refinement of requirements, and the 
development of the functional and allocated baselines of the end-item system 
configuration (“allocated baselines” refers to how system function and 
performance requirements are allocated across lower level configuration 
items). The objective is to develop a sufficient understanding of a solution to 

                                                   
590 Defense Acquisition Portal: https://dap.dau.mil/aphome/das/Pages/Default.aspx 
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allow sound business decisions on starting a formal acquisition program in 

the Engineering & Manufacturing Development (EMD) phase. 

3. Engineering & Manufacturing Development (EMD): in which the prototype 

enters a bona-fide developmental stage, and interim designs can be tested 
(via developmental and operational tests, and live-fire test and evaluation), 
and the final prototype undergoes critical design review. The EMD phase 
starts after a successful milestone B (see figure 35) and pre-EMD review and 
is considered the formal start of the actual system program. The goal is to 
complete the development of a system (or increment the capability of an 
existing system), complete full system fabrication and integration, and test 

and evaluate the system before moving into the next phase. 

4. Production and Deployment (PD): during which a system that satisfies an 

operational capability is produced and deployed to the end user. The phase 
begins after a successful milestone C review and the EMD Phase is complete, 
and includes both Low-Rate Initial Production (LRIP), in which a small-
quantity set of systems is produced for Initial Operational Test and 

Evaluation (IOT&E), and Full-Rate Production and Deployment (FRP&D).  

5. Operations and Support (O&S): during which a system is used and supported 

by users in the field. The main focus is the general cost-effective support to 
sustaining a system (e.g., maintaining capabilities, logistics, and upgrades).  
The last component of O&S (and in the overall life-cycle of a system) is the 
system’s disposal after it has reached the end of its useful life. 

Challenges: (general) technology related 

Acquisition challenges, particularly for IT systems and general weapons systems that 

include a heavy coupling between hardware and software, have been knownand 

debatedfor decades.591 However, despite numerous attempts by various 

stakeholders to address these challenges, the generic acquisition process (at least on 
the traditional institutional level) remains effectively unchanged. Whatever progress 
has been made in recent years derives more from workarounds instituted by DoD to 

facilitate “rapid acquisition” of systems,592 rather than wholesale changes applied to 
stovepiped processes of the DAP itself. 

                                                   
591 J. Merritt and P. Sprey, “Negative marginal returns in weapons acquisition,” in American 
Defense Policy, Third Edition, edited by R. Head and E. Roppe, John Hopkins Univ. Press, 1973. 

592 Examples include: U.S. Air Force Rapid Capabilities Office, the U.S. Army’s Asymmetric 
Warfare Group and  Rapid Capabilities Office, DoD’s Strategic Capabilities Office, and, most 
recently, SecDef’s Ashton Carter’s Defense Innovation Unit Experimental (DIUx). Ref: B. 
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Nonetheless, some recent progress has been made. For example, the 2009/2011 
National Defense Authorization Acts (NDAA/Sec 804), mandated a new IT acquisition 
process.593 This led to multiple Defense Science Board (DSB) Task Force (TF) studies 
of general issues of the acquisition process, which collectively concluded that:594 

 Oversight process not aligned with rapid acquisitions (favors large, high-level 
oversight) 

 Systems take too long to deliver and inconsistent with technology cycles 

 Overly detailed requirements inconsistent pace of technology change and 
need for rapid delivery  

 Inadequate metrics to assess IT-based systems performance 

 Testing integrated too late and serially 

 Cyber-security is inadequately managed during the acquisition process 

 Significant cultural impediments to change 

A notable absence in any of the above cited DSB/TF studies is any explicit mention of 

autonomy. 

DoDI 5000.02 canceled the interim 5000.02 version (issued Nov 2013, and which 
itself replaced DoDI 5000.01/2007), and explicitly implements policies and practices 
in the Better Buying Power (BBP) initiative.595 The BBP is designed to achieve greater 
efficiency through affordability, cost control, elimination of unproductive processes 
and bureaucracy, and promotion of competition; and to incentivize productivity and 
innovation in industry and government. Specifically, DoDI 5000.02 generalizes the 
basic timeline as depicted in figure 35 by replacing the single “generic” model with 
multiple system-type-specific program structure models (note that the five core 

phases outlined earlierMSA, TMRR, EMD, PD, and O&Sremain unchanged, 

                                                                                                                                           
Fitzgerald, A. Sander, J. Parziale, Future Foundry: A New Strategic Approach to Military-
Technical Advantage, Center for a New American Security, 2016. 

593 R. Pontius, Dir, C2 OUSD (Acquisition, Technology & Logistics), “Acquisition of Information 
Technology,” March, 2012. 

594 DSB TF on Improvements to Services Contracting, March 2011; DSB TF on DoD Policies and 
Procedures for the Acquisition of IT, March 2009; DSB TF on Creating a DoD Strategic 
Acquisition Platform, April 2009; and DSB TF on Fulfillment of Urgent Oper. Needs, July 2009. 

595 Under Secretary of Defense for Acquisition, Technology and Logistics, or USD(AT&L), Memo, 
Implementation Directive for Better Buying Power 3.0: Achieving Dominant Capabilities 
Through Technical excellence and Innovation, April 2015: http://www.acq.osd.mil/fo/ 
docs/betterBuyingPower3.0(9Apr15).pdf. 
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although the numbers and timing of certain milestone decisions and decision points 
depend on the specific model):596 

 Model 1: Hardware intensive, which is the classic timeline that has existed in 
some form in all previous versions of this instruction; e.g., major weapon 
platforms. 

 Model 2: Software intensive, that describes a model of a program that is 
dominated by the need for a complextypically defense uniquesoftware 
system that will not be fully deployed until several “builds” have been 
completed. 

 Model 3: Incrementally deployed software intensive, which is intended mainly 
for Defense Business Systems (DBS)i.e., information systems other than a 
national security system (NSS) operated by, for, or on behalf of DoD; financial 
systems, mixed systems, financial feeder systems). The model also applies to 
upgrades of some command and control systems, and weapons systems 
software (for which deployment of full capability occurs in multiple 
increments as new capabilities are developed and delivered, nominally in 1- 
to 2-year cycles).  

Model 3 applies specifically to cases where commercial off- the-shelf software 
are acquired and adapted for DoD applications. However, DoDI 5000.02 
cautions against misuse of the model, in that, as currently formulated, there 
is the potential for the process to be overwhelmed with frequent milestone or 
deployment decision points and associated approval reviews.597 

 Model 4: Accelerated acquisition, which is designed for cases where schedule 
considerations dominate over cost and technical risks. The model 
accommodates compression (and/or total elimination) of distinct phases of 
the DAP, and is intended to be used when a higher-risk acquisition program 
is required to respond to some “technological surprise” by a potential 
adversary. (There is a variant of this model that includes procedures for 
dealing with urgent needs that can be fulfilled in less than 2 years.598) 

                                                   
596 DoD Instruction 5000.02, Operation of the Defense Acquisition System, January 7, 2015: 
http://acqnotes.com/wp-content/uploads/2014/09/DoD-Instruction-5000.02-Operations-of-
the-Defense-Acquisition-System-7-Jan-2015.pdf. 

597 Model 3 is further distinguished from Model 2 by the inclusion of multiple acquisition 
increments that facilitate rapid delivery of capability. Each increment is assumed to provide 
a part of the overall required program capability, and may have several limited deployments. 
Each deployment results from a specific build and providing the user with a mature and tested 
sub-element of the overall incremental capability. (It is assumed that several builds and 
deployments may be necessary to satisfy requirements for an increment of capability.) 

598 Enclosure 13 to DoDI 5000.02, pp. 143-152. 
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 Model 5: Hybrid-A  hardware dominant concurrent with software, which is a 
model intended to be used for the acquisition of major weapons systems that 
combine the simultaneous development of hardware and software. While the 
overall schedule is defined largely by the design, fabrication, and testing of 
physical prototypes, software development dictates the pace of program 
execution, and must be tightly integrated and coordinated with hardware 
development decision points.  

The Hybrid-A model assumes that software development is organized into a 
series of testable software builds (which, in turn, also assumes that software 
functional capability development maturity criteria and technical 
performance criteria both exist and are well-defined). 

 Model 6: Hybrid-B   software dominant concurrent with hardware, which is 
the software-intensive complement to Model 5, and incorporates the same 
incremental software fielding policy as defined for Model 3. DoDI 5000.02 
suggests that while the Hybrid-B model may be complex to plan and execute 
successfully, of the six variants, it may be the most logical way to structure 
the acquisition program. Figure 36 shows a schematic of the Hybrid-B model. 

IT Box 

In addition to these acquisition modelsand to more explicitly take advantage of 

emerging commercial information technologyin 2014 the Chairman of the Joint 

Chiefs modified the Department's Joint Capability Integration and Development 
System (JCIDS) by introducing the IT Box.599 The “IT Box” is designed to delegate 
authorities to specifically support the more rapid timelines necessary for IT 
capabilities through the DAP, and is named after the four sides of an organizational 
template that need to be defined: (1) the organization that will provide oversight and 
management of the product; (2) the capabilities required; (3) the cost for application 
and system development; and (3) the costs for system enhancements and integration. 
The IT Box can lead faster timelines for IT programs because the sponsor’s 

organization is not required to return to the Joint Requirements Oversight Council 
(JROC) for approval of any changes to requirements unless the IT Box parameters are 

exceeded by prescribed thresholds. However, in terms of its ability to streamline the 
general acquisition of autonomy-enabling software and other innovative 
technologies, the IT Box suffers from the same fundamental limitation that applies to 

other acquisition models; namely, it does not accommodate the unique technical 
challenges of the design, development, testing, and accreditation of autonomous 
systems (as discussed in the next section). 

                                                   
599 Senate Armed Services Subcommittee on Readiness and Management Support Hearing, 
February 27, 2014: https://www.insurancenewsnet.com/oarticle/Senate-Armed-Services-
Subcommittee-on-Readiness-and-Management-Support-Hearing-a-466703#.UxXKQ_RdWV4. 
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Figure 36.  Schematic of acquisition Model 6 (hybrid-B: software dominant 
concurrent with hardware) 

Figure 8 in Department of Defense, Instruction 5000.02, January 7, 2015; CDD=capability 
development document; FD = full deployment; FDD = full deployment decision; IOC = 
initial operational capability. 
 

While DoDI 5000.02 emphasizes the special risks (to cost and schedule) that 
necessarily accompany all highly integrated complex software and hardware 
development processes, it does not provide any guidance on how to mitigate those 
risks (apart from asserting that risks “must be managed throughout the program’s 
life cycle and will be a topic of special interest at all decision points and milestones” 

600).  

Taking a more “bird’s eye” view of the technological challenges facing DoD (beyond 
just the problems inherent in the acquisition process itself, but still directly 
addressing them), is a recent report601 issued by The Center for a New American 

                                                   
600 DoDI 5000.02, p. 15. 

601 B. Fitzgerald, A. Sander, nd J. Parziale, Future Foundry: A New Strategic Approach to Military-
Technical Advantage, CNAS, Dec 2016: https://s3.amazonaws.com/files.cnas.org/documents/ 
CNAS-Report-FutureFoundry-final.pdf. 
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Security’s (CNAS’s) Future Foundry project (CNAS/FFP).602 The report recommends 

that DoD take a new strategic approachan “optionality strategy”that emphasizes 

developing and sustaining technological advantage by expanding the available range 
of military and technical options across a more diverse portfolio of capabilities and 
concepts: DoD’s “core acquisition challenge is not that its current system is 
fundamentally flawed, but that the department has many technology needs that the 
system is not designed to meet.”603 The main narrative of CNAS/FFP’s report is woven 
around its delineation of four core capability segments: (1) military unique systems 
with constrained competition, which includes the traditional low-production/high-

capital-investment weapons systems such as aircraft carriers and submarines, and 
whose suppliers are defense specialists; (2) military unique systems with viable 
competition, which includes most systems other than the large-scale examples 

included in the first segment (e.g., combat aircraft, armored vehicles, and unmanned 
systems); (3) military adapted commercial technology, the few current examples of 

which have all come from sources outside DoD’s traditional acquisition pipeline604 
(and which refers generally to any technology that may be rapidly developed and 
deployed by leveraging emerging commercial technologies); and (4) purely 
commercial technology, which includes all commercial off-the-shelf purchases (and 

which, though accommodated for by the existing acquisition process,605 is both 
underutilized and still reliant upon generating a stovepiped “military unique 
requirements” document prior to purchase). 

Notably, the only capability segment not covered by any existing acquisition 
processes is the third, which CNAS/FFP’s report identifies as the most promising 
opportunity for “new entrants.” Noting that the existing requirements process has 
been optimized for developing large-scale, long-term, military-unique weapon 

systemsand is ill-equipped for dealing with fast-paced innovationthe report 

recommends that the DoD add multiple new acquisition pathways toward finding 
and introducing a wider, more diverse, range of technologies. 

                                                   
602 The CNAS/FPP focuses on developing strategies that foster collaboration between DoD and 
potential partners from multiple commercial industry sectors. Ref: B. Fitzgerald, A. Sander, and 
J. Parziale, Future Foundry: A New Strategic Approach to Military-Technical Advantage, CNAS, 
Dec 2016 

603 Ibid., p. 22. 

604 The Defense Innovation Unit Experimental (DIUx) has been established, in part, to facilitate 
the discovery and development of precisely these kinds of outside-the-normal-acquisition-
pipeline capabilities and technologies. Ref: https://www.diux.mil/.  

605 DoD has authority to acquire commercial technology under the policy defined in Part 12 
(Acquisition of Commercial Items) of the Federal Acquisition Regulation (FAR): https://www. 
acquisition.gov/sites/default/files/current/far/pdf/FAR.pdf. 
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For example, one new pathwayforged as a mirrored complement to existing 

practices in the EMD, PD, O&S phases, and thereby effectively bypassing the 

traditional requirements phase (see figure 37)is simply to incorporate some of the 

same methods for discovering and identifying promising technologies that are now 
in place only as workarounds to the acquisition system (e.g., as part of the 
aforementioned DIUx). Such methods include wargaming, table-top exercises, and 
challenge competitions. Systems spawned via this new pathway would necessarily be 
of limited production, with multiple simultaneous prototype variants serving as 
examples of possible capabilities about which DoD can then make better informed 
decisions (including the option of harvesting some of the developed concepts and/or 
technologies for use in existing systems). Moreover, integrating developmental and 
operational T&E into the early stages of the new pathway (particularly for systems 
that transition into full production) will militate some of the unique technical 
challenges facing the development of autonomous systems. 

Figure 37.  An addition acquisition pathway to accelerate adoption of 
innovative technology 

After figure on page 26 in B. Fitzgerald, A. Sander, and J. Parziale, Future Foundry: 
A New Strategic Approach to Military-Technical Advantage,  CNAS, Dec 2016. 

Challenges: autonomy related 

All five phases of the DAP (whether generic, as shown in figure 35[], or defined by the 
six system-type-specific models defined in DoDI 5000.02) contain elements that 

touch uponindeed, as will be argued below, touch deeply uponautonomous 

weapons systems (AWSs). For example (see figure 35):606 (1) the MSA phase requires 
an assessment of potential solutions for a stated need, and a specification of 

                                                   
606 DoD Instruction 5000.02, Operation of the Defense Acquisition System, January 7, 2015 
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program goals for any needed development of critical enabling technologies; (2) the 
TMRR phase requires Test and Evaluation (T&E) and risk assessment plans; (3) the 
EMD phase involves a tight integration of hardware, software, and human systems, 
and requires a demonstration of full system integration, interoperability, 
supportability, safety, and utility (and involves no less than four separate technical 
reviews: a critical design review, test and readiness review, a system verification 
Review, and a technology readiness assessment); and (4) the PD and O&S phases 
require an updated T&E plan and risk assessment, and modifications and upgrades 
to fielded systems and data collection for an in-service review, respectively. 

However, none of these requirements explicitly reference the unique characteristics 
of AWS. Neither the requirements nor sequencing (nor even the detailed steps) of 
individual phases take into account the fact that the acquisition of autonomous 

weapons entails testing and evaluation procedures distinctly different from 
conventional systems, even those with an intensive software focus (i.e., a major 
distinctive element may be appreciated, intuitively, by reflecting on the difference 
between “conventional” operating instructions for automated hardware systems and 
AI-derived behavioral-logic necessary to govern autonomous vehicles). 

Figure 38 illustrates how an ALFUS-like conceptual framework of autonomy can be 
used to help support various components of the acquisition process. The core 
elements (highlighted in red) involve risk assessment, modeling and simulation, and 
developmental and operational T&E and V&V, a discussion of which we turn to next. 

DoD’s Directive (DoDD) 3000.09 (“Autonomy in Weapon Systems”) requires that 
weapons systems:607 

 Go through “rigorous hardware and software verification and validation 
(V&V) and realistic system developmental and operational test and evaluation 
(T&E), including analysis of unanticipated emergent behavior resulting from 

the effects of complex operational environments on autonomous or 
semiautonomous systems”   

 “Function as anticipated in realistic operational environments against 
adaptive adversaries” 

 “Are sufficiently robust to minimize failures that could lead to unintended 
engagements”  

                                                   
607 Enclosures 2 and 3 of DoD Directive 3000.09 (Autonomy in Weapon Systems, Nov 2012) 
address T&E and V&V issues, and general review guidelines, respectively. 
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Figure 38.  Schematic of how an ALFUS-like autonomy conceptual framework cam 
help support the acquisition process 

 

Expanding on V&V and T&E, DoDD 3000.09 requires that they must “assess system 
performance, capability, reliability, effectiveness, and suitability under realistic 
conditions, including possible adversary actions, consistent with the potential 
consequences of an unintended engagement or loss of control of the system.” 

Furthermore, in regard to the human-machine interface (for autonomous and semi-
autonomous weapon systems), it must be:  

 “Readily understandable to trained operators”  

 “Provide traceable feedback on system status”  

 “Provide clear procedures for trained operators to activate and deactivate 
system functions” 

The italics (added by the author of this memorandum) are meant to highlight that the 
“Devil is in the details!” It is one thing to set policy; it is quite another matter to 
apply existing (and/or develop new) concepts and methods to ensure that policy 
requirements are actually met. Given the lack of transparency of “narrow AI” 
methods (e.g., recall the current inability of otherwise at-least-human-level-
performing neural-net-based algorithms to “explain” their methods even to the 
designers themselves), in general, and the inevitability of self-organized emergence in 
complex adaptive systems (recall that all sufficiently complex systems are 
guaranteed to display fundamentally unpredictable behaviors), we can anticipate that 
few if any existing DoD practices (e.g., DAP, in general, and T&E and V&V, in 
particular; see discussion below) are adequate in their current form to accommodate, 
much less ensure the viability of, the policies set forth in DoDD 3000.09. We will 
revisit this key issue in a later section. 
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T&E / V&V and Accreditation (VV&A) Challenges 

According to DoD Instruction 5000.61for DoD Modeling and Simulation (M&S) 

Verification, Validation, and Accreditation (VV&A)accreditation, verification, and 

validation are defined as follows:608 

 Accreditation: the official certification that a model or simulation and its 

associated data are acceptable for use for a specific purpose; “certification” is 
defined as the formal acknowledgement that a system (or program) meets a 
specific set of requirements and has passed the T&E/VV&A process.609 

 Verification: the process of determining that a model or simulation 

implementation and its associated data accurately represent the developer’s 
conceptual description and specifications; i.e., verification effectively answers 
the question, "Did we build the system correctly?" 

 Validation: the process of determining the degree to which a model or 
simulation and its associated data are an accurate representation of the real 
world from the perspective of the intended uses of the model; i.e., validation 
answers the question, "Is the system the right solution to the problem?" 

Current engineering methods for T&E/VV&A of hybrid hardware-software systems 
lack sufficient fidelity and robustness to deal with highly complex, software intensive 
systems. The most difficult and challenging component of autonomous weapon 
systems to certify is the AI/machine-learning/adaptive software that is embedded 

within them.610 The DSB/2012 report on autonomy states:611 

Unlike many other defense systems, the critical capabilities provided 
by autonomy are embedded in the system software. However, the 
traditional acquisition milestones for unmanned systems, often along 
with the focus of the development contractor, are dominated by 
hardware considerations. Autonomy software is frequently treated as 

                                                   
608 Department of Defense Instruction 5000.61, DoD Modeling and Simulation (M&S) 
Verification, Validation, and Accreditation (VV&A), USD(AT&L), Dec 9, 2009: 
http://www.dtic.mil/whs/directives/corres/pdf/500061p.pdf. 

609 Defense Acquisition Handbook, Chapter 4: Systems Engineering, 
https://acc.dau.mil/docs/dag_pdf/dag_complete.pdf. 

610 Summer Study on Autonomy, Department of Defense, Defense Science Board, Task Force 
Report, Office of the Under SecDef for Acquisition, Technology and Logistics, June 2016 

611 The Role of Autonomy in DoD Systems, Department of Defense, Defense Science Board, 
Task Force Report, Office of the Under Secretary of Defense for Acquisition, Technology 
and Logistics, July 2012. 
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an afterthought or assumed to be a component that can be added to 
the platform at a later date—independent of sensors, processing 
power, communications and other elements that may limit 
computational intelligence. 

T&E of critical software for conventional (i.e., non-autonomous) systems has been 
estimated to cost seven times that of software development costs.612 The associated 
T&E costs for software driving autonomous behavior will be at least this great. Also, 
current practice calls for full system tests, which will become increasingly infeasible 

as autonomous systems attain ever greater levels of self-governance. In designing 
and certifying conventional software, one typically needs only to address the issues 
involved in answering what (the software does) and when (the software does it). Since 

autonomous systems must make their own decisions, autonomy inevitably 
introduces the more complex why (the software chooses to do something).   

In a 2011 memo, the SecDef designated autonomy and human-machine interface 
systems as two (of 7) priority S&T investments.613 In response, the Assistant SecDef, 
Research and Engineering (R&E) set up the Autonomy Community of Interest (COI) 
and identified four challenge areas, with a designated working group (WG) for each:614 

 Human/ Autonomous Systems Interaction and Collaboration 

 Robust cognitive and neurological or other models that can model 
human interaction and teaming with autonomous systems beyond 
fairly narrow applications. 

 Integration of autonomy, artificial intelligence and human cognitive, 
or other human models 

 Optimized trust in automation/transparency 

 Principled control station human factors engineering 

 Advanced feedback interfaces to maximize common perception 
between human(s) and agent(s) 

                                                   
612 C. Hang, P. Manolios, and V. Papavasileiou, "Synthesizing cyber-physical architectural models 
with real-time constraints," Computer Aided Verification, Springer Berlin Heidelberg, 2011. 

613 Memo, Science and Technology (S&T) Priorities for Fiscal Years 2013-17 Planning, Secretary 
of Defense, 19 April 2011: http://www.acq.osd.mil/chieftechnologist/publications/docs/ 
OSD%2002073-11.pdf. 

614 Autonomy Research Pilot Initiative, DOD Priority Steering Council (PSC), ASD (R&E). 
Nov 2012: http://auvac.org/uploads/publication_pdf/Autonomy%20Research%20Pilot%20 
Initiative.pdf. 
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 Secure communication between human(s) and agent(s) and 
understanding of intent and actions of human team members, 
adversaries and bystanders 

 Advanced control system interfaces 

 Scalable Teaming of Multiple Autonomous Systems  

 Shared problem solving/reasoning between agents 

 Shared perception between agents 

 System health management/attrition management 

 Secure communication between multiple agents 

 Scalable collaboration among heterogeneous teams 

 Machine Reasoning, Perception, and Intelligence 

 Data-driven analytics 

 Sensor/data decision models 

 Advanced algorithms to enable robust operations in unstructured 
environments including machine learning 

 Contingency-based control strategies 

 Adaptive guidance and control integration with higher level 
reasoning, decision making, learning. 

 Domain management (e.g., air, sea, land) and mission control 

 Integrated contextual decision making 

 Cognitive, intelligent, and adaptive computing paradigm/platform 

 T&E and V&V (TEVV) 

 Live and simulation test beds for 

 Human-agent teaming 

 Operation in complex, contested environments 

 Controlled, coordinated actions by multiple agents 

 Methods and strategy… 

 To test and evaluate autonomous systems/subsystems 

 To Test and Evaluate Human-Agent Interfaces 

 For Validation and Verification of Computer Models/Logic 

 For algorithms, and integrated software tools 
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In 2013, the Autonomy COI TEVV (ATEVV) working group (ATEVV/WG) held several 
workshops to identify the core challenges facing the T&E of autonomy. The results of 
this effort, published in a memo by Assistant SecDef(R&E),615 included four general 
autonomy-specific challenges and six specific technical gaps that collectively identify 
the ATEVV/WG’s recommended changes to the current V&V paradigm. Challenges 
include: 

1. State-space complexity: autonomous systems, by their nature, possess a near 

infinite number of possible system “states” that must be tested. The 
algorithmic decision space is either non-deterministic (i.e., output cannot be 
predicted because of multiple possible outcomes for each input), or 
intractably complex; in either case, it is not possible to conduct an exhaustive 
search of all possibilities. Thus, the existing requirements-driven design and 

T&E/VV&A processin which T&E is built around the requirements that 

define the desired system response(s) for all conditionsis ill-equipped for 

dealing with autonomous systems. 

2. Environmental complexity: while the benefits of autonomy derive principally 

from the ability of autonomous systems to function in unknown and/or 
untested environments, testing for desired behaviors only exacerbates the 
“state-space complexity” problem. Since the behavior of an autonomous 
system cannot be specified (much less tested and certified) in situ, but in 
concert with interaction with a dynamic environment via sensors, effectors, 
and communications links, the explicit specification of all combinations of 
the system inputs/outputs and environmental variables is combinatorically 
impossible.616 

3. Emergent behavior: the appearance of emergent behavior is a well-known 
property of all complex adaptive systems (CAS). To the extent that unscripted 

behaviors of autonomous systemswhether they are individual systems or 

are components of larger swarmsderive from CAS-like elements (as 

discussed earlier), we can expect novel or unexpected behavior to arise 
naturally and unpredictably in certain dynamic situations. Existing 

                                                   
615 Memo, Assistant SecDef(R&E), Autonomy Test and Evaluation, Verification and Validation 
Technology Investment Strategy: 2015‐2018, 12 June 2015: http://www.defenseinnovation 
marketplace.mil/resources/OSD_ATEVV_STRAT_DIST_A_SIGNED.pdf. 

616 G. Zacharias, Advancing the Science and Acceptance of Autonomy for Future Defense 
Systems, presented to the House Armed Services Committee, Subcommittee on Emerging 
Threats and Capabilities, U.S. House of Representatives, 19 Nov 2015: http://docs.house.gov/ 
meetings/AS/AS26/20151119/104186/HHRG-114-AS26-Wstate-ZachariasG-20151119.pdf. 
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T&E/VV&A practices do not have the requisite fidelity to deal with emergent 
behavior.617 

4. Human-machine dynamics: the operational effectiveness of autonomous 

systems (regardless of the details of whatever method is used to measure it) 
ultimately depends on the dynamic interplay between the human operator 
and the machine(s) in a given environment, and how the system responds, in 
real-time, to changing operational objectives as the human adapts to dynamic 

contextsan interplay that plays an even more important role in human-

machine teaming. The efficacy of this human-machine interplay, from the 

human operator’s point of view, is driven by the degree of “trust” that the 
operator has in the behavior and performance of the machine, a basic point 
stressed by the Defense Science Board’s most recent study on autonomy.618 
However, since “trust” is not an innate trait of the system, and the current 
T&E/VV&A process is designed to test systems in closed, scripted 
environments, the human-machine dynamics is not naturally accommodated. 

On an even simpler level, the human component will require in and/or 

ontheloop experimentation, which again limits the effective dimensionality 

of the test space.   

“Trust” also entails grappling with the issue of experience and/or learning: at 

the high end of autonomous systems will be those that are able to accrue and 
learn from “operational experience,” both in real-time, adapting to changing 
conditions as the mission unfolds, and over longer periods of time. Such 
systems cannot be certified monolithically, in one “check in the box” moment 
of time. Rather, they will require periodic retesting and recertification, the 
periodicity of which is (some as yet undetermined) function of the system’s 
history and “experience.”  

The ATEVV/WG also identified six specific autonomy-related technical gaps in 
existing V&V practice: 

                                                   
617 Certification is applied at the system level; i.e., sub-systems are certified only as parts of 
a system. Verification is applied only after system integration (by which time any errors that 
are identified may be too costly to fix), and validation of requirements occurs only at the end 
of development (by which point, a problem in requirements may invalidate the entire system). 
Ref: Test and Evaluation Management Guide, Sixth Edition, Department of Defense, December 
2012; Department of Defense Instruction 5000.61, DoD Modeling and Simulation (M&S) 
Verification, Validation, and Accreditation (VV&A), USD(AT&L), Dec 9, 2009: 
http://www.dtic.mil/whs/directives/corres/pdf/500061p.pdf. 

618 Summer Study on Autonomy, Department of Defense, Defense Science Board, Task Force 
Report, Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, 
June 2016. 
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1. Lack of Verifiable Autonomous System Requirements: there are no common, 
clear, and consistent requirements for systems that include autonomy 
requirements (particularly in regard to assumptions about the environment, 
Concept of Operations (CONOPS), interoperability, and communication; and 
no universally-agreed-upon Measures of Effectiveness (MoEs), Measures of 
Performance (MoPs), or other metrics. 

2. Lack of Modeling, Design, and Interface Standards: there are no current 
standardized modeling frameworks for autonomous systems that span the 
whole system lifecycle (R&D through T&E). As a consequence, there is 
currently a significant gap in traceability that exists between capabilities 
(whether implemented in conventional non-autonomous systems or systems 
that include features such as adaptivity, nonlinearity, and/or learning) and 
the requirements they are designed to meet. 

3. Lack of Autonomy Test and Evaluation Capabilities: there is a lack of T&E 
ranges, testbeds, and skillsets for handling dynamic learning and adaptive 
systems. The innate complexity of autonomous systems make it impossible 
to test these systems under all possible conditions (and accounting for 
diversity of environments and human-system interactions). 

4. Lack of Human Operator Reliance to Compensate for Brittleness: while the 
burden of decision making under uncertainty currently lies solely under the 
purview of human operators, as systems evolve from exhibiting relatively 
predictable automated behaviors to those that are more complex and 
unpredictable, it will become increasingly difficult for human operators to 
understand and respond appropriately to the decisions made by autonomous 
systems. Existing V&V practices do not sufficiently factor in human-machine 
interfaces, human performance characteristics, and requirements for human 
operator training. 

5. Lack of Run Time V&V during Deployed Autonomy Operations: The human 
operator currently acts as the ultimate arbiter and “fail safe” component to 
unmanned weapons systems. However, as autonomy increases (however it is 
defined), there will be a commensurately decreasing reliance on human 
intervention. The existing V&V process includes no mechanisms to ensure 
that autonomous systems that have not been fully tested (exhaustive testing 
for all possible conditions is something that is, in principle, impossible to 
achieve for any fully autonomous system) can be successfully deployedand 
trusted to performin operational environments. 

6. Lack of Evidence Re-use for V&V: The current practice of relying on a system’s 
“past (tested) performance” (including archived “failures” in specific 
contexts) to adjudicate acceptable levels of safety, security, performance, and 
risk assumes that any lessons learned from the performance of a deployed 
system will apply also to any similar systems. This assumption no longer 
holds true for autonomous systems. 
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Large-scale complex engineering systems are typically managed using the “V” (or 
“Vee”) model:619 

Various life cycle models such as the waterfall, spiral, Vee, and agile 
development models are useful in defining the start, stop, and activities 
appropriate to life cycle stages. The Vee model is used to visualize the 
system engineering focus, particularly during the concept and 
development stages. The Vee highlights the need to define verification 
plans during requirements development, the need for continuous 
validation with the stakeholders, and the importance of continuous risk 
and opportunity assessment. 

The V-model is so-called because of how the stages of the model are usually visually 
depicted (see figure 39). In the figure (which can be compared to the diagram 
depicting the different stages of the acquisition process; see figure 35), time flows 
from left to right in a path that starts (on the left leg) with the requirements 
definition (at top left), moving to analyses and design solutions that provide detailed 
specifications for systems and assemblies.  

Figure 39.  Classic “V” systems engineering model 

 

After figure 1 in Memo, Assistant SecDef(R&E), Autonomy Test and Evaluation, 
Verification and Validation Technology Investment Strategy, June 2015. 

                                                   
619 C. Haskins, editor, Systems Engineering Handbook: A Guide for System Life Cycle Processes 
and Activities, International Council on Systems Engineering (INCOSE), June 2006: http://disi. 
unal.edu.co/dacursci/sistemasycomputacion/docs/SystemsEng/SEHandbookv3_2006.pdf. 
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The path moving up the “right leg” progresses from component integration, to 
system verifications against the requirements, and, finally, a validation that the 

delivered system operates correctly in its target environment. Notablyin the 

context of engineering trusted autonomous systemsthe key assumption behind the 

“V” model is that the capabilities that need to be tested on the way up (i.e., on the 
right leg) are all known and put in place on the way down (i.e., on the left leg). For 
example, if the final system needs to be simulated at the tail end of the V&V process, 
then a simulation capability requirement must have been introduced into the 
pathway (on the way down), built into the system, and then tested (on the way up). 
There is no provision, in this classic “V” approach to engineering systems, to add or 
revisit needs or capabilities after specific milestones have been reached. The agile 
models of the acquisition process (i.e., the software-intensive and software-dominant 
models 2 and 6, respectively) offer some flexibility by allowing multiple builds of the 
software component of a system, but are otherwise as inflexible as the classic “V” in 
the overall system design and performance. 

Various approaches to generalizing the classic “V” engineering model (so that it 
better accommodates the unique requirements and challenges of developing 
autonomous systems, and includes elements that help build qualities that engender 
trust into systems as their autonomous capabilities are being designed) are possible. 
For example, Palmer, at al.,620 propose a “Trust V” framework that consists of a 
“toolbox” of reusable and adaptive trust-building techniques, and is designed with a 
view towards emphasizing the commonality across system architectures. Each 
technique is intended to be evaluated for applicability and to evolve as the system’s 
autonomous capabilities are specified and developed. Examples of specific 
techniques include: (1) semantic Q&A capability, whereby an developer/operator can 
query the system with questions such as “Why did the system perform action X?”;621 
(2) future scenario prediction, in which the developer/operator can query the system 
with questions such as “What will the system do next?”; (3) Turing test, in which  part 

of the validation process consists of comparing a system’s performance to that of a 

                                                   
620 G. Palmer, A. Selwyn, and D. Zwillinger, “The Trust ‘V’: Building and Measuring Trust in 
Autonomous Systems,” Chapter 4 in Robust Intelligence and Trust in Autonomous Systems, 
edited by R. Mittu, et al., Springer-Verlag, 2016. 

621 Consider IBM Watson’s design capability to provide users not only with its “answer” to given 
question, but with an archive of behind-the-scenes decision that led to that answer along with 
the confidence the AI system has in each decision. Ref: D. Ferrucci, et.al., “Watson: Beyond 
Jeopardy!,” Artificial Intelligence 199/200, 2013. 
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human expert; and (4) calibrated trust, in which an operator’s decision making is 

enhanced by the system providing its insight into its own trustworthiness.622 

The final report published by the ATEVV/WG recommends that the classic “V” be 
replaced by a flattened model that explicitly couples system development with V&V, 
with V&V activities expected to occur both during and between each major 
development activity (see figure 40).  

Figure 40.  Concept for an Autonomy TEVV Process Model 

After figure 2 in Memo, Assistant SecDef(R&E), Autonomy Test and Evaluation, 
Verification and Validation Technology Investment Strategy, June 2015. 
 

The concept for ATEVV/WG’s Autonomy TEVV Process Model (ATPM) is based on the 
supposition that for future highly autonomous systems, T&E and V&V activities must 
be emphasized and distributed throughout the complete acquisition process: 

Testing and evaluating future highly autonomous systems will 
require an increased emphasis on setting verifiable requirements, 
developing system models traceable to requirements to guide design 
activities, and verifying and validating emerging subsystems and 
products throughout the development process. The final, traditional 
Development Test (DT) and Operational Test (OT) activities must 
become a final verification of the complete body of evidence leading 
to and supporting the documentation of the safety, effectiveness, 
suitability, and survivability of the system. Essentially, the addition of 
autonomy will require that much of the effort traditionally reserved 
for final DT and OT of a new system must be shifted to the left, with 

                                                   
622 E.M. Roth, “Facilitating ‘Calibrated’ Trust in Technology of Dynamically Changing ‘Trust-
Worthiness,’” Trust in Cyberdomains, Inst. for Human and Machine Cognition, 2009. 
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the majority of the T&E activities taking place before the completed 
system is assembled at test ranges for final system level DT and 
OT.623 

In the figure, the arrows denote phases during which five autonomy TEVV Goals 
(G

1
,…,G

5
) are meant to be achieved: 

 G
1
: Methods to assist in requirements development and analysis  

Precise, structured standards to automate requirement evaluation for 
testability, traceability, and de-confliction. Focuses on increasing the 

fidelity and correctness of autonomous system requirements by 
developing methods and tools to enable the generation of 
requirements that are, where possible, mathematically expressible, 
analyzable, and automatically traceable to different levels (or 
abstractions) of autonomous system design. 

 G
2
: Evidence-Based Design and Implementation  

Assurance of appropriate decisions w/traceable evidence at every level 
of design to reduce current T&E burden. Focuses on methods and 

tools need to be developed at every level of design from architecture 
definition to modeling abstractions to software generation / 
hardware fabrication, enabling the compositional verification of the 
progressive design process, thereby increasing test and evaluation 
efficiency. 

 G
3
: Cumulative Evidence through RDT&E, DT, & OT 

Progressive sequential modeling, simulation, test and evaluation. 

Focuses on methods to record, aggregate, leverage, and reuse M&S 
and T&E results throughout the system’s engineering lifecycle; from 
requirements to model-based designs, to live virtual construction 
experimentation, to open-range testing. 

 G
4
: Run Time Behavior Prediction and Recovery 

Real-time monitoring, just-in-time prediction and mitigation of 
undesired decisions and behaviors. Focuses on methods leveraging a 

run-time architecture must be developed that can provably constrain 
the 
system to a set of allowable, predictable, and recoverable behaviors, 

                                                   
623 Memo, Assistant SecDef(R&E), Autonomy Test and Evaluation, Verification and Validation 
Technology Investment Strategy, June 2015, p. 8. 
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shifting the analysis/test burden to a simpler, more deterministic 
run-time assurance mechanism. 

 G
5
: Assurance Arguments for Autonomous Systems 

Reusable assurance case based on previous evidence building blocks. 

“Not only do multiple new TEVV methods need to be employed to 
enable the fielding of autonomous systems, a new research area 
needs to be investigated in formally articulating and verifying that 
the assurance argument itself is valid.” 

DSB/2016 similarly recommends transforming the conventional model of 
developmental T&E and operational T&E from “discrete segments of the acquisition 
cycle to an ongoing evaluation and evolution of the technology and concepts within 
the operational community,”624 and advocates for a continuing and pervasive 
surrounding thread of modeling and simulation activities to support the rapid 
evolution of autonomous system design and performance (to be integrated 
throughout the lifecycle of a system, from initial concept to operational test and 
evaluation, and through operator training). For the concept to be fully successful, 
operators at all levels must become familiar with and employ T&E techniques, 
incorporating them within routine training operations.  

Lethal Autonomous Weapon Systems 

Lethal Autonomous Weapon Systems (LAWS) are weapon systems that, once 
activated, are able to select and engage targets without human intervention; they are 
also known as human “out of the loop” autonomous weapon systems. To date, there 
have been only a few weapon systems that select and engage their own targets. One 
example is the class of loitering attack munitions (LAMs).625 LAMs are cruise missile-

like devices that are launched into a general area and whose mission is to loiter, 
looking for targets according to pre-programmed targeting criteria (e.g., enemy 
radars, ships or tanks); once a target is detected, the LAM will fly into the target to 
destroy it. The only currently operational LAM is the Israel Defense Forces (IDF’s) 
Harpy, a “fire-and-forget” anti-radar weapon that flies a general search pattern over a 

designated area to search for enemy radars, which, if one is found, then dive-bombs 

                                                   
624 Page 22 in Summer Study on Autonomy, DoD, DSB, Task Force Report, Office of the Under 
Secretary of Defense for Acquisition, Technology and Logistics, June 2016. 

625 Andrea Gilli and Mauro Gilli, “The Diffusion of Drone Warfare? Industrial, Organizational 
and Infrastructural Constraints: Military Innovations and the Ecosystem Challenge,” Security 
Studies 25, 2016: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2425750. 
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into it to destroy it. Examples of experimental LAMs that were not operationally 
deployed include the low-cost autonomous attack system (LOCAAS),626 designed to 
target tanks, and Tacit Rainbow, a loitering anti-radar munition.627 Several adversary 
nations are known to be developing and research on fully autonomous weapons. 
Amongst them are China, Germany, India, Israel, Republic of Korea, Russia, and the 
United Kingdom. Robotic systems with a various degree of autonomy and lethality 
have already been deployed by the United States, the United Kingdom, Israel, and the 
Republic of Korea. 

While there are weapon systems that automatically sense-and-react to incoming 
threats such as mortal shells and missiles (e.g., C-RAM,628 Phalanx,629 and Mantis630), 
they are not fully autonomous, and are therefore not technically LAWs as defined 
above (moreover, such systems are currently confined to defensive functions); rather 
they are examples of supervised autonomy (see page []): they act automatically, not 

autonomously, and are programmed to execute a small set of actions in predictable 
environments that entail only a very low risk of incurring civilian harm. Of course, as 
of this writing, there are no existing autonomous weapons. However, since many of 
the technologies critical to LAWS (e.g., image processing, image classification, 
tracking, targeting, weapon trajectory planning, etc.) are currently being developed 

and continually enhancedincluding AI algorithms that, at least in the “narrow” 

sense, and for non-military applications,631 already far exceed human performance 

(e.g., chess, Go, etc.; see earlier discussion)it may only be a matter of time before a 

“critical mass” of technologies is reached, and LAWS will require only the will to be 
built. 

DoD Directive 3000.09 (Autonomy in Weapon Systems, issued Nov 2012, and set to 
expire in 2022) prohibits lethal fully autonomous robots.632 And semi-autonomous 

robots (e.g., human-in-the-loop control) cannot “select and engage individual targets 
or specific target groups that have not been previously selected by an authorized 

                                                   
626 M. Hanlon, “Low-Cost Autonomous Attack System successfully flight tested,” New Atlas, 
4 Nov 2005. 

627 C. Kopp, “Precision guided munitions: Rockwell AGM-130A/B and Northrop AGM-136A 
Tacit Rainbow, Air Power Australia, May 1988. 

628 https://en.wikipedia.org/wiki/Counter_Rocket,_Artillery,_and_Mortar. 

629 https://en.wikipedia.org/wiki/Phalanx_CIWS. 

630 https://en.wikipedia.org/wiki/N%C3%A4chstbereichschutzsystem_MANTIS. 

631 “Toy” (i.e., small-scale versions of) AI military applications are beginning to appear, 
including aerial dogfights and ground combat. See slides in appendix for details. 

632 DoD Directive 3000.09, Autonomy in Weapon Systems, Nov 2012: http://www.dtic.mil/ 
whs/ directives/corres/pdf/300009p.pdf. 
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human operator,” even in the event that contact with the operator is cut off. 
Autonomous weapon systems may only be used to apply non-lethal, non-kinetic 
force, such as some forms of electronic attack, against materiel targets;633 however, it 
specifically excludes: 

Cyberspace systems for cyberspace operations; unarmed, unmanned 
platforms; unguided munitions; munitions manually guided by the 
operator (e.g., laser- or wire-guided munitions); mines; or unexploded 
explosive ordnance.634 

DoD Directive 3000.09 stipulates that autonomous systems:635 (1) will go through a 
rigorous review and approval process; (2) will be “designed to allow commanders and 
operators to exercise appropriate levels of human judgment over the use of force,” 
and (3) will be used in accordance with all “applicable domestic and international 
law, in particular, the law of war.” (italics added by author; see The legal dimension 
on next page.) 

There is a subtle caveat to the directive’s otherwise consistent emphasis that target 
selection and prosecution be conducted under the oversight of a human operator:  

Autonomous or semi-autonomous weapon systems intended to be 
used in a manner that falls outside the policies in subparagraphs 
4.c.(1) through 4.c.(3) must be approved by the Under Secretary of 
Defense for Policy (USD(P)); the Under Secretary of Defense for 

                                                   
633 In accordance with DoD Directive 3000.3E, Policy for Non-Lethal Weapons, 25 April, 2013. 

634 DoDD 3000.09, pp. 1-2. It has been pointed out that this seemingly well-defined policy 
distinction of applicability may nonetheless introduce a disconnect into DoD policy with 
respect to “unarmed, unmanned platforms,” since such systems, if they malfunction, may 
still inflict injury or collateral damage to individuals and property. For example, a 
malfunctioning automated convoy vehicle may injure a person or cause damage that is similar 
in its effect to collateral damage from an errant autonomous weapon system. This is but one 
instance of a slew of ambiguity-ridden and ethics-related issues regarding the use of autonomy, 
a few of which are discussed later in this report. Ref:J. Caton, Autonomous Weapon Systems: 
A Brief Survey of Developmental, Operational, Legal, and Ethical Issues, U.S. Army War College, 
Strategic Studies Institute, Carlisle, PA, Dec 2015. 

635 Only the UK and US have issued policies on autonomous weapons systems. The United 
Kingdom’s Ministry of Defence stated in a 2011 Joint Doctrine Note that it “currently has no 
intention to develop systems that operate without human intervention in the weapon command 
and control chain, but it is looking to increase levels of automation where this will make 
systems more effective.” Ref: DCDC, “Joint Doctrine Note 2/11: The UK Approach to 
Unmanned Aircraft Systems,” 30 March 2011. 
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Acquisition, Technology, and Logistics (USD(AT&L)); and the CJCS 
before formal development and again before fielding.636 

Thus, development of LAWS is not strictly forbidden, and can still occur, provided it 
is explicitly authorized by appropriate leadership.  

Digging a bit deeper on the meaning of “law of war” (italicized in the quote on the 
middle of the previous page), the reference is to DoD’s 1200+ page Law of War 

Manual,637 thatwhile not legally bindingrepresents a comprehensive codification 

of the proper modes of conduct for all military branches. Section 6.5.9 focuses on 
autonomy in weapon systems:638 

The law of war does not specifically prohibit or restrict the use of 
autonomy to aid in the operation of weapons. In fact, in many cases, 
the use of autonomy could enhance the way law of war principles are 
implemented in military operations. For example, some munitions 
have homing functions that enable the user to strike military 
objectives with greater discrimination and less risk of incidental 
harm. As another example, some munitions have mechanisms to self-
deactivate or to self-destruct, which helps reduce the risk they may 
pose generally to the civilian population or after the munitions have 
served their military purpose. 

Although no law of war rule specifically restricts the use of autonomy 
in weapon systems, other rules may apply to weapons with 
autonomous functions. For example, to the extent a weapon system 
with autonomous functions falls within the definition of a “mine” in 
the CCW Amended Mines Protocol, it would be regulated as such. In 
addition, the general rules applicable to all weapons would apply to 
weapons with autonomous functions. For example, autonomous 
weapon systems must not be calculated to cause superfluous injury 
or be inherently indiscriminate. 

                                                   
636 DoD Directive 3000.09, paragraph 4.d, page 3. 

637 Office of General Counsel, Department of Defense Law of War Manual, June 2015: 
http://www.dod.mil/dodgc/images/law_war_manual15.pdf. 

638 Ibid., “Autonomy in Weapon Systems,” p. 329. 



 

 

 

213 
 

The legal dimension 

Since there are no existing LAWS, there is also no precedent as to their ethical or 
legal standing. Tackling the legal dimension first, it is accepted practice that all new 
technologies of warfare must abide by existing international law, in particular 
International Humanitarian Law (IHL), which is also referred to as the law of armed 
conflict.639 The determination of whether or not a new weapon (including 
autonomous weapon systems) is in accord with IHL is made by assessing the 
weapon’s foreseeable effects based on its design, and its foreseeable use in normal or 
expected circumstances. That a weapon cannot be assessed in isolation from its 
expected method of use derives from the long-standing “Article 36” of the Additional 
Protocol I to the Geneva Conventions of 1949 (AP I).640  

Since we obviously do not have the space here to examine the full legal ramifications 

of the development of LAWSan excellent summary is provided by Krishnan641we 

will confine our discussion to outlining just the basic issues. Toward that end, any 
examination of the lawfulness of LAWS must begin with an aspect of IHL known as 
“jus in bello” (or, justice in war), which focuses on four core principles that define the 
practices that are allowed and prohibited in war:642 (1) military necessity, (2) 
distinction, (3) proportionality, and (4) unnecessary suffering or humanity. A fifth 
principle is also sometimes included: command responsibility (which refers to the 

command chain of liability for illegal acts and the failure to act in the face of 
foreseeable illegal acts, and therefore lies at the cusp of legality and ethics; see 
discussion below). 

The difficulty with applying any of these four principles to LAWSand what renders 

the whole legality issue so contentious, leading to a recent effort to pre-emptively 

ban development of autonomous weapon systems (see below)is that each requires 

codifying qualitative judgements in software.643 For example, Article 48 of AP I 

describes the fundamental rule of distinction as follows: 

                                                   
639 War & Law, International Committee of the Red Cross: https://www.icrc.org/en/war-and-law. 

640 M. Schmitt, “Autonomous Weapon Systems and International Humanitarian Law: A Reply to 
the Critics,” Harvard National Security Journal: Features Online, 2013. 

641 A. Krishnan, Killer Robots: Legality and Ethicality of Autonomous Weapons, Ashgate, 2009. 

642 D. Stewart, “New Technology and the Law of Armed Conflict: Technological Meteorites and 
Legal Dinosaurs?” in U.S. Naval War College International Law Studies 87, edited by R. Pedrozo 
and D. Wollschlaeger, U.S. Naval War College, 2011. 

643 Part B in Autonomous Weapon Systems: Technical, Military, Legal, and Humanitarian Aspects, 
Expert Meeting, Geneva, Switzerland, 26-28 March 2014. 
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In order to ensure respect for and protection of the civilian 
population and civilian objects, the Parties to the conflict shall at all 
times distinguish between the civilian population and combatants 
and between civilian objects and military objectives and accordingly 
shall direct their operations only against military objectives.644 

Just as some of the policies in DoD Directive 3000.09 entail “Devil is in the details!”  
requirements645 (e.g., the call for T&E to include unanticipated emergent behavior, 
which is laudable as decreed, but also reveals one of the main “technical challenges” 
for autonomy; see earlier discussion), to establish, via programming, full compliance 
with the seemingly innocuous “rule of distinction” is beyond current state-of-the-art 
AI. Autonomous systems are certainly capable of distinguishing among simple 

objects in relatively static, uncluttered environmentsand military-grade sensor 

systems can easily detect and recognize pre-defined categories of equipment, such as 

artillery, tanks, and armored personnel carriersbut the complex reasoning 

necessary to make qualitative judgements in cluttered environments is currently 

beyond reach.  

Consider the clause in Article 48 of AP I (quoted above) that requires distinguishing 
between “…civilian objects and military objectives.” The precise meaning of this 
clause (and something that would have to codified in a LAWS) is provided by Article 
52(1) of Additional Protocol I to the Geneva Conventions of 1949 (AP I):646 

Attacks shall be limited strictly to military objectives. In so far as 
objects are concerned, military objectives are limited to those objects 
which by their nature, location, purpose or use make an effective 
contribution to military action and whose total or partial destruction, 
capture or neutralization, in the circumstances ruling at the time, 
offers a definite military advantage. 

“Precision” only serves to complicate mattersat least, so far as codifying legal 

requirements in autonomous softwaresince the definition of a military objective is 

heavily context (and time) dependent. While certain objects may meet the required 

criteria in virtually any combat scenario (e.g., tanks, military aircraft, military bases), 
AI-like reasoning would be necessary to adjudicate more complex cases. For example, 

                                                   
644 J.-M. Henckaerts and L. Doswald-Beck, Customary International Humanitarian Law, Volume I: 
Rules, Cambridge University Press, 2005. 

645 DoD Directive 3000.09 was issued, in part, in anticipation of future ethical and legal issues 
associated with autonomous weapons systems. 

646 Guide to the Legal Review of New Weapons, Means and Methods of Warfare, ICRC, 2006, 
page 4: http://www.icrc.org/eng/assets/files/other/icrc_002_0902.pdf. 
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it is possible to imagine objects that are ‘obviously’ civilian (prior to or in some early 

phase of a conflict; e.g., hospitals, schools), but that, at some pointand for a variety 

of not simply pre-definable reasonsbecome military objectives. Codifying ways in 

which myriad factors may play out in various contexts well enough for an 
autonomous system to predictably and consistently make the “right” judgement call 
(whatever “right” means), poses a significant technical challenge. 

The ethical dimension 

A complementary set of issues to the legal challenges of autonomy is the ethical 
dimension; i.e., an examination of the moral principles that may be used to guide the 
development and deployment of LAWS. At its core, and at the risk of oversimplifying 
an issue that is far from settled, the challenge of building ethical AWS entails 

essentially the same set of conceptual and technical difficulties as that of autonomy 
in general; only the focus is different. Namely, the consideration of ethics (in ways 
that are outlined below) imposes an additional layer of constraints on what an AWS 
is allowed to do in a given context. All of the same challenges as previously identified 
for the unconstrained “autonomy problem” remain (e.g., inability to test for all 
possible contexts, innate unpredictability, propensity for unanticipated “surprises,” 
etc.), but the list must be expanded to include provisions for taking only those 
actions that are deemed “ethically sound.” The central difficulty, of course, is to find 
ways to endow autonomous machines with the capacity for assessing and responding 
to moral considerations. The obvious first step is to define what “morality” means.  

Since we do not have space in this report to examine all of the theories and 
approaches to morality (e.g., deontological, or rule-based ethics, consequentialism, 
natural law, social contract ethics, virtue ethics, etc.),647 we provide only a brief sketch 
of issues most relevant to autonomy. 

There are two basic approaches to defining and codifying morality:648 (1) top-down, in 

which a set of rules of behavior are imposed on a moral agent (who may also need to 
calculate the consequences of various possible courses of action), and (2) bottom-up, 

in which an agent learns to develop a set of “morally correct” behaviors on its own, 
guided by rewards for “good” behavior as it explores various courses of action in a 
training environment.  

                                                   
647 The University of San Diego sponsors an Ethics research site (edited by L. Hinman) that 
contains a vast collection of ethics-related resources, including basic ethics theory: 
http://ethics.sandiego.edu/. 

648 P. Lin, G. Bekey, and K. Abney, Autonomous Military Robotics: Risk, Ethics, and Design, US 
Department of Navy, Office of Naval Research, 20 Dec, 2008. 
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There are two broad categories of bottom-up approaches (recall our earlier 
discussion of methods of engineering desired behaviors in robotic swarms): (1) 
manual tinkering, in which complex systems are assembled “by hand” out of discrete 
subsystems, and (2) emergence, in which moral values emerge holistically as a 

desired set of behavioral patterns. Unlike top-down approaches, that derive explicitly 
from existing moral theory, bottom-up approaches, if they rely on any theory at all, 
do so only as a way to define tasks for learning (and not as a way to define how 
morality itself is to be learned).  

The top-down approach is, for obvious reasons, the naturally preferred method for 
programmers, since rules are “easy” to turn into algorithms (“easy” is in quotes to 
remind the reader that, in practice, it is anything but; the “Devil is in the details,” as 
we have stressed repeatedly throughout this report). The challenge is to find ways of 
codifying the precepts of a specified ethical theory (along with the concomitant meta-
challenge of articulating why one particular theory is to be used over another). 

Adherents to top-down, rule-based approaches are divided between deontologists (i.e., 

those who insist on a specific set of rules being strictly obeyed, always, even if the 
consequences are “bad”),649 and consequentialists (i.e., those who grant greater weight 
to the proposition “the ends justifies the means,” and therefore tend to forgive 
minor transgressions of certain rules if the end result is “good”). The latter approach 

is by far the more difficult one to apply algorithmically since it is impracticalif not 

impossibleto be able to calculate the utility of every action (apart from the even 

more fundamental objection that can be made on the grounds that one can imagine a 
deception can be deemed as “moral” as a truth, in the event that the consequences 
are the same).  

“Three Rules of Robotics”650 

The science fiction author, Isaac Asimov, foresaw the need to consider ethical rules 
of behavior for robots more than 70 years ago when he introduced the “three rules of 

robotics” (TRoR)almost literally a text-book example of a top-down, rule-based 

approach to defining moralityin his short story Runaround:651 

                                                   
649 “Deontological” means duty-based, denotes an ethical system built around a system of 
inflexible rules, and is patterned after Immanuel Kant’s categorical imperative. Ref: P. Guyer, 
et al., Kant's Groundwork of the Metaphysics of Morals, Rowman & Littlefield Publishers, 1997. 

650 The discussion in this section is based on pages 29-33 in P. Lin, et al., Autonomous Military 
Robotics: Risk, Ethics, and Design, 2008. 

651 I. Asimov, Robot Visions, Roc, 1991.  



 

 

 

217 
 

1. A robot may not injure a human being or, through inaction, allow a human 
being to come to harm 

2. A robot must obey orders given it by human beings except where such orders 
would conflict with the First Law 

3. A robot must protect its own existence as long as such protection does not 
conflict with the First or Second Law 

In his stories and novels, Asimov explored the implications and difficulties of his 
TRoR.652 For example, the first law was almost immediately seen to be incomplete: as 
stated, it leaves open the possibility that a robot can inflict harm, so long as that 
harm is unintentional. Hence, if a robot does not know, or cannot predict, that an 

action on its part will harm a human, it need not obey rule 1. It is also not easy to 
“fix.”  For example, while the rule may be rewritten to include an explicit caveat to 
read: “A robot may do nothing that, to its knowledge, will harm a human being; nor, 
through inaction, knowingly allow a human being to come to harm,” it still leaves 

open the possibility that someone wishing to exploit the rulethe italics are inserted 

to gently prompt the reader to imagine some latter-day operational equivalent where 
an adversary wishes to exploit the AI-driven ethics-core of an autonomous weapon 

systemmay divide a task among multiple robots, so that no one robot is able to 

recognize that its own actions might lead to the harm of a human. 

Another difficulty is the ambiguity of risk that a robot must factor into its analysis of 
a situation. The “through inaction” clause of the first law is particularly 
problematical in this regard. For example, should robots keep a human from 
approaching too closely to a cliff over which she can fall (and how is the robot to 
decide what is “too close”)? Are there scenarios in which the robot can, while 
otherwise acting in strict adherence to the first law, also fail to perform its primary 
tasks simply because a human repeatedly needs “saving” from harm? In an attempt 
to fix this problem, Asimov considers a simplified version of the first law to read: “A 
robot may not harm a human being.” But this introduces another (arguably, even 
worse) problem: it allows a robot that knows it is capable of preventing harm to a 
human to execute an action that will harm the human. For example, the robot may 

know that the life of a human who, say, wanders into a firing line of an automatic 

weapon may be spared by canceling a “fire” order to the automatic weapons, butif 

the firing sequence is triggered at some time prior to the human coming into 

rangethe robot may fail to prevent the harm because (under the simplified form of 

rule one) it is no longer strictly required to act. 

                                                   
652 “Laws of Robotics,” On-line Encyclopedia of Science Fiction, 5 Nov 2016: http://www.sf-
encyclopedia.com/entry/laws_of_robotics. 
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Asimov later added a zeroth law (so-numbered to imply highest priority):653 “A robot 
may not harm all humanity or, through inaction, allow humanity to come to harm.” 
The idea was to allow a robot to harm individual humans, but only if in so doing the 
action prevented an ‘existential threat’ to all of humanity. But how can a robot 
determine if such a threat exists? 

Other authors have attempted to mend the ambiguities and loopholes inherent in 
Asimov’s TRoR. For example: Dilov654 proposed a fourth law to prevent possible 
misunderstandings between what is a robot and what is a human: “A robot must 
establish its identity as a robot in all cases.”, and Clarke655 has introduced an entire 
“extended set” of the laws of robotics,656 though admits that this carefully crafted set 
still entails serious difficulties (e.g., identification of and consultation with 
stakeholders and how they are affected, quality assurance, liability for harm 
resulting from either malfunction or proper use, dispute-resolution, etc.)  

The two takeaways from this short discussion are: (1) of the multiple approaches to 
codifying ethics, deontological, top-down approaches are the preferred method, and 
(2) even this method may yield “ethics algorithms” that, at best, codify morality rules 
perfectly but produce harmful consequences, and, at worst, are so fundamentally 
riddled with ambiguities and subtleties of meaning as to be operationally unusable. 
Sharkey657 has argued while a robot may have “…rules of ethics … it won’t really care; 
it will follow a human designer’s idea of ethics,” and therefore by fiat will neither 

abide by a universal set of standards, nor ever be free of innate bias. Arguments of 
this form have recently culminated in a call to ban LAWS entirely (see next section). 

                                                   
653 I. Asimov, Robots and Empire, Doubleday, 1985. 

654 D. Lyuben, The Way of Icarus, ISBN 954-739-338-3, 1974. 

655 R. Clarke, "Asimov’s Laws of Robotics: Implications for Information Technology," 
IEEE Computer (part 1: December 1993, pp. 53–61; part 2: January 1994, pp. 57–66). 

656 (1) a robot may not act unless its actions are subject to the Laws of Robotics (the overriding 
“meta law”); (2) a robot may not injure humanity, or, through inaction, allow humanity to come 
to harm; (3) a robot may not injure a human being, or, through inaction, allow a human being 
to come to harm, unless this would violate a higher-order law; (4) a robot must obey orders 
given it by human beings, except where such orders would conflict with a higher-order law; 
a robot must obey orders given it by superordinate robots, except where such orders would 
conflict with a higher-order Law; (5) a robot must protect the existence of a superordinate 
robot as long as such protection does not conflict with a higher-order law; a robot must protect 
its own existence as long as such protection does not conflict with a higher-order law; (6) a 
robot must perform the duties for which it has been programmed, except where that would 
conflict with a higher-order law; and (7) a robot may not take any part in the design or 
manufacture of a robot unless the new robot’s actions are subject to the Laws of Robotics. 

657 N. Sharkey, “Autonomous Robots and the Automation of Warfare,” International 
Humanitarian Law Magazine 2, 2012. 



 

 

 

219 
 

Perhaps the strongest proponent of the proposition that robots “…can perform more 

ethically than human soldiers are capable of”and that this reason alone (despite 

the ambiguities inherent in codifying any system of ethics) renders their continued 

development an ethical imperativeis Ronald Arkin, Director of Georgia Tech’s 

College of Computing, and a pioneer of behavior-based robotics technologies.658  

Arkin’s point of departure is to use the fledgling but rapidly proliferating technology 
of driverless cars659 (e.g., Google’s Waymo660 and Tesla’s Autopilot661) as an example to 

illustrate how a heretofore human-operator-dominated domain can come to be 
accepted despite being constrained by many of the same ethical and moral concerns 

that are part of the debate about autonomous systems. Specifically, driverless cars 
entail two core ethical questions:662 (1) the classic “trolley problem”663 (i.e., “How does 
one decide who lives and who dies in an unavoidable accident?”, and (2) addressing 
the question, “Should the autonomous vehicle always obey the law to the letter?” 

Though the latter is already being put to the testa Google car was recently rear-

ended as it came to a legal full stop at a stop sign,664 and a passenger in a Tesla car 

was killed while the car was in full autopilot665there are (as of this writing) no calls 

                                                   
658 R. Arkin, Governing Lethal Behavior in Autonomous Robots, CRC Press, 2009. 

659 Autonomous vehicle sales are projected to make up between 2-5% of total vehicle sales in 
the 2020s (and with a lartge price premium), and between 20-40% of of all vehicle sales (with 
only a moderate price premium) by the 2030s. Ref: T. Litman, “Autonomous Vehicle 
Implementation Predictions,” Victoria Transport Policy Institute, 25 Nov, 2016. 

660 https://waymo.com/tech/. 

661 https://www.tesla.com/autopilot. 

662 R. Arkin, “Ethics and Autonomous Systems: Perils and Promises,” Proceedings of the IEEE, 
Oct 2016: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7571204. 

663 The “trolley problem” was introduced by J. Thomson (“The Trolley Problem,” The Yale Law 
Journal, Vol. 94, No. 6, May, 1985): “Suppose you are the driver of a trolley. The trolley rounds 
a bend, and there come into view ahead five track workmen, who have been repairing the track. 
The track goes through a bit of a valley at that point, and the sides are steep, so you must stop 
the trolley if you are to avoid running the five men down. You step on the brakes, but alas they 
don't work. Now you suddenly see a spur of track leading off to the right. You can turn the 
trolley onto it, and thus save the five men on the straight track ahead. Unfortunately, Mrs. Foot 
has arranged that there is one track workman on that spur of track. He can no more get off the 
track in time than the five can, so you will kill him if you turn the trolley onto him. Is it morally 
permissible for you to turn the trolley?” The trolley problem is also examined in a more recent 
essay: F. Bongiorni, “Give your car a conscience: Why driverless cars need morals,” New 
Scientist, 4 Jan 2017. 

664 K. Naughton, “Humans Are Slamming Into Driverless Cars and Exposing a Key Flaw,” 
Bloomberg Technology, 17 Dec 2015. 

665 D. Yadron and D. Tynan, “Tesla driver dies in first fatal crash while using autopilot mode,” 
The Guardian, 30 June 2016. 
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to ban driverless cars;666 indeed, basic issues of liability are being resolved in 
courtrooms, in a manner entirely analogous to what has been standard practice for 
human accidents. The reason, according to Arkin, is simply because it is an accepted 
fact that “humans are the most dangerous things on the road.”667 Therefore, any 
technology, such as AI-driven cars, that can demonstrably lead to a saving of even 

one life on the road and otherwise reduce injuries, is seenor can be argued to bea 

moral imperative. Driverless cars cannot get “drunk,” are never distracted, and are 
not subject to road rage, all of which are major contributing factors to highway 
accidents. 

Arkin argues that LAWS can be viewed in a similar light; that is, autonomy (even if it 
can never be made “perfect”) may be viewed as an “ethical imperative” if it helps save 
noncombatant lives and otherwise reduce injury. Just as driverless cars arguably save 
lives by compensating (in part) for human weaknesses on the road (as cited above), 
warfighters are “on occasion prone to poor judgment, carelessness, or even atrocities 
in their use of force.”668 Arkin  cites specific ethics breeches of soldiers and marines 
deployed in Operation Iraqi Freedom, including:669 (1) approximate 10% of soldiers 
report mistreating noncombatants; (2) less than 50% of soldiers agreed that 
noncombatants should be treated with dignity and respect; (3) less than 50% of 
soldiers and marines would report a team member for an unethical behavior; (4) only 
43% of soldiers (and 30% of marines)  agreed they would report a unit member for 
unnecessarily damaging or destroying private property; and (5) combat experience, 
particularly losing a team member, was related to an increase in ethical violations. 

Robots, however, may be able to perform better than humans under combat 
conditions (if not now, then in the foreseeable future):670 they can be designed 
without emotions that cloud judgment or result in anger and frustration with events  
taking place on the battlefield; they can assume greater risk on behalf of 
noncombatants (since they do not need to have the same “instinct” for self-
protection as humans); they can process vastly more information from a greater 
number of data sources than any human; robots are not subject to stress (that may 

                                                   
666 The National Highway Traffic Safety Administration (NHTSA) has recently issued guidelines 
(but not law) for self-driving cars: https://www.transportation.gov/sites/dot.gov/files/docs/ 
AV%20policy%20guidance%20PDF.pdf. 

667 R. Arkin, “Ethics and Autonomous Systems: Perils and Promises,” p. 1780. 

668 Ibid. 

669 Surgeon General’s Office, Mental Health Advisory Team (MHAT) IV Operation Iraqi Freedom 
05-07, Final Report, Nov. 17, 2006. 

670 R. Arkin, Governing Lethal Behavior: Embedding Ethics in a Hybrid Deliberative/Reactive 
Robot Architecture, Georgia Tech, Technical Report, GIT-GVU-07-11, 2011: http://www.cc. 
gatech.edu/ai/robot-lab/online-publications/formalizationv35.pdf. 



 

 

 

221 
 

cloud judgement); andwhen working in teams of combined human soldiers and 

autonomous systemsrobots have the potential to both independently and 

objectively monitor the ethical behavior of their teammates (thereby reducing human 
ethical infractions), and more consistently adhere to the “letter of the law” as 
prescribed by International Humanitarian Law (IHL) and the Rules of Engagement 
(ROE).  

Arkins advocates the use of an “ethical governor” two-step algorithm (albeit 
admitting that it is premature to speculate whether achieving effective compliance 

using this method is feasible): Step 1go/no-go decision, in which all sensor-derived 

data is first used to determine whether an attack is prohibited under IHL and the 
ROE. If the attack would violate a constraint (e.g., the requirement that a combatant 
must be distinguished from a noncombatant), it cannot proceed. If no constrains are 
violated, the attack may proceed only if attacking the target is required under 
operational orders (the algorithm rests on binary yes and no answers for this step);671 

and Step 2proportionality test, in which all mission-prescribed and IHL-mandated 

criteria are statistically weighted in a “utilitarian manner” to determine if the attack 
“satisfies all ethical constraints and minimizes collateral damage in relation to the 
military necessity of the target.”672  

Other, even more ambitious approachessuch as to ““match and possibly exceed 

human intelligence”673 in engineering IHL-compliant LAWS have also been suggested. 
For example, the UK Ministry of Defence believes that some form of “true AI” will be 
required to make autonomous weapons fully comply with the IHL, defining a system 
with “true AI” as one that has “a similar or greater capacity to think like a human” 
and distinguishes that intelligence from “complex and clever automated systems.”674 
It continues: 

Autonomous systems will, in effect, be self-aware and their response 
to inputs indistinguishable from, or even superior to, that of a 
manned aircraft. As such, they must be capable of achieving the same 
level of situational understanding as a human. . . . As computing and 
sensor capability increases, it is likely that many systems, using very 
complex sets of control rules, will appear and be described as 

                                                   
671 R. Arkin, Governing Lethal Behavior in Autonomous Robots, CRC Press, 2009, pp. 183-184. 

672 Ibid., p. 185. 

673 A. Krishnan, Killer Robots: Legality and Ethicality of Autonomous Weapons, Ashgate, 2009. 

674 Joint Doctrine Note 2/11 (JDN 2-11), The UK Approach to Unmanned Aircraft Systems, UK 
Ministry of Defence,  The Development, Concepts and Doctrine Centre, 2011: https://www.gov. 
uk/government/uploads/system/uploads/attachment_data/file/33711/20110505JDN_211_UA
S_v2U.pdf. 
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autonomous systems, but as long as it can be shown that the system 
logically follows a set of rules or instructions and is not capable of 
human levels of situational understanding, then they should only be 
considered to be automated.675 

Whether such a “true AI” can ever be developedor is even necessary to achieve “full 

autonomy” in weapon systemshas been hotly debated for decades, with 

proponents equally split on the “nay” and ‘yay” sides of the proposition.676 Expert 
opinions about the future AI vary greatly, with strong disagreements about 
timescales and about what particular forms “superhuman AIs” might eventually 
assume.677 Arguments on the “nay” side date back at least to the 1960s, with  
arguments by Taube678 and Lucas679 that AI is fundamentally incompatible with Kurt 
Gödel's incompleteness theorem; and to John  Searle’s “Chinese room” argument 
against AI, introduced in 1980.680 

Arguments on the “yay” side include Moravec’s681 and Kurzweil’s682 well-known 
predictions that machine intelligence will surpass human intelligence by about 2050, 
and Bostrom’s more recent book-length argument that not only is AI inevitable, and 
will likely arrive much sooner than later, but is something that we must all as a 
species be on guard against as a clear and imminent danger;683 a theme that is 
echoed, and expanded upon by multiple authors, in Awret, et al.684 Bostrom outlines 

                                                   
675 Ibid., at 2-3 to 2-4. 

676 C. Schoenick, et al., “Moving Beyond the Turing Test with the Allen AI Science Challenge,” 
Allen Institute for Artificial Intelligence Science: http://arxiv.org/pdf/1604.04315v1.pdf 

677 A survey conducted at the 2012 Singularity Summit (an annual conference of the Machine 
Intelligence Research Institute, founded in 2006 at Stanford University) of AI experts found 
a wide range of predicted dates when AI will be equal to or surpass “human level general 
intelligence,” with a median value of 2040. Ref: S. Armstrong and K. Sotala, “How we’re 
predicting AI, or failing to,” in Beyond AI: Artificial Dreams, edited by J.Romportl, et al., 
Pisen: University of West Bohemia, 2013. 

678 M. Taube, Computers and Common Sense, Columbia University Press, 1962. 

679 J. R. Lucas, “Minds, machines, and Godel,” Philosophy, Vol. 36, April-July, 1961. 

680 J. R. Searle, “Minds, brains, and programs,” Behavioral and Brain Sciences 3, 1980. 

681 M. Moravec, Robot: Mere Machine to Transcendent Mind, Oxford University Press, 2000. 

682 R. Kurzweil, The Singularity Is Near: When Humans Transcend Biology, Penguin Books, 2006. 

683 N. Bostrom, Superintelligence: Paths, Dangers, and Strategies, 2nd Edition, Oxford University 
Press, 2016. 

684 U. Awret, B. Appleyard, and D. Chalmers, editors, The Singularity: Could artificial intelligence 
really out-think us (and would we want it to)?, Journal of Consciousness Studies: Imprint 
Academic, 2016. 
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five paths that machine AI may follow to achieve human-level general intelligence; 
and thereafter examines the implications of what he argues becomes inevitable, 
namely the rapid emergence (i.e., the “AI singularity”685) of a super-intelligence that 
will far exceed human ability to understand or follow.686 A sentiment that is perhaps 
best summarized by physicist Stephen Hawking: 

It [artificial intelligence] would take off on its own, and re-design 
itself at an ever increasing rate, Humans, who are limited by slow 
biological evolution, couldn’t compete, and would be superseded.687 

But, regardless of whether the AI that is embedded in LAWS is “human like” (and 
displays human-like qualities of emotion and compassion) or “cliché-robotic” (that 

strictlyand blindly, without regard to any shades-of-gray meaning and 

interpretations sandwiched between binary-valued extremes)obeys all IHL, rules-of-

war, and ROE), the widespread adoption of such weapons demonstrably raises 

myriad legal, ethical, and humanitarian concerns; concerns whichdepending on 

what specific set policies and guidelines emerge from the United Nation’s recent 
foray into a public discussion of these issues (see Movement to ban LAWS section 

below)may potentially impact DoD’s own policies and  CONOPs with regard to the 

use of LAWS.688 

Towards a universal standard of robotic ethics 

The Institute of Electrical and Electronics Engineers (IEEE)the world’s largest 

professional organization for the advancement of technology689has recently 

                                                   
685 Ibid. 

686 In Ibid., Chalmers (in his introductory essay, “The Singularity: A Philosophical Analysis”) 
cites the basic argument (which he attributes to I. J. Goode, “Speculations Concerning the First 
Ultraintelligent Machine,” Advances in Computers 6, 1965): “Let an ultraintelligent machine be 
defined as a machine that can far surpass all the intellectual activities of any man however 
clever. Since the design of machines is one of these intellectual activities, an ultraintelligent 
machine could design even better machines; there would then unquestionably be an 
“intelligence explosion”, and the intelligence of man would be left far behind. Thus the first 
ultraintelligent machine is the last invention that man need ever make.” 

687 P. Rodgers, “Beware The Robots, Says Hawking,” Forbes, 3 Dec 2014: http://www.forbes. 
com/sites/paulrodgers/2014/12/03/computers-will-destroy-humanity-warns-stephen-
hawking/#5edf5e7c3fee. 

688 Losing Humanity: The Case against Killer Robots, International Human Rights Clinic, 
Human Rights Watch, November 2012: https://www.hrw.org/report/2012/11/19/losing-
humanity/case-against-killer-robots. 

689 https://www.ieee.org/index.html. 
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published the first version of Ethically Aligned Design (IEEE/EAD) with the expressed 

purpose of encouraging technologists to prioritize ethical considerations in the 
creation of autonomous and intelligent technologies.690 It is not (nor is meant to be) a 
definitive examination of ethics, but rather is an interim product that summarizes 
key issues and actively invites a public discussion of “how these intelligent and 
autonomous technologies can be aligned to moral values and ethical principles that 
prioritize human wellbeing.”691  

The 138 page document includes eight sections, each addressing a specific topic 
related to AI and autonomous systems (AS), and proceeds from three general 
principles that apply to all AS/AI systems: (1) embody the highest ideals of human 
rights, (2) prioritize the maximum benefit to humanity and the natural environment, 
and (3) mitigate risks and negative impacts as AI/AS evolve as socio-technical 
systems. The document also proposes a three-pronged approach to embedding 

values into AI/AS systems: Step 1identify the norms and values of a specific 

community affected by AI/AS; Step 2implement the norms and values of that 

community within AI/AS; and Step 3evaluate the alignment and compatibility of 

those norms and values between the humans and AI/AS within that community. 

Section six of IEEE/EAD examines the ethical issues surrounding the development 
and use of autonomous weapons systems (AWS). The top-level recommendation is 
that technical organizations assume a meaningful human control of AWS,692 with 

audit trails guaranteeing accountability to ensure such control. 

                                                   
690 Ethically Aligned Design: A Vision for Prioritizing Human Wellbeing with Artificial 
Intelligence and Autonomous Systems, Version 1 – For Public Discussion, IEEE, Dec 2016: 
http://standards.ieee.org/develop/indconn/ec/ead_v1.pdf. This document is released under 
the Attribution-Non Commercial version of the Creative Commons license for any organization 
to adopt or utilize, thereby helping expedite ethical considerations in the creation of 
autonomous and intelligent technologies. 

691 Details on how to submit feedback to the document are available on-line at: 
http://standards.ieee.org/develop/indconn/ec/giecaias_guidelines.pdf. 

692 The phrase “meaningful human control” appears throughout government, academic, and 
policy forums. Recall that “human control” (without the ‘meaningful’ clause) also appears in 
DoD Directive 3000.09. A recent document by the United Nations Institute for Disarmament 
Research (UNIDIR) traces the origin of the phrase “meaningful human control”  to UK NGO 
Article 36 (“Killer Robots: UK Government Policy on Fully Autonomous Weapons”, a 
commentary on the UK Ministry of Defense’s 2011 Joint Doctrine Note on “The UK Approach 
to Unmanned Systems”, at www.article36.org/wp-ontent/uploads/2013/04/Policy_Paper1.pdf), 
and offers a cogent discussion of how an examination of the issues related to “meaningful 
human control” can fuel broader analyses of the weaponization of increasingly autonomous 
technologies. Ref: The Weaponization of Increasingly Autonomous Technologies, UNIDIR, 2014: 
http://www.unidir.org/files/publications/pdfs/considering-how-meaningful-human-control-
might-move-the-discussion-forward-en-615.pdf. 
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The goal is to: 

…ensure that stakeholders are working with sensible and 
comprehensive shared definitions of concepts relevant in the space 
of AWS. We recommend designers not only take stands to ensure 
meaningful human control, but be proactive about providing quality 
situational awareness through those autonomous or semi-
autonomous systems to the humans using those systems. 
Stakeholders must recognize that the chains of accountability 
backward, and predictability forward, also include technical aspects 
such as verification and validation of systems, as well as 
interpretability and explainability of the automated decision-making, 
both in the moment and after the fact. 

IEEE/EAD lists 11 basic ethics-related issues that the report recommends be 
addressed for autonomous weapons systems:693 

1. Codes of conduct: professional organization codes of conduct often have 

significant loopholes, whereby they overlook holding members’ works, the 
artifacts and agents they create, to the same values and standards that the 
members themselves are held to, to the extent that those works can be. 

2. Definitions: confusions about definitions regarding important concepts in 

AI/AS, and AWS stymie more substantive discussions about crucial issues; 
i.e., it is more important to know how weapons are controlled by humans 

rather than myopically focus on weapon technology per se. (This issue 
echoes a basic concern expressed in both DSB/2012 and DSB/2016).694 

3. Attribution: AWS are by default amenable to covert and non-attributable use. 

Such dynamics can easily lead to unaccountable violence and societal havoc. 

4. Accountability: There are multiple ways in which accountability for AWS’s 

actions can be compromised. Levels of accountability include those for 
commanders (e.g., “What are the reasonable standards for commanders to 
utilize AWS?”), and operators (e.g., “What are the levels of understanding 
required by operators regarding system state, operational context, and 
situational awareness?”)  

                                                   
693 Ethically Aligned Design, IEEE, pp. 68-79. 

694 The Role of Autonomy in DoD Systems, DoD Defense Science Board, Task Force Report, 
Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, July 2012; 
Summer Study on Autonomy, DoD, Defense Science Board, Task Force Report, Office of the 
Under Sec. of Def. for Acquisition, Technology and Logistics, June 2016. 
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5. Predictability: in another echo of concerns expressed in both DSB/2012 and 

DSB/2016, though raised here in an ethics-related context, unpredictability is 
cited by IEEE/EAD as an intrinsic property of complex adaptive systems (i.e., 
AWS). Modeling and simulation cannot, in general, account for all possible 
dynamic contexts or situational interactions that an AWS will encounter, nor 
can the interactions with an adversary’s systems be anticipated. The 
inclusion of real-time learning (as discussed earlier) can only compound the 
problem. 

6. Spectre of a runaway “AWS race”: the widespread adoption, and therefore de 

facto legitimization of AWS development, may set geopolitically dangerous 
precedents. The deployment of AWS may create incentives for further use 
and development of more sophisticated AWS; a cycle that would incentivize 
faster, increasingly complex, decision-making in critical situations and 
conflicts, and make it more difficult for humans to participate in decision 
making. 

7. Bypassing of ethical constraints: exclusion of human oversight from the 
battlespace may lead to inadvertent violation of human rights and 
inadvertent escalation of tensions. “AWS operating without meaningful 
human control should be prohibited, and as such design decisions regarding 
human control must be made so that a commander has meaningful human 
control over direct attacks during the conduct of hostilities.” 

8. Consequences of proliferation: the variety of direct and indirect customers of 

AWS will lead to a complex and troubling landscape of proliferation and 
abuse. There is an ethical mandate to consider the foreseeable use of AWS, 
and the risk for misuse. 

9. Spectre of spontaneous conflicts:  since one of the key advantages of AWS is 

their ability to make decision vastly faster than humans, when opposing 
AWS interact with one another, there is the potential for conflicts to arise 
and escalate at a pace impossible for humans to understand or follow. 

10. Lack of ethical or legal standards: there are currently no standards regulating 

the compliance of autonomous and semi-autonomous weapons systems with 
relevant ethical and legal standards. 

11. Morality: the highest-level issue for which there is, as yet, no universally 
agreed upon set of standards, concerns basic morality, starting with, “What 
does it even mean?”, and cutting across questioning the morality of 
developing, designing, producing, and deploying AWS. IEEE/EAD suggests 
that it is incumbent on the technology community responsible for building 
these systems to attain a basic understanding of the ethical and moral 
boundaries of their work (but recognizes that the means to do so is 
encumbered by a current lack of standards). 
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Movement to ban LAWS 

The first international organization focused on fostering an ethical debate about, and 
instituting a band on the development and deployment of autonomous weapons, was 
the International Committee for Robot Arms Control (ICRAC), organized in 2009 with 
the mission statement:695 

Given the rapid pace of development of military robotics and the 
pressing dangers that these pose to peace and international security 
and to civilians in war, we call upon the international community to 
urgently commence a discussion about an arms control regime to 
reduce the threat posed by these systems. We propose that this 
discussion should consider the following: Their potential to lower the 
threshold of armed conflict; The prohibition of the development, 
deployment and use of armed autonomous unmanned systems. 

ICRAC’s mission statement was fulfilled in 2013 when, during the 23rd of the United 
Nations General Assembly Human Rights Council, a report was issued and debated 
on the development and deployment of autonomous weapons.696 The 24 participating 
states expressed concerns regarding the use of fully autonomous weapons and 
indicated an interest in continuing discussions.697 The Convention on Conventional 
Weapons (CCW) was deemed the appropriate body to deal with autonomous 
weapons; a proposal that was made official in Nov 2013 when at the meeting of 
states parties of the CCW it was decided to convene a four-day meeting of experts on 
the topic of fully autonomous weapons.  

                                                   
695 J. Altmann, P. Asaro, N. Sharkey and R.Sparrow, founding members, ICRAC: 
http://icrac.net/2014/05/icrac-celebrates-successful-fulfillment-of-its-2009-mission/. 

696 Christof Heyns, Report of the Special Rapporteur on Extrajudicial, Summary or Arbitrary 
Executions, United Nations, 23rd Session of the General Assembly, 9 April 2013: http://www. 
ohchr.org/Documents/HRBodies/HRCouncil/RegularSession/Session23/A-HRC-23-47_en.pdf. 

697 Pakistan, Morocco, Mexico, Argentina, Cuba, Sierra Leone, Switzerland, Algeria, and Egypt 
raised deep concerns about the future implications of such weapons and argued that these 
weapons should be discussed through the perspectives of both human rights and international 
humanitarian law. The European Union, several of its member states, the United States, and 
Brazil seemed more eager to define the issue in terms of arms control. Though the UK 
originally expressed the opinion that existing weapons-use rules apply to fully autonomous 
weapons, and that it does not support an international ban, the UK government later clarified 
its position by stating that fully autonomous weapons do not meet the requirements of 
international humanitarian law. Ref: Fully Autonomous Weapons, Reaching Critical Will: 
http://www.reachingcriticalwill.org/resources/fact-sheets/critical-issues/7972-fully-
autonomous-weapons#Campaign. 
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The first such meeting (of experts on LAWS) was held in May of 2014,698 with three 
subsequent meetings held 13-17, April 2015; 11-15, April 2016; and 12-16 December 
2016, respectively.699 Apart from continuing the ethical debate on the use of 
autonomous weapons on the international stage (as of this writing, it is unclear what 
specific actions will eventually emerge: a set of guidelines, regulations, or a total 
ban), the most recent meeting formally established an open-ended Group of 
Governmental Experts (GGE) related to emerging technologies in the area of lethal 
autonomous weapons systems (LAWS); which is scheduled to meet during two 
sessions in 2017 (the first session to be held either 24-28, April 2017 or from 21 to 
25 August 2017; the second session from 13 to 17 Nov 2017).700 

A major non-governmental-organization (NGO) sponsored movement to ban 

LAWSthe Campaign to Stop Killer Robots (CSKR)was launched in London in April 

2013, and consists of five international NGOs, a regional NGO network, and four 
national NGOs that work internationally (including Article 36,701 Human Rights 
Watch,702 and ICRAC703). Building on previous experiences to ban landmines, cluster 
munitions, and blinding lasers, CSKR’s goal is to establish a coordinated 
international effort to ban the development of fully autonomous weapon systems 
and to address the challenges to international law posed by these weapons. A 
chronology of CSKR’s efforts to date is available on-line.704  

AI experts weight in 

Apart from the U.N.led and NGO-sponsored movements to ban LAWS, in July 2015, 

over 1,000 robotics and artificial intelligence researchers signed a 434 word open 

                                                   
698 Report of the 2014 informal Meeting of Experts on Lethal Autonomous Weapons Systems 
(LAWS), held in Geneva, 13–14 November 2014: https://daccess-ods.un.org/TMP/9073427. 
91557312.html. 

699 Additional information and links to reports summarizing all four CCW meetings on LAWS 
are available on-line: http://www.unog.ch/80256EE600585943/(httpPages)/3CFCEEEF52D55 
3D5C1257B0300473B77?OpenDocument. 

700 Final Document of the Fifth Review Conference, CCW, held 12-16 Dec 2016: 
http://www.unog.ch/80256EDD006B8954/(httpAssets)/AF11CD8FE21EA45CC12580920053AB
E2/$file/CCW_CONF.V_10_23Dec2016_ADV.pdf. 

701 http://www.article36.org/. 

702 http://www.hrw.org/. 

703 http://icrac.net/. 

704 http://www.stopkillerrobots.org/chronology/. 
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letter705 calling for a ban on offensive autonomous weapons (with 20K+ signatories as 
of Dec 2016):706  

AI technology has reached a point where the deployment of 

[autonomous weapons] ispractically if not legallyfeasible within 

years, not decades, and the stakes are high: autonomous weapons 
have been described as the third revolution in warfare, after 
gunpowder and nuclear arms. 

Many arguments have been made for and against autonomous 
weapons, for example that replacing human soldiers by machines is 
good by reducing casualties for the owner but bad by thereby 
lowering the threshold for going to battle. The key question for 
humanity today is whether to start a global AI arms race or to 
prevent it from starting. If any major military power pushes ahead 
with AI weapon development, a global arms race is virtually 
inevitable, and the endpoint of this technological trajectory is 
obvious: autonomous weapons will become the Kalashnikovs of 
tomorrow. Unlike nuclear weapons, they require no costly or hard-to-
obtain raw materials, so they will become ubiquitous and cheap for 
all significant military powers to mass-produce. 

Starting a military AI arms race is a bad idea, and should be 
prevented by a ban on offensive autonomous weapons beyond 
meaningful human control.  

The significance of this open letter derives principally from the caliber of people who 
signed it. Signatories include some the world’s leading experts on AI and robotics, 
and other basic science and technology leaders: Stuart Russell (Professor of 

Computer Science, director of the Center for Intelligent Systems, and co-author of the 
standard textbook Artificial Intelligence: a Modern Approach),707 Nils J. Nilsson 
(Department of Computer Science, Stanford University), Barbara J. Grosz (Professor 
of Natural Sciences, Harvard University; former president AAAI), Yann LeCun 
(Director of AI Research at Facebook), Noam Chomsky (Professor, MIT, inductee in 
IEEE Intelligent Systems Hall of Fame), Elon Musk (SpaceX, Tesla, Solar City), Frank 
Wilczek (Nobel Laureat, Physics), Demis Hassabis (Director of Google’s DeepMind AI 
project), and Stephen Hawking (Director of research at the Department of Applied 

Mathematics and Theoretical Physics at Cambridge). 

                                                   
705 http://futureoflife.org/open-letter-autonomous-weapons/#. 

706 http://futureoflife.org/awos-signatories/. 

707 S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Pearson, 2009. 



 

 

 

230 
 

Just as the final draft of this report was being completed (Jan 2017), it was reported 
that the European Parliament committee on Legal Affairs had voted in favor of 
granting legal status to robots,708 categorizing them as electronic persons (a plenary 
vote is scheduled for February, 2017):709  

...the most sophisticated autonomous robots could be established as 
having the status of electronic persons with specific rights and 
obligations, including that of making good any damage they may 
cause, and applying electronic personality to cases where robots 
make smart autonomous decisions or otherwise interact with third 
parties independently. 

 

                                                   
708 “Robot kill switches & legal status: MEPs endorse AI proposal,” RT, 12 Jan 2017: 
https://www.rt.com/viral/373450-robot-kill-switches-status/. 

709 M. Delvaux, Rapporteur, Draft Report with Recommendations to the Commission on Civil Law 
Rules on Robotics, European Parliament, 2016. 
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Conclusions 

The military is on the cusp of a major technological revolution as it enters the 
Robotic Age,710 in which warfare is conducted by unmanned and increasingly 
autonomous weapon systems, operating across all domains (air, sea, undersea, land, 
space, and cyber), and across the full spectrum of military operations. The question 
is not whether the future of warfare will be filled with autonomous, AI-driven robots, 
but when and in what form. However, unlike the last “sea change” during the Cold 

War (i.e., the so-called “2nd Offset”),711 when advanced technologies such as precision-
strike weapons, stealth aircraft, smart weapons and sensors, and GPS were developed 
primarily by DoD-sponsored research and development programs, a successful 
transition into the Robotic Age (spurred on by DoD’s recent “Third Offset Strategy” 
innovation initiative)712 will depend critically on how well DoD is able to embrace 
technologies and innovations that are now being developed mostly in the commercial 
world. And, while the human warfighter is not going away anytime soon, if ever (even 
as the depth and breadth of autonomy steadily expand), human operators will not 
suddenly lose control of existing unmanned systems. A telltale sign that DoD has 
made a “no looking back” cross-over into the Robotic Age will be when human 
operators can no longer fully understand, or predict, how autonomous systems 

behave—i.e., when, for the first time, a human operator is as stunned by some 
weapon system’s action as 18-time world Go champion Lee SeDol was by a single 
move of the AI that defeated him. 

Opportunities and Challenges 

If and when fully AI-driven autonomous systems finally arrive, they will offer a 
variety of obvious advantages to the warfighter. For example, they will eliminate the 

                                                   
710 Robert O. Work and Shawn Brimley, 20YY: Preparing for War in the Robotic Age, Center 
for a New American Security, Jan 2014. 

711 J. McGrath, “Twenty-First Century Information Warfare and the Third Offset Strategy,” 
Joint Forces Quarterly, National Defense University, Issue 82, 3rd Quarter 2016. 

712 C. Hagel, Transcript of Keynote speech delivered at Reagan National Defense Forum Keynote, 
Ronald Reagan Presidential Library, Simi Valley, CA, November 15, 2014. 
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risk of injury and/or death to the human operator; offer freedom from human limits 
on workload, fatigue, and stress; and be able to assimilate high-volume data and 
make “decisions” based on time scales that far exceed human ability. If robotic 
swarms are added into the mix, entirely new mission spaces potentially open up as 
well—e.g., wide-area, long-persistence, surveillance; networked, adaptive electronic 
jamming; and coordinated attack. There are also numerous advantages to using 
swarms rather than individual robots, including: efficiency (if tasks can be 
decomposed and performed in parallel), distributed action (multiple simultaneous 
cooperative actions can be performed in different places at the same time), and fault 
tolerance (the failure of a single robot within a group does not necessarily imply that 

a given task cannot be accomplished). 

However, the design and development of autonomous systems also entails 
significant conceptual and technical challenges, including:  

 “Devil is in the details” research hurdles: Developers of autonomous systems 

must confront many of the same fundamental problems that the academic and 
commercial AI and robotic research communities have struggled for decades 
to “solve.” To survive and successfully perform missions, autonomous systems 
must be able to sense, perceive, detect, identify, classify, plan for, decide on, 
and respond to a diverse set of threats in complex and uncertain 
environments. While aspects of all these “problems” have been solved to 
varying degrees, there is, as yet, no system that fully encompasses all of these 
features. 

 Complex and uncertain environments: Autonomous systems must be able to 

operate in complexpossibly, a priori unknownenvironments that possess a 

large number of potential states that cannot all be pre-specified or be 
exhaustively examined or tested. Systems must be able to assimilate, respond 
to, and adapt to dynamic conditions that were not considered during their 

design. This “scaling” problemi.e., being able to design systems that are 

developed and tested in static and structured environments, and then have 

them perform as required in dynamic and unstructured environmentsis 

highly nontrivial. 

 Emergent behavior: For an autonomous system to be able to adapt to changing 

environmental conditions, it must have a built-in capacity to learn, and to do 
so without human supervision. It may be difficult to predict, and be able to 
account for a priori unanticipated, emergent behavior (a virtual certainty in 

sufficiently “complex” systems-of-systems dynamical systems). 

 Human-machine interactions/I: The operational effectiveness of autonomous 

systems will depend on the dynamic interplay between the human operator 
and the machine(s) in a given environment, and on how the system responds, 
in real time, to changing operational objectives, in concert with the human’s 
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own adaptation to dynamic contexts. The innate unpredictability of the human 
component in human-machine collaborative performance only exacerbates the 
other challenges identified on this list. 

 Human-machine interactions/II: The interface between human operators and 

autonomous systems will likely include a diverse space of tools that include 
visual, aural, and tactile components. In all cases, there is the challenge of 
translating human goals into computer instructions (e.g., “solving” a long-
standing “AI problem” of natural language processing), as well as that of 
depicting the machine’s “decision space” in a form that is understandable by 
the human operator (e.g., allowing the operator to answer the question, “Why 
did the system choose to take action X?”). 

 Control: As autonomous systems increase in complexity, we can expect a 

commensurate decrease in our ability to both predict and control such 
systems—i.e., the “spectre of complacency in complexity.” As evidenced by the 
general nature of recent AI breakthroughs, there is a fundamental tradeoff: 
either the AI can achieve a given performance level (e.g., it can play the game 
Go as well as, or better than, a human), or humans can be able to understand 
how its performance is being achieved). 

Apart from these innately technical challenges to developing autonomous systems, 
there are a set of concomitant acquisition challenges, the origin of which is a recent 
shift in DoD’s innovation-related procurement practices. While the U.S. government 
has always played an important role in fostering AI research (e.g., ARPA, DARPA, NSF, 
ONR), most key innovations in AI, robotics, and autonomy are now being driven by 
the commercial sector,713 and at a pace that DoD’s relatively plodding stove-piped 

acquisition process is ill equipped to accommodate: it takes 91 months (7.6 years), 
on average, from the start of an analysis of alternatives (AoA) study to initial 

operational capability (IOC).714 Even information technology programsunder whose 

rubric most AI-derived acquisitions naturally fallhave averaged 81 months. By way 

of comparison, note that within roughly this same interval of time, the commercial AI 
research community has gone from just experimenting with (prototypes of dedicated 

                                                   
713 The development of most of the UAVs used in Iraq and Afghanistan was driven not by DoD 
requirements, but rather by commercial research and development. Ref: “Microsoft, Google, 
Facebook and more are investing in artificial intelligence: What is their plan and who are the 
other key players?” TechWorld, September 29, 2016.   

714 Policies and Procedures for the Acquisition of Information Technology, Department of 
Defense, Defense Science Board, Task Force Report, Office of the Under Secretary of Defense 
for Acquisition, Technology and Logistics, March 2009. 
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hardware-assisted) deep learning techniques,715 to beating the world champion in Go 
(along with achieving many other major breakthroughs).  

Of course, DoD acquisition challenges, particularly for weapons systems that include 
a heavy coupling between hardware and software, have been known for decades.716  
However, despite numerous attempts by various stakeholders to address these 
challenges, the generic acquisition process (at least on the traditional institutional 
level) remains effectively unchanged. Whatever progress has been made in recent 
years derives more from workarounds instituted by DoD to facilitate “rapid 

acquisition” of systems,717 than from wholesale changes applied to stove-piped 
processes of the acquisition process itself. Some recent progress has been 

madee.g., the 2009/2011 National Defense Authorization Acts (NDAA/Sec 804), 

mandated a new IT acquisition process, which, in turn led to multiple Defense 
Science Board (DSB) Task Force (TF) studies of the acquisition process. Yet, a notable 
absence in any of these DSB/TF studies is any explicit mention of autonomy.  

Complicating the issue still further is a basic dichotomy between DoD’s existing 
directive on autonomy (DoD Directive 3000.09, issued Nov 2012) and current Test 
and Evaluation (T&E) and Verification and Validation (V&V) practices. Specifically, 
Directive 3000.09 requires that weapons systems (italics added by author of this 
report):718 

 Go through rigorous hardware and software T&E/V&V, “including analysis of 
unanticipated emergent behavior resulting from the effects of complex 
operational environments on autonomous or semiautonomous systems.”   

 “Function as anticipated in realistic operational environments against adaptive 
adversaries.” 

 “Are sufficiently robust to minimize failures that could lead to unintended 
engagements.”  

                                                   
715 The first graphics-processor-based unsupervised deep-learning techniques were introduced 
in 2009: R. Raina, A. Madhavan, and A. Ng, “Large-scale deep unsupervised learning using 
graphics processors,“ Proceedings of the 26th Annual International Conference on Machine 
Learning, ACM, 2009. 

716 J. Merritt and P. Sprey, “Negative marginal returns in weapons acquisition,” in American 
Defense Policy, Third Edition, edited by R. Head and E. Roppe, John Hopkins Univ. Press, 1973. 

717 Examples include: the U.S. Air Force Rapid Capabilities Office, the U.S. Army’s Asymmetric 
Warfare Group and Rapid Capabilities Office, DoD’s Strategic Capabilities Office, and, most 
recently, SecDef Ashton Carter’s Defense Innovation Unit Experimental (DIUx). Ref: B. 
Fitzgerald, A. Sander, J. Parziale, Future Foundry: A New Strategic Approach to Military-
Technical Advantage, Center for a New American Security, 2016. 

718 Enclosures 2 and 3 of DoD Directive 3000.09 (Autonomy in Weapon Systems, Nov 2012) 
address T&E and V&V issues, and generally review guidelines, respectively. 
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Directive 3000.09 further requires that T&E/V&V must “assess system performance, 
capability, reliability, effectiveness, and suitability under realistic conditions, 
including possible adversary actions, consistent with the potential consequences of an 
unintended engagement or loss of control of the system.” 

Yet, existing T&E/V&V practices do not make accommodations for any of the 
italicized parts of these quoted requirements. Among the many reasons why 
autonomous systems are particularly difficult to test and validate are: (1) complexity 
of the state-space  (it is impossible to conduct an exhaustive search of the vast space 
of possible system “states” for autonomous systems); (2) complexity of the physical 

environment (the behavior of an autonomous system cannot be specifiedmuch less 

tested and certifiedin situ, but must be tested in concert with interaction with a 

dynamic environment, rendering the space of system inputs/outputs and 
environmental variables combinatorically intractable); (3) unpredictability (to the 

extent that autonomous systems are inherently complex adaptive systems, novel or 
unexpected behavior can be expected to arise naturally and unpredictably in certain 
dynamic situations; existing T&E/V&V practices do not have the requisite fidelity to 
deal with emergent behavior); and (4) human operator trust in the machine (existing 

T&E/VV&A practice is limited to testing systems in closed, scripted environments, 
since “trust” is not an innate trait of a system).  

Trust also entails grappling with the issue of experience and/or learning: to be more 

effective, autonomous systems may be endowed with the ability to accrue 
information and learn from experience. But such a capability cannot be certified 
monolithically, during one “check the box” period of time. Rather, it requires periodic 
retesting and recertification, the periodicity of which is necessarily a function of the 
system’s history and mission experience. Existing T&E/V&V practices are wholly 
inadequate to address these issues. 

Gestalt of main findings 

Figure 41 illustrates, schematically, the key steps involved in extending the existing 
unmanned systems mission space (e.g., reconnaissance, route clearance, and search 
and rescue) to one that more fully embraces all that autonomy potentially offers (e.g., 
self-organized, and self-healing, adaptive swarms). Leaving aside details of the 
pipeline to the main text, the key (mutually entwined) steps include, starting from 
bottom of the figure and working our way to the top:  

 Step 1: Conducting basic AI research across multiple domains (the green-to-red 

overlay emphasizing that research in different AI arease.g., deep learning, 

image recognition, and robotic swarmsnecessarily proceeds at different rates 

and exists, at any one time, at different levels of maturation).  
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Figure 41.  Key steps in transitioning to new autonomy-enabled mission areas 
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 Step 2: Understanding how individual AI research domains feed into the 

myriad components that make up autonomous systems, including their 
coupling with human operators (which further involves the understanding of 
how human-machine collaborative systems function in specific mission 
environments).  

 Step 3: Moving design, development, testing, and accreditation through the 

DoD acquisition process (and accommodating autonomy’s unique set of 
technical challenges while doing so).  

 Step 4: Interpreting and projecting the requisite levels of maturity of system 

capabilities that autonomous systems must possess for specific missions. The 
autonomous systems that are shown in figure ES-1 are characterized as 
functions of four broad categories of AI (i.e., sensing, thinking, acting, and 
teaming). Their projected capabilities are indicated as follows: shades of green 

indicate capabilities that are available now; shades of orange denote near-term 
capabilities; and increasingly darker shades of red indicate the far-term 
regime. This table is taken from the DoD’s Defense Science Board’s most recent 
study on autonomy,719 but is intended mostly as a notional place-holder for the 
kinds of conceptual, technical, and analytical considerations that must be 
taken into account as the raw capabilities of the autonomous systems that 
come out of the acquisition process are transformed into new and 
operationally meaningful missions and missions areas. 

In preparation for DoD’s cross-over into the Robotic Age, whenever it arrives, this 
study has identified four key technical gaps in developing AI-based autonomous 
systems, wherein opportunities for future analytical studies naturally arise (see 
figure 42). 

These gaps are:   

 Gap 1: A fundamental mismatcheven dissonancebetween the accelerating 

pace (and manner of development and evolution) of technology innovation in 
commercial and academic research communities, and the timescales and 
assumptions underlying DoD’s existing acquisition process.  

                                                   
719 Table 1 in Summer Study on Autonomy, Department of Defense, Defense Science Board, 
Task Force Report, Office of the Under Secretary of Defense for Acquisition, Technology 
and Logistics, June 2016: https://www.hsdl.org/?view&did=79464. 
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Figure 42.  Key gaps in transitioning to new autonomy-enabled mission areas 

 

 Gap 2: An underappreciation of the unpredictable nature of autonomous 

systems, particularly when operating in dynamic environment, and in concert 
with other autonomous systems. Existing T&E/V&V practices accommodate 
neither the basic properties of autonomous systems, as expected by AI and 
indicated by decades of deep fundamental research into the behavior of 
complex adaptive systems, nor the requirements they must meet, as weapon 
systems (as spelled out by DoD Directive 3000.09). 

 Gap 3: A lack of a universally agreed upon conceptual framework for 

autonomy that can be used both to anchor theoretical discussions and to 
serve as a frame-of-reference for understanding how theory, design, 
implementation, testing, and operations are all interrelated. A similar 
deficiency exists for understanding the role that trust plays in shaping a 
human operator’s interaction with an autonomous system. The Defense 
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Science Board’s most recent study on autonomy720 warns that “inappropriate 
calibration” of trust during “design, development, or operations will lead to 
misapplication” of autonomous systems, but offers only a tepid definition of 
trust, and little guidance on how to apply it. 

 Gap 4: DoD’s current acquisition process does not allow for a timely 

introduction of “mission-ready” AI/autonomy, and there is a general 
disconnect between system design and the development of concepts of 
operations (CONOPS). Unmanned systems are typically integrated into 
operations from a manned-centric CONOPS point of view, which is 

unnecessarily self-limiting by implicitly respecting human performance 
constraints. 

Recommended studies 

While not even AI experts can predict how AI will evolve in even the nearterm future 

(much less project its possible course over 10 or more years,721 or predict AI’s impact 
on the development of military autonomous systems), it is still possible to anticipate 
many of the key conceptual, technical, and operational challenges that DoD will face 
in the coming years as it increasingly turns to and more deeply embraces AI-based 
technologies, and fully enters the “Robotic Age.” From an operational analysis 
standpoint, these challenges can also be used to help shape future studies: 

Recommendation 1:  Help establish dialog between commercial research and 

development and DoD. 

Institutions specializing in operational analysis are well 
suited to act as “go betweens” linking the academic and 
commercial research communities with military culture / 

operational needs. Assuming that Secretary of Defense 

                                                   
720 Summer Study on Autonomy, Department of Defense, Defense Science Board, Task Force 
Report, Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, 
June 2016: https://www.hsdl.org/?view&did=79464. 

721 S. Armstrong, K. Sotala, and S. hÉigeartaigh, “The errors, insights and lessons of famous 
AI predictions – and what they mean for the future,” Journal of Experimental & Theoretical 
Artificial Intelligence 26, no. 3, 2014;  D. Fagella, “Artificial Intelligence Risk – What Researchers 
Think is Worth Worrying About,” Tech Emergence, 20 March 2016: 
http://techemergence.com/artificial-intelligence-risk/. For the most recent survey of expert 
opinion see: V. Muller and N. Bostrom, “Future Progress in Artificial Intelligence: A Survey of 
Expert Opinion,” in Fundamental Issues of Artificial Intelligence, edited by V. Muller, Springer-
Verlag, 2016.  
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Ashton Carter’s Defense Innovation Unit-Experimental (DIUx) 
program survives into the next administration,722 
operationally informed and technically knowledgeable 
analysts can help stakeholders better “understand” each 
other. Cross-fertilization with the Naval Postgraduate School 
(NPS) may also pay dividends.723 

Recommendation 2:  Develop an operationally meaningful conceptual 

framework for autonomy.  

For example, build on lessons learned from the National 
Institute of Standards and Technology’s (NIST’s) stalled 
evolution of its ALFUS (Autonomy Levels for Unmanned 
Systems) framework, and develop the skeleton of an idea 
proposed by DoD’s Defense Science Board’s 2012 report on 
autonomy.724 

Recommendation 3:  Develop measures of effectiveness (MOEs) and measures of 

performance (MoP) for autonomous systems.  

Develop a methodology by which the effectiveness of 
autonomous systems can be measured at all levels (e.g., 
developers, program managers, decision-makers, and 
warfighters) and across all required functions, missions, and 
tasks (e.g., coordination, mission tasking, training, 
survivability, situation awareness, and workload). 

Recommendation 4:  Use nontraditional modeling and simulation (M&S) 

techniques to help mitigate AI/autonomy-related 

dimensions of uncertainty.  

As DoD moves into the Robotic Age, M&S is moving away 
from “simulations as distillations” of real systems (for which 
M&S has traditionally been used to develop models in order 
to gain insights into the real system), to “simulation-based 
rules and algorithms as descriptions” of real (i.e., engineered) 

                                                   
722 DIUx has been established to help facilitate the discovery and development of capabilities 
and technologies outside DoD’s normal acquisition pipeline. Ref: https://www.diux.mil/. 

723 For example: NPS’s Consortium for Robotics and Unmanned Systems Education and 
Research (CRUSER: https://my.nps.edu/web/cruser), and Autonomous Systems Track 
(http://my.nps.edu/web/ast). 

724 The Role of Autonomy in DoD Systems, DoD Defense Science Board, Task Force Report, 
Office of the Under Secretary of Defense for Acquisition, Technology and Logistics, July 2012. 
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robots and behaviors. It is here, at the cusp between exploring 
behaviors and prescribing rules that generate them (e.g., 
engineering desired swarm behaviors), that M&S can help 
mitigate some of the challenges and uncertainties of 
developing autonomous systems and robotic swarms. For 
example, while “swarm engineering” methods exist to 
facilitate the unique design requirements of robotic swarms, 
no general method exists that maps individual rules to 
(desired) group behavior.725  

Multi-agent based modeling techniques726 are particularly well 
suited for developing these rules, and, more generally, for 
studying the kinds of self-organized emergent behaviors 
expected to arise in coupled autonomous systems (e.g., “How 
sensitive is an autonomous system’s behavior to changes in 
its physical environment?”, “What new command and control 
architectures will be needed for robotic swarms?”, and “How 
will the control and behavior of a swarm scale with its size 
and mission complexity?”).  

Recommendation 5:  Apply wargaming techniques to help develop new CONOPS.   

Wargaming can be used to help identify and develop new 
CONOPS, apply lessons-learned from the experience of using 
deployed systems, explore options to counter uses of 
autonomy by potential adversaries, and assist in training (e.g., 
by exploring trust issues in human-machine collaboration). 
Wargames can also stimulate and nurture a more unified 
approach to understanding autonomous system performance 
and behavior, provided that they are conducted with the 
support and participation from across all military services 
and domains.  

                                                   
725 I. Navarro and F. Matia, “An Introduction to Swarm Robotics,” International Scholarly 
Research Notes, Vol. 2013, 2013:  https://www.hindawi.com/ journals/isrn/2013/608164/. 

726 A. Ilachinski, Artificial War: Multiagent-Based Simulation of Combat, World Scientific, 2004. 
See also: A. Ilachinski, “Modelling insurgent and terrorist networks as self-organized complex 
adaptive systems,” International Journal of Parallel, Emergent and Distributed Systems 27, 
2012; A. Ilachinski, AOEWSim: An Agent Based Model for Simulation Interactions Between Off-
Board EW Systems and Anti-Ship Missiles, CNA, DWP-2013-U-004757, 2013; A. Ilachinski and M. 
Shepko, FAC/FIAC Simulation (FFSim): User’s Guide, CNA, Annotated Briefing, 2015. 
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Recommendation 6:  Develop new T&E/V&V standards and practices 

appropriate for the unique challenges of accrediting 

autonomous systems.   

For example, help ameliorate basic gaps in testing in terms of 
accommodating complexity, uncertainty, and subjective 
decision environments, by appealing to and exploiting lessons 
learned from the development and accreditation practices 
established by the complex system theory and multiagent-
based modeling research communities. 

Recommendation 7:  Explore basic human-machine collaboration and interaction 

issues.   

As autonomy increases, human operators will be concerned 
less with the manual control of a vehicle, and more with 
controlling swarms and directing the overall mission: “What 
are the operator’s informational needs (and workload 
limitations) for controlling multiple autonomous vehicles?” 
“How do humans keep pace with an accelerating pace of 
autonomy-driven operations?” “What kinds of command-and-
control relationships are best for human-machine 
collaboration?” “How are human and autonomous-system 
decision-making practices optimally integrated?” and “What 
data practices are key to developing shared situation 
awareness?” 

Recommendation 8:  Explore the challenges of force-integration of increasingly 

autonomous systems.   

Essentially all force-integration issues are, as yet, 
undetermined. They must consider not just “low hanging 
fruit” extensions of existing CONOPS, in which the human 
component is simply replaced with unmanned systems and 
“operational value” of human performance is scaled to 
accommodate “better” performance (e.g., endurance, 
survivability), but brainstorm heretofore nonexistent tactics, 
operations, and missions that fully embrace existing and 
anticipated future autonomous capabilities. What is the 
tradeoff between large numbers of simple, low-cost (i.e., 
“disposable”) vehicles and small numbers of complex (multi-
functional) ones? 

The operationalization of robotic swarms, in particular, 
represents a heretofore largely untapped dimension of the 
mission space, and will require the development of new 
CONOPS. The swarm may be used as a radically new form of 
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precision coordinated “en masse” guided munition; as a self-
healing area surveillance network (which includes collecting 
and assimilating data on an adversary’s Internet-of-Things 
(IoT);727 or as an adaptive distributed electronic jammer.  

Recommendation 9:  Explore the cyber implications of autonomous systems.    

Explore what new features increased AI-driven autonomy 
brings to the general risk assessment of increasingly 
autonomous unmanned systems. On one hand, autonomy 
may potentially reduce a force’s overall vulnerability to 
jamming or cyber hacking. For example, communications loss 
over a jammed data link may be compensated for by the 
ability of autonomous vehicles to continue performing their 
mission). On the other hand, autonomy itself may also be 
more, not less, vulnerable to a cyber intrusion. For example, 

an adversary may gain “control,” or otherwise deliberately 
“perturb” the behavior of an autonomous system; it may also 
be more difficult to detect embedded malware. In the latter 
context, consider some future variants of incidents such as 
the Iranian capture of an RQ-170 Sentinel in 2011,728 and the 

“keylogging” virus that infected the UAV-control-computers at 
the Creech Air Force Base in Nevada.729 

Recommendation 10:  Explore operational implications of ethical concerns over 

the use of lethal autonomous weapon.    

Analyze issues of accountability, legality, and liability in 
arguments put forth by various “Ban LAWS” movements. 
Examine the possible constraints on missions (along with 
other associated impediments to the design and development 
of autonomous systems) that may result from an 
international ban (or set of limits) imposed on the 
development or deployment of LAWS, such as might come out 
of the United-Nations-sponsored government experts’ 
negotiations scheduled to take place sometime in 2017. 

                                                   
727 G. Seffers, “Defense Department Awakens to Internet of Things,” Signal, 1 Jan 2015: 
http://www.afcea.org/content/?q=defense-department-awakens-internet-things. 

728 The Iranian government announced that the RQ-170 was captured by its cyber warfare unit: 
“Iran shows film of captured US drone,” BBC News, 8 Dec 2011: http://www.bbc.com/news/ 
world-middle-east-16098562. 

729 N. Shachtman, “Exclusive: Computer virus hits U.S. drone fleet,” Wired, 7 Oct 2011. 
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Appendix: recent innovations 

The appendix contains selected samples of recent AI, robot, and swarmrelated 

research demonstrations and technology innovations, including both commercial and 
military applications. Though far from complete (the rapid pace of development, 
alone, renders any static “snapshot” of emerging research and development efforts 
incomplete, at best, and moot, or dated, or both, at worst), these slides nonetheless 
offer an additional glimpse into the basic science and engineering that underlies 
DoD’s growing commitment to autonomy. 

The examples are all provided in the form of self-contained slides, with additional 
references to original source material embedded within bulleted summaries. While a 
few of the examples contained herein are mentioned in the main text (e.g., Google’s 
AlphaGo program, “Turing Learning,” and robotic self-assembly), most describe work 

that is not explicitly mentioned elsewhere in this report; and, even in the few cases 
that were discussed earlier, additional complementary and/or amplifying 
information is provided. 
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