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Executive summary

We use the maintenance histories of APG-65 radar assemblies to show
that analysis at the individual part level can provide valuable informa-
tion about the reliability of parts. While traditional analysis focuses on
average failure rates, in this study we show that it may be advantageous
for the Navy to look at individual failure rates. 

We focus on service time between failures, which defines a repair
cycle. We follow part histories from birth, over a series of repair cycles
throughout the service life of a part. Our analysis shows that:

1. The reliability of new parts drops quickly over the first few
repair cycles and stabilizes thereafter. This implies that it is pos-
sible to set optimal retirement rules for parts.

2. Seemingly identical parts can have different levels of reliabil-
ity—some parts turn out to be lemons. Analysis of the reliability
of individual parts over a life cycle shows that some parts are
inherently less reliable than others, even after accounting for a
comprehensive set of factors that affect reliability. 

3. We can identify lemons early in the life cycle, and we propose
alternatives to deal with them. Lemons provide less service
hours before failure and consume more maintenance
resources than average parts; early identification will help free
up maintenance resources.

The analysis for the APG-65 radar assembly presented in this study is
a proof of concept that can be used for the analysis of other parts.
Moreover, additional information about the cost of new parts and the
cost of repairing parts would help the Navy define optimal retirement
rules for average parts and early retirement rules for lemons. Our
analysis also shows that it is possible to segregate individual parts
according to their reliability. This information would allow the Navy
to always have the best parts in operation.
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Maintenance histories and serial number 
tracking

Introduction

Traditionally, spare part failure rate analysis has focused on average
failure rates. However, we believe that looking at failure rates at the
individual level may be advantageous to the Navy. As a proof of con-
cept, we used serial number tracking to analyze individual parts and
their repair cycles. We looked specifically at APG-65 radars, and we
focused on service time between failures, which is what defines a
repair cycle. In our analysis, we found three important results:

1. The service time between repairs drops quickly and then stabi-
lizes after a few repair cycles. Newer parts are more reliable
than older parts, which suggests the possibility of optimal
retirement policies.

2. Not all parts are created equal. While we found several observ-
able factors that affect reliability, we also found that some parts
are just inherently worse than others. These less reliable parts,
or lemons, require more repairs and provide less hours of ser-
vice than the average part.

3. We can identify lemons early in their life cycles, and we propose
alternatives to deal with lemons. This could help the Navy free
up maintenance resources.

We define our metric for reliability as the time of service between fail-
ures. In particular, we measure Flying Hours (FH) between failure.
We use this metric to evaluate the reliability of parts throughout their
life cycles.

We are able to follow a part over its service life by using serial number
tracking. 
3



We note that while the Department of Defense (DoD) and the ser-
vices are implementing new technology to be able to track parts trans-
parently through the system, current data are far from perfect.
However, despite the problems with the data, we were able to con-
struct a sample of complete maintenance histories, which allowed us
to conduct our analysis. 

We analyze the data in three ways. 

1. We use descriptive statistics to see how reliability changes over
the course of the lifetime of a part. 

2. We also construct an event history model to test the effect of dif-
ferent factors such as age, employment (FH and sorties), canni-
balizations and removals, depot repairs, and other variables on
the reliability of a part. Moreover, we use this model to test for
the presence of unexplained heterodoxy in the reliability of
parts.

3. We use cluster analysis to classify parts into different levels of
reliability and for early identification of lemons.

In the next few sections, we present the details of our analysis. To pro-
vide some background into this type of work, we start with a general
description of the maintenance process of spare parts. That discus-
sion is followed by a concise literature review. Later sections detail the
analysis and results.
4



The maintenance process

Our analysis requires that we follow a spare part throughout its ser-
vice life. We use serial numbers to keep track of the part as it moves
from supply to aircraft, to the maintenance system at failure, and back
to supply after repair. To better understand the life cycle of a spare
part, we present a concise description of the maintenance process
below.

The life cycle of parts

In general terms, the life of a spare part is defined as a cycle of oper-
ation, failure, and rejuvenation in the form of repairs. From induc-
tion into the supply system, a spare part goes through several of these
cycles; after each repair, the part is brought back to a working state
and re-issued for installation and operation.

A new Aviation Depot Level Repairable (AVDLR) installed in an air-
craft will remain there until failure.1 After the failed part is removed
from the aircraft, the Aviation Intermediate Maintenance Depart-
ment (AIMD) has three options: 

1. Repair the part and return it to the supply system,

2. Declare the part Beyond the Capability of Maintenance (BCM)
and send the part to the depot for repair, or

1. In some cases, components are removed from one aircraft and installed
on another to allow the second aircraft to perform its flight operations.
This practice is commonly referred to as cannibalization. CNA has con-
ducted a variety of studies on the effects of cannibalization on reliability.
See [1] and [2], for example. This study also analyzes this issue in the
context of its effects on the reliability of an individual part.
5



3. Leave the part in its current state until repairs can be com-
pleted or, on rare occasions, the part is purged from the supply
system.2

This same scenario is repeated for all parts (not consumables) many
times during a life cycle. 

While this defines the life history of a part, it can also help us define
its reliability. For example, a spare part that can be used for several FH
before failure would be considered more reliable than a part that fails
after very few FH. In fact, in this study we focus precisely on the
amount of service FH a part can last before failure as a measure of its
reliability.

2. There are several reasons why a part may not be repaired soon after fail-
ure. One of the most likely reasons is that there is enough inventory of
working parts to satisfy demand. Another reason is that there could be
personnel and/or budget constraints that prevent the part from being
repaired. Finally, certain parts experience decreasing demand when the
aircraft that use those parts are retired.
6



Analysis of maintenance data

Traditional analysis

Traditional reliability analysis aims to forecast the average Mean Time
Between Failures (MTBF) for parts of a specific type. Our approach
differs from this type of analysis in that we focus on the individual part
rather than averages. However, we do note that looking at averages is
particularly helpful in identifying factors that affect the average reli-
ability of parts. Therefore, it is useful to review the main results found
in this literature as many of these results may apply at the single part
level. Furthermore, in reviewing these studies, we are able to solidify
our modeling strategy.

We divide this section into four subsections: (1) aging, (2) number of
FH and number of sorties, (3) cannibalizations, and (4) other factors
that affect reliability.

Aging

Several CNA studies have analyzed the effect of aging on reliability.
Most of these studies are aggregate in nature and look at the effects
of aging on the fleet of Navy aircraft. The results from these studies
indicate that age decreases the average reliability of aircraft.

For example, Kleinman [3] looks at the effects of aircraft conversion
on reliability.3 However, he also looks at the effects of age on reliabil-
ity before and after conversion. He finds that conversion erases much
of the effects of aging on the aircraft. However, the aging process con-
tinues after conversion. This points to the possibility of rejuvenation
of aircraft as a result of modification.

3. An aircraft conversion is when an aircraft is modified to extend its life,
change its mission, or increase its capabilities. A conversion usually
entails the upgrade of the aircraft series.
7



Jondrow et al. [4] analyze the effects of aging on depot level repairs
of aircraft components. They use data for several years and several
Type-Model-Series (TMS) and find a direct relationship between the
aircraft’s age and the number of repairs. Their analysis is at the aggre-
gate level, and they find that an increase in the average age of the
Navy’s fleet of FA-18Cs (with an average age of 8.2 years in 2002)
would increase the number of BCM repairs per FH by 9.2 percent.
They pay particular attention to the budget and reliability effects asso-
ciated with this relationship.

Boning and Brown [5] find further support for the negative relation-
ship between airframe age and reliability. However, even though they
do find a strong correlation between these two, they point out that
structural changes in the Navy may have unaccounted for effects on
the relationship between the average age of the aircraft fleet and its
average reliability.

Boning, Soto Arriagada, and Goodwyn [6] examine many of the fac-
tors that affect reliability. They use squadron level data for the FA-18
fleet and find evidence consistent with previous research. They also
include a section of component level analysis. While they are able to
provide descriptive statistics at the part level, the data do not support
further analysis. However, the authors do show preliminary evidence
of age effects at the part level in the form of a declining number of
sorties after each repair.

Number of FH and number of sorties

There is a long-standing belief of a differential effect of the number
of FH and sorties on reliability. The general idea is that take-offs and
landings have different effects on reliability than hours in the air do.

In a seminal CNA paper, from 1986, Levy [7] generalizes the standard
model that relates reliability to FH by introducing a sortie effect. In
the resulting model, the probability of failure consists of two underly-
ing processes, one related to flight hours and another to sorties. The
basic implication of this theoretical model is that these two effects are
different.
8



Several more recent papers have tested this hypothesis empirically
and have found differential effects. Results by Boning, Soto Arriagada,
and Goodwyn [6], for example, support the general consensus, and
they report that FH decrease reliability at a decreasing rate, while the
number of sorties increases both the number and the rate of failure.

Cannibalizations

In general practice, parts are removed after failure, and they are
replaced by a working part. However, in many instances a part is
removed, or cannibalized, from an aircraft to allow a second aircraft
to perform a flight mission. Evidence shows that there are negative
effects of cannibalization on reliability.

Levy [1] analyzes the failure rates of FA-14A systems and subsystems
for the 1986 deployments of the USS Enterprise and the USS Amer-
ica. The results show that cannibalizations decrease reliability for
many but not all parts.

In 1989, Levy [2] updates his previous research using FA-18 avionic
components and confirms the finding that cannibalizations have det-
rimental effects on reliability. However, this research also shows that
these effects are not constant across systems or air wings. The effects
extend to the aircraft that is cannibalized as well as to the aircraft that
receives the part.

Other factors that affect reliability

Reliability is influenced by several factor other than those listed above.
Differences in reliability may arise from (1) employment of aircraft,
(2) where the part was last repaired, (3) the environment in which the
part operates, (4) modifications to the part, or (5) differences in the
parts themselves.

Boning, Soto Arriagada, and Goodwyn [6] present a comprehensive
examination of many of these issues. They report that there are posi-
tive employment effects for aircraft deployed in theater. However, this
result may be driven by low tolerance for failure during combat
deployments and pre-deployment “grooming.”
9



They also examined location effects. These effects capture both the
environment in which the aircraft operates and where the repairs
where executed. The variables included in the model further con-
found the effects of the environment in which the aircraft operates
and where parts were repaired. This makes these two effects impossi-
ble to disentangle without further information. However, without
them, results from the model would be biased. So, while the interpre-
tation of these variables would vary with context, they serve an impor-
tant modeling purpose.

When comparing reliability across types of parts, the complexity of
the part may affect reliability. In a 1952 study, Boodman [8] shows
that increased complexity negatively affects reliability, and he pro-
poses methods for improving it. His results point to heterogeneity as
a source of differences in reliability. 

Follmann and Goldberg’s [9] 1986 study looks at the effect of heter-
ogeneity on reliability, focusing on parts of the same type. The main
assumption is that different copies of the same machine, or unit, may
have different failure rates. 

They report that ignoring this heterogeneity may induce bias in the
results. They propose a model in which time to failure is assumed to
follow a Weibull distribution and heterogeneity varies randomly
under a gamma distribution. Note that despite the age of this refer-
ence (i.e. 1986), gamma distributions are still frequently used in the
modeling of heterogeneity in survival studies.

In the next section, we show how we can use the ideas presented
above in the modeling of failure rates at the single part level.
10



Modeling strategy

Reliability of the single part

As mentioned in the introduction, we examine the reliability of a part
through its service life. We follow each individual part in our sample
from first induction into the supply system to the last repair that
appears in our data. These data, together with the assumption that
each individual part has different levels of reliability even after
accounting for other effects, drive our modeling strategy.

Our main goal is to find those factors that explain how many FH a
part can operate between failures. We build upon the existing litera-
ture to produce a model that accounts for the life histories of individ-
ual parts as well as heterogeneity in reliability.

To achieve our goals, we use an event history model of repeated
events in which the previous history of a part may influence current
reliability. We can also use the model to test for otherwise unex-
plained heterogeneity in the reliability of parts.

Explaining maintenance histories

For our analysis, we use a sample of parts with complete maintenance
histories. For each part, we observe the number of FH the part oper-
ates between repair cycles. We also observe a number of explanatory
variables that we use to explain the number of FH a part can operate
between failures.

The simplest way to model these data would be to use regression anal-
ysis (Ordinary Least Squares (OLS) regression) to explain FH per
repair cycle as a linear function of several explanatory variables.
While previous research uses OLS for the analysis of data, the aggre-
gate nature of the data and the questions under examination, make
OLS appropriate for those cases. 
11



In this case, however, two common characteristics in the data would
severely bias OLS results. These are:

1. Event dependence: the fact that previous failures and repairs
may influence the number of FH a part will last before its next
repair.

2. Heterogeneity: there may be unobserved heterogeneity that
makes some parts more susceptible to failure than other
parts—no matter what the event history of the part is.

Event dependence and heterogeneity violate OLS regression assump-
tions. Other characteristics of our data, such as censoring,4 also
makes OLS estimation inappropriate for this type of problem.

Therefore, in the following sub-sections, we explore other modeling
strategies. To guide our modeling choices, we look at how these
assumptions are violated and what we can do to account for these
effects.

The effects of event dependence and heterogeneity

Event dependence and heterogeneity create within-subject correla-
tion, which violates the OLS assumption that observations are inde-
pendent and identically distributed (i.i.d) random variables. This is
unlikely in the case of time-to-failure data. 

Moreover, analyzing this type of data using OLS would also violate the
normality assumption for the distribution of the error term. While
the consequences of violating the normality assumption are fairly
benign and often correctable, violation of the i.i.d. assumption will
cause OLS estimation to be biased and maybe severely so.

4. Censoring occurs when we cannot observe a variable below a certain
threshold. In this case, we cannot observe parts before they are first
inducted in the supply system. In our sample, we only use observations
that we can observe from this point on. However, censoring also occurs
because we do not know what happens to the part after our last obser-
vation.
12



In the case of event dependence, for example, a bad repair will cause
the number of FH a part can operate in its next cycle to be shorter
than it would normally be. So, a previous event helps explain how
long the part will be operational before its next failure. In fact, if that
bad repair cannot be corrected in future repairs, its negative effects
on reliability will last for the life of the part. OLS requires a previous
history, which, in turn, provides no information about future out-
comes.

In other words, the even dependence caused by the bad repair makes
each repair cycle shorter than it would otherwise be. This, in turn,
makes the timing of failures likely to be correlated for a given part,
and it defines the within-subject serial correlation and renders OLS
biased. Moreover, OLS would not be able to provide a good picture
of the dynamics of the maintenance process.

Heterogeneity acts in a similar way. The main difference is that the
serial correlation is not caused by any particular event. In this case,
the serial correlation is caused by inherent characteristics of the part
that, for some reason, we are not able to capture directly in our
model. There is much anecdotal evidence of parts that fail more
often than others without clear explanation. In fact, there is even a
name for aircraft that are thought to be less reliable than others; they
are often called “hangar queens.”

Problems with this type of serial correlation also affect models specif-
ically designed for event data. The Cox model [10] or proportional
hazards model is the most widely used event history model. 

This model assumes that event times are independent conditional on
the explanatory variables included in the model. This means that if
there is any within-subject serial correlation in the data, the explana-
tory variables would have to capture it, or the estimates from this
model would be biased. So, any remaining correlation, such as that
induced by event dependence or heterogeneity, if not captured in the
explanatory variables, would violate this assumption. The models
described in the next section are designed to correct this violation for
specific types of analysis.
13



An empirical event history model

As mentioned above, two characteristics of the type of data needed
for the kind of analysis we conduct here are event dependence and
heterogeneity. These are common features of repeated event pro-
cesses. However, a common problem with this is that it is usually
impossible to determine whether one, the other, or both are the
cause of the within-subject serial correlation.

Until recently, there were two types of models that could be used in
the analysis of repeated event data: variance-corrected and frailty models.
A recent strand of the literature has provided a third type of model,
the conditional frailty model, which combines the ideas of the previous
two and provides more flexibility to the assumptions needed for the
estimates to be unbiased. In the next few sections, we describe these
models.

Variance-corrected models

As the name implies, variance-corrected models account for subject-
specific effects that are explicitly specified in the model by adjusting
the variance-covariance matrix. While these models are particularly
well suited for the case of event dependence, if the cause of the cor-
relation between event or failure times is heterogeneity, the estimated
effects of the explanatory variables in the context of the Cox model
are biased but still consistent. This means that there would be system-
atic error in the estimates, but this error disappears as the sample size
increases. 

These types of models can take different forms depending on the
type of analysis that is needed. The models differ in how the risk set
is defined—whether events are in sequential order or whether they
can occur simultaneously. They also differ in how time at risk of fail-
ure is counted—whether it starts from first observation and keeps
counting to the last observation or whether it re-starts at zero after
each event. Lastly, they also differ in whether the data are stratified—
that is, whether the baseline hazard of the events differs by event
number. It is important to note that stratification is particularly well
suited for accounting for event dependence.
14



Each of these different versions of the model is appropriate for differ-
ent types of dynamic processes and, therefore, different results will be
produced. 

Simulations conducted by Box-Steffensmeier, De Boef, and Joyce
[12] show that these types of models perform best in the analysis of
data with event dependence and no heterogeneity, and in cases with
no heterogeneity and no event dependence. They also show that
these models are not well suited for cases where heterogeneity is
present. For that type of analysis, a frailty model may be more appro-
priate.

Frailty models

Frailty models are random effect models that capture the fact that
some subjects, or parts in this case, may be more prone to failure than
others. The assumption is that frailties are time-invariant, unob-
served, individual effects.

Frailty models can also differ by risk set and by how time to failure is
counted. These types of models incorporate heterogeneity in the
model by treating the individual effects described above as random
draws from a given parametric distribution. The parameters of the
specified distribution are estimated in conjunction with the other
parameters in the model. This ensures that the correlation between
failure events is explicitly included in the model. So, conditional on
the chosen parametric distribution, event times are assumed to be
independent of each other. In other words, we assume that the distri-
bution of the frailty across individuals captures any serial correlation
in the data.

One problem with this type of model is that there is no particular
guidance in the choice of distribution to capture the effects of frailty.
Current research is inconclusive.

Another problem is that it is generally required that the frailty terms
are independent of the covariants. Hausman [11] shows that viola-
tion of this assumption results in biased estimates.
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Box-Steffensmeier, De Boef, and Joyce’s [12] simulations show that
this type of model is most suitable to problems without event depen-
dence. The main reason for this is that the baseline hazard does not
vary with the event number in conditional frailty models as it does in
stratified variance-corrected models.

Conditional frailty—a more general modeling strategy

The models described above are well suited for dealing with either het-
erogeneity or event dependence, but not both at once. This creates a
problem for research where both problems are present or where there
is no way to discern which one is causing the within-subject serial cor-
relation.

The conditional frailty model proposed by Box-Steffensmeier and De
Boef [13] accounts for both heterogeneity and event dependence. It
uses controls for heterogeneity through a frailty random effect. It also
accounts for event dependence through event based stratification. 

The conditional frailty model is cast in gap time. This means that the
interpretation of the coefficients associated with the explanatory vari-
ables tells us the effect of the covariate on the hazard of failure since
last occurrence.

Box-Steffensmeier, De Boef, and Joyce’s [12] simulations show that
the conditional frailty model performed at least as well as the variance-
corrected and the frailty models whether or not event dependence
and/or heterogeneity is present in the data.

The conditional frailty model is the most appropriate way to proceed
given our specific analytic problem because both event dependence
and heterogeneity are quite likely in our data. And, while we do have
an extensive set of explanatory variables, we cannot be certain that this
set of variables will capture all reliability nuances. Moreover, the con-
ditional frailty model allows us to test whether heterogeneity is present
in our sample.
16



Data and analysis

The analysis we present here is a proof of concept. In general and as
shown in the literature review above, the focus of reliability analysis
has been at the aggregate level. That type of analysis is mostly driven
by the need to provide the Navy with reliable budget forecasts. The
goal here is different. We examine reliability at the single part level
and consider whether this type of analysis can benefit the mainte-
nance community.

We show that there are important gains from examining single part
maintenance data. In our proof of concept, we use data from the
APG-65 radar assembly. Through our analysis, we are able to show
that:

1. After a new part is inducted, the average number of FH
between repairs drops quickly in the first few repairs, and then
stabilizes. A new part is more reliable than an older part and the
transition from new to old occurs quickly from the first to about
the sixth repair. After the sixth repair, the average number of
FH between repairs remains fairly constant. 

2. Not all parts are created equal. Some parts have lower than
average reliability—they require more repairs and provide less
service hours than the average part.

3. It is possible to identify less reliable parts early in their life. This
will allow the Navy to set maintenance policies and practices
that minimize the effect of these less reliable parts on the main-
tenance system.

Our analysis also allowed us to test whether those factors thought to
affect reliability at the aggregate level also have an effect when we
conduct the analysis at the single part level.

In the next few sections, we describe the type of data necessary for this
type of analysis and the types of results we were able to obtain.
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Data for the APG-65 radar assembly

As a proof of concept, we use data from the APG-65 radar assembly for
our analysis. We chose this radar because of its long maintenance his-
tory and the large number of observations. We point out that this type
of analysis can be carried out on any type of part for which we have
maintenance histories.

We use serial number data from the Aviation Standard Navy Mainte-
nance and Material Management System (AV-3M). These data
allowed us to construct maintenance histories for individual APG-65
radar assemblies during their service life. Whenever possible, we also
used auxiliary data to identify new parts and to extract our explanatory
variables.

Data from the AV-3M database, however, are not in a ready-to-use
format for this type of analysis. As documented in Boning, Soto Arria-
gada, and Goodwyn [6], the part histories in the raw data contain
large numbers of gaps. The main problem is that in many records,
serial numbers are not recorded. 

To correct these data problems, we use several different types of main-
tenance documents to construct maintenance histories that allow us
to follow specific parts from the beginning of their service lives over a
relatively large number of repair cycles. We describe the process
below.

Constructing maintenance histories

The primary documents we used to construct maintenance histories
for the APG-65 radar are material issue documents, material turn-in
documents, and maintenance action forms (MAF). While the material
issue and turn-in documents only identify parts using their National
Item Identification Numbers (NIIN), MAFs also include manufac-
turer part numbers and serial numbers.

The serial numbers often contained errors that prevented us from
seeing complete histories directly from the raw data. We used the doc-
uments above together with the careful matching of time lines to con-
struct coherent maintenance histories.
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However, because serial numbers were unreliably recorded, we con-
structed our own pseudo-serial numbers to keep track of the data.
MAFs also made possible the use of Bureau Numbers (BUNO) to
identify the aircraft in which a given part was installed. With this, we
kept track of the TMS in which the part was installed and the number
of FH of service before the next failure. This also allowed us to iden-
tify new aircraft, which, in turn helped us flag new parts inducted into
the system with the new aircraft.

FH and reliability

In this paper, we use FH between failures as a measure of reliability of
a part. Throughout the paper, our goal is to identify those factors that
determine how many FH a part can last after each repair.

A first look at the data gives us an interesting insight. The average
number of FH a part can operate between repairs drops rapidly for a
new part and stabilizes after a few cycles. This indicates that the aver-
age new part is more reliable than the average older part. The blue
squares in figure 1 illustrates this.

These results could be used to define retirement policies. If, for
example, an APG-65 is relatively cheap compared to its repair costs, it
may be cost effective to retire the part early. However, if buying a new
radar is relatively costly when compared to repair costs, it may be cost
effective to continue to use the part until it can no longer be repaired. 

The scope of this project does not allow us to pursue further investi-
gation of this issue due to data constraints. However, with data on
replacement and repair costs it would be possible to determine
whether or not a retirement policy is appropriate for a specific part.
Furthermore, with these data, it would also be possible to determine
which retirement policies are cost effective. These policies could pro-
vide significant savings to the Navy because older parts that consume
more maintenance resources from the system would be removed.
Also, set retirement policies will allow for accurate procurement fore-
casts, which, in turn would facilitate programming and budgeting.
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.

Figure 1 shows us that the median (50th percentile—marked in red)
is, in all cases, below the mean, while the mean is, in general, close to
the 75th percentile (50 percent of all observations are within the 25th
and 75th percentiles marked as the extremes of the yellow rectan-
gles). This indicates that there are a few outliers that have much
higher reliability than the rest of the sample. The low median, closer
to the 25th percentile indicates that there may be a robust number of
parts with low reliability. 

Fundamentally, shows us that MTBF does not tell us the whole story.
To illustrate this point, we plot the cumulative number of FH against
the number of repairs and compare it to the mean cumulative FH.

Figure 1. Average number of FH per repaira

a. Although we only report on a few repair cycles in this graph, for some parts we observe up to 40 cycles. We do 
not include all of them here because the sample sizes for higher numbers of repair cycles became small and, thus, 
produced spurious results.
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This gives us an illustration of the dynamics and distribution of reli-
ability across our sample.

Figure 2 shows us the cumulative observed FH per repair in contrast
to the average cumulative FH per repair. Every blue dot in the figure
corresponds to an actual observation, while a purple square shows the
average FH for each repair.

The story told by the average cumulative FH is consistent with the
MTBF results. While average cumulative FH increase with each repair
cycle, they do so at a decreasing rate. This means that the reliability
of new parts degrades as the number of repairs increases. After that,
it levels off. 

Note that beyond the 20th repair, the sample sizes become smaller
(less blue dots) and the trends in the average become more erratic.
Also note the wide distribution of FH around the mean.

Figure 3 helps us explain this point. Note that observations across
repairs (blue dots in figure 3) correspond to specific parts, and

Figure 2. Cumulative observed and average FH per repair
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together they are the building blocks of a part history. Also note that
trying to single out each part history in the graph would only make it
more difficult to see the dynamics of the data. So, to illustrate this
dynamic, we randomly selected a sub-sample of parts, which we join
with colored lines for ease of identification.

As parts go through an increasing number of repairs, the number of
cumulative FH the part is in service grows. The colored lines illustrate
that this growth is not the same for all parts, and it is definitely differ-
ent from the growth in the average represented in figure 2. In fact, it
is easy to see that the average does not grow as rapidly as the rest of
the parts due to the influence of less reliable parts.

To clarify this point, take the red line, for example, which shows a part
that achieves a relatively large number of FH within a few repairs. This
part, then, represents a very reliable part. In contrast, the purple line

Figure 3. Cumulative FH per repair by parta

a. For illustrative purposes, we highlight the life cycles of a randomly selected sub-sample of parts using colored 
lines.
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only completes relatively few FH over a relatively large number of
repairs. This is an example of an unreliable part. It is possible to see
that the average is heavily influenced by both the new parts in the
beginning of the series and by the less reliable parts at the end.

This points to two important conclusions; first, the average may not
be telling us a complete reliability story, and second, there are great
differences in the reliability of parts. However, without further analy-
sis, we cannot make statements about the reasons for the differences
in the reliability of these parts. It may be that the part that seems less
reliable was operating in extreme environments. It could also be that
there are differential levels of reliability inherent in the parts them-
selves.

In the next few sections, we use the conditional frailty model
described above to disentangle the factors that affect the reliability of
a part. We test whether heterogeneity of the parts themselves has an
unobserved impact on reliability.

Event history analysis

Description of the data and analysis

We use the conditional frailty model to estimate the effects of differ-
ent factors on the reliability of a part. This model is particularly suit-
able for this type of analysis because it allows us to test whether
different explanatory variables have a significant effect on reliability.
It also lets us test whether inherent heterogeneity in the reliability of
parts plays a role in determining how often a part will fail. We follow
the previous literature in deciding which variables to include in the
analysis. Table 1 reports a full set of descriptive statistics for the vari-
ables included in the analysis.

Table 1. Descriptive statistics

Variable Mean Std. Dev. Min Max
Number of consecutive repairs 10.0730 7.5970 1 41.0
Cumulative FH 1024.2810 752.8859 0.8 4733.0
FH per repair 103.9993 160.0411 0.2 1613.3
Age in months 81.1041 56.0768 0 223.0
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Age

We measure age in months starting at zero, and we only follow those
parts that we can identify as new at the beginning of their history. To
determine whether a part was new, we selected parts that came with
new aircraft. 

The average age for the sample is 81 months, although the range of
parts included in the analysis go from new to 223 months (approxi-
mately 18 years old).

Number of sorties and TMSs

As pointed out above, the literature reports a differential effect of FH
and sorties on reliability. To capture these effects, we include total
number of sorties up to the time of failure, as well as differential sor-
ties and FH for different TMSs. The average number of sorties per
repair is 65, although it may be different for different TMSs. We also
include days on wing in the model. This variable should capture what-
ever time effects we cannot capture with age or time in operation.

Days on wing 125.4830 218.3749 0 3137.0
Cumulative sorties 646.0826 481.9056 1 3528.0
Sorties per repair 65.0359 99.0766 1 1105.0
AV-8 sorties 3.1591 25.8557 0 614.0
FA-18 E-F sorties 11.3707 52.4316 0 1020.0
Other sorties 0.1341 4.8833 0 265.0
AV-8 FH 5.9555 48.0982 0 1012.1
FA-18 E-F FH 17.9656 81.5245 0 1499.5
Other FH 0.2293 8.6777 0 490.6
Removals 1.5733 0.9505 1 12.0
Cannibalizations 0.3362 0.6934 0 8.0
BCM 0.0316 0.1750 0 1.0
Navy Atlantic 0.1811 0.3851 0 1.0
Shipboard Atlantic 0.0975 0.2966 0 1.0
Shipboard Pacific 0.1293 0.3356 0 1.0
MC Atlantic 0.0797 0.2708 0 1.0
MC Pacific 0.1893 0.3918 0 1.0
Navy Pacific 0.2265 0.4186 0 1.0

Table 1. Descriptive statistics

Variable Mean Std. Dev. Min Max
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Removals and cannibalizations

We also separate the effects of removals and cannibalizations in the
analysis. Although we know that the reason for cannibalization is to
use the part on a different aircraft, the reasons for removals are not
so clear. 

On average, an observation goes through 1.6 removals and 0.34 can-
nibalizations.

Repairs and environment

To complete our model, we include variables to show the location of
where the repair was done or whether the part was BCMed. Location
variables capture both the quality of the repairs and the effect of the
environment on the part. Thus, we cannot draw strong conclusions
from them. However, they need to be included in the model to avoid
mis-specification biases.

Frailty and heterogeneity

To test for the presence of part heterogeneity, we assume that unob-
served part reliability follows a gamma distribution. This assumption
is in line with previous reliability research [9], and it is widely used in
this type of model. Assuming that reliability heterogeneity across
parts is distributed following a gamma distribution adds a single
parameter to the estimation. If this parameter is statistically signifi-
cant, we can conclude that there is heterogeneity in the reliability of
parts beyond what we can explain with out set of explanatory vari-
ables.

Estimates

This model produces a frailty coefficient and coefficient estimates for
each of the explanatory variables included in the model.5 Note that
most coefficients are statistically significant (p-values equal to 0.10 or
smaller for the Chi square tests reported on table 2). We find that our
results are generally consistent with the previous literature. We dis-

5. These variable include measures of age, number of sorties, removals
and cannibalizations, and location.
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cuss differences below. We also find statistically significant heteroge-
neity in the reliability of the parts under analysis.

To help with the interpretation of coefficients, table 2 includes a
column labeled exp(coef).6 The value for cannibalizations, for exam-
ple, is 1.09. This means that cannibalization increases the likelihood
of failure by 9 percent. Conversely, removals decrease the likelihood
of failure by about 5 percent. Other estimates can be interpreted in
the same manner.

Interpretation of the results

This model’s results are consistent with the previous literature, but
require some discussion. For example, the coefficient on age is mar-
ginally significant and shows a decrease in the risk of failure. How-
ever, this is not inconsistent with previous results. Because of our
definition of reliability as FH per repair cycle, age is better captured
by employment, in terms of sorties and FH rather than by calendar
time. In fact, higher age in these data may point to more reliable parts
that have lasted for a long time and are still in service.

The coefficient on days on wing provides further support for this
argument. Days on wing measures the amount of time a part spends
installed on an aircraft before failure. The effect of this variable on
reliability is close to zero and, in fact, it is not statistically different
from zero. We can only conclude that FH capture the effects of
employment on reliability, while the time that a part spends on wing
does not matter. Again, this points to the fact that calendar time does
not have a direct effect on reliability, but using the part does.

6. Exponential function of the coefficients.

Table 2. Coefficient estimates

 coef exp(coef) se(coef)  Chi-sq p-value
Age in months -0.001450 0.998551 0.000713 4.13 0.0420
Days on wing -0.000022 0.999979 0.000170 0.02 0.9000
FA-18 A-D sorties -0.074500 0.928207 0.001401 2830.60 0.0000
AV-8 sorties -0.004810 0.995202 0.004128 1.36 0.2400
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As found in previous analysis, in our model cannibalization has same
effect on reliability. Removing a part that is functioning correctly to
replace it on another aircraft has detrimental effects on the part with-
out any particular gain.

On the other hand, removals require some discussion. While only
marginally significant, the direction of the effect and its magnitude
are important. Our estimates show that removing a part has positive
effect on reliability.

A story consistent with this finding is that a part would be removed
only if thought to be faulty to begin with. However, a removal without
a repair, as it is captured in this variable, may mean that the part itself
was not faulty, but rather that it was incorrectly set and, therefore,
appeared to be faulty. Re-installation of the part would then ensure

FA-18 E-F sorties 0.000572 1.000572 0.003300 0.03 0.8600
Other sorties -0.004170 0.995839 0.026348 0.03 0.8700
BCM -0.169000 0.844509 0.117255 2.07 0.1500
AV-8 FH -0.040900 0.959925 0.002334 306.21 0.0000
FA-18 E-F FH -0.043600 0.957337 0.002258 373.05 0.0000
Other FH -0.040700 0.960117 0.014980 7.39 0.0066
Removals -0.046600 0.954469 0.028366 2.70 0.1000
Cannibalizations 0.088800 1.092862 0.039731 4.99 0.0250
Navy Atlantic -0.141000 0.868489 0.168509 0.70 0.4000
Shipboard Atlantic -0.401000 0.669650 0.173164 5.35 0.0210
Shipboard Pacific -0.446000 0.640184 0.170673 6.82 0.0090
MC Atlantic -0.463000 0.629393 0.178218 6.75 0.0094
MC Pacific -0.349000 0.705393 0.168699 4.28 0.0390
Navy Pacific -0.143000 0.866754 0.165967 0.75 0.3900
frailty (dist=gamma) 0.120000 339.81 0.0000

R-square=0.916 (max possible=1)
Likelihood ratio test=9308 on 166 df, p-value=0.0000
Wald test=3112 on 166 df, p-value=0.0000
Number of observations=3766

Table 2. Coefficient estimates

 coef exp(coef) se(coef)  Chi-sq p-value
27



that it is properly set and would allow it to work properly for a longer
period of time.

Another set of coefficients that requires discussion are FH and sor-
ties. We include sorties for all the TMSs in the sample, but for FH we
leave one category out. The reason for this is that the variable that we
are trying to explain is FH, so the excluded category acts as a baseline. 

Interpretation of the sortie coefficients should be made with respect
to each other, while interpretation of the FH should be made with
respect to the omitted category. For example, we can say that FH on
an FA-18 A-D are worse for reliability than FH in other TMSs. This
result is also weakly true for FA-18 E-F sorties.

The last set of explanatory variables are the location variables. As
mentioned above, these variables confound the effects of the location
of the last repair and the operating environment of the part before
failure. So, while serving as an important control in the model, they
are difficult to interpret.

Like the TMS FH variables, the location variables also have an omit-
ted category that serves as a baseline, and part of the interpretation
depends on that. The reason for the exclusion of one category here
is somewhat different than above. The location variables are indicator
variables, so our concern here is co-linearity. 

The omitted category includes parts without a location of previous
repair (because they were new or by omission) and parts repaired in
reserve and non-fleet facilities. Our results indicate better reliability
for the included categories.

Heterogeneity

Lastly and most importantly, our estimates show that the frailty coef-
ficient is highly statistically significant. This means that there is unex-
plained unobserved or unobservable heterogeneity in the data. Given
the completeness of our explanatory variables, the main conclusion
we can draw is that there is inherent variation that does not change
over time and that makes each individual part have different levels of
reliability. This points to the fact that some parts are more likely to fail
no matter what.
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Figure 4 depicts the estimated frailty for each part included in our
sample. Note that frailty illustrates the likelihood that a part would
fail more often than its counterparts for none of the reasons observed
in the data. So, a negative level of frailty indicates a part that is more
robust and less likely to fail, and a positive estimate indicates a more
frail part than average.

Figure 4. Estimated frailty of each part in the samplea b

a. Two outliers with frailties below -1.5 do not appear in figure 4.
b. Positive frailties indicate unreliable parts. Negative frailties indicate reliable parts.
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What is important about this result is that it indicates that we may be
able to identify these parts, maybe early enough, in order to prevent
them from using up excessive amounts of maintenance resources. In
the next section, we investigate this possibility.
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Finding “lemons”

A reliable part would give us a large number of FH with a relatively
low number of repairs during its lifetime. This ideal part would give
us many service hours and at the same time consume a relatively low
level of maintenance resources.

However, our results in the previous section indicate that there is het-
erogeneity in the reliability of parts and, therefore, some parts are
more reliable than others. In this section, we use cluster analysis to
classify parts into different levels of reliability as early as possible
during their life cycles. This analysis allows us to differentiate between
the reliable parts and the lemons.

Cluster analysis

Cluster analysis is a statistical method used to assign sets of observa-
tions into a predetermined number of categories. This is an explor-
atory data tool that does not require a priori knowledge of the
categories themselves or even the number of categories that should
be classified.

K-means cluster analysis classifies data into k clusters by assigning data
points to the cluster whose center, or centroid, is the nearest. The
centroid is the average of all points in the cluster for all the data
dimensions that describe the data. In our case, because of our focus
on reliability, we use the FH metrics from the model above to classify
our data into clusters.

The algorithm to perform the clustering is simple. After the analyst
decides on the number of clusters, k, to classify the data into, the algo-
rithm proceeds to randomly select k seed points and assigns each data
point in the data to the nearest seed. Because the seeds are randomly
selected, they seldomly produce the best classification. So, the algo-
rithm proceeds to computes the centers for each of the seeded clus-
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ters and reassigns the data. Then it recomputes new centroids and
repeats the procedure again. The algorithm is repeated until conver-
gence of the results.7

Note that the algorithm described above requires the analyst to spec-
ify the number of clusters into which the data should be classified.
Without prior knowledge of what the number of clusters should be,
one way to make this decision is to use the number of clusters that
provides the most distinct clustering—where the data groupings are
as different to each other as possible. 

To conduct this analysis, we used the same FH variables included in
the data described in the previous section.

Lemons and peaches8

We proceeded with our analysis by first running the clustering algo-
rithm using all of the observations in our dataset. This allowed us to
create a baseline of reliability clusters with all the information about
the reliability of the part. We used these results as a benchmark to see
whether we could produce reliable results with less information.

In our analysis, we use the Calinski & Harabasz pseudo-F index to find
the optimal number of clusters. Larger values of this index indicate
more distinct clusters. Our results using the whole dataset indicate
that four clusters produce the most distinct classification of the obser-
vations.9 

Because we are classifying observations into groups, the most trans-
parent way to show these results is graphically. We use figure 5 to illus-
trate our results. Also note that, for clarity, figure 5 only shows the

7. Convergence is achieved after consecutive iterations do not change the
classification results by more than a pre-decided threshold.

8. Peach and lemon are common ways to refer to cars that are abnormally
reliable or abnormally unreliable. These two terms are commonly used
in the economics literature.

9. The value for the Calinski & Harabasz pseudo-F index was 7144.93 for
four clusters, 6862.50 for three, and 7144.93 for five.
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results for the most and least reliable of the clusters. This gives us a
clear comparison of the reliability of two groups of parts.

The analysis shows a clear distinction between the parts that provide
a relatively large number of FH with a relatively low number of
repairs. These would be the peaches, which are shown in green. The
lemons have few cumulative FH and a large number of repairs. They
are shown in red.

Early detection of lemons

The next step in our analysis is to see if we can approximate this clas-
sification early in the life of the parts. Note that our analysis is explor-
atory and that, without direct cost measures to construct an optimal
rule to differentiate lemons and peaches from the rest of the parts,

Figure 5. Cluster analysis over the whole life history of the parts
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the results presented here should be considered notional and for
illustrative purposes.

We follow the same procedure described above but with two impor-
tant differences. First, we take the same number of clusters as given
from the analysis of the complete dataset. So, for the rest of the anal-
ysis, we use four clusters as the natural way to classify these data. Sec-
ond, we tried to use as little of the life history of the parts to produce
reasonable results.

We iterated our results starting with the first repair cycle and contin-
ued on until we found the earliest repair cycle that would give us a
reasonable approximation to the clustering obtained from the full
dataset. We report our results in figure 6.

Figure 6. Reliability clustering at the seventh repair cycle

0
1

00
0

2
00

0
3

00
0

40
0

0
5

00
0

C
um

u
la

tiv
e

 F
H

0 1 0 2 0 3 0 4 0
N u m b e r  o f  c o n s e c u t iv e  r e p a ir s

0
1

00
0

2
00

0
3

00
0

40
0

0
5

00
0

C
um

u
la

tiv
e

 F
H

0
1

00
0

2
00

0
3

00
0

40
0

0
5

00
0

C
um

u
la

tiv
e

 F
H

0 1 0 2 0 3 0 4 0
N u m b e r  o f  c o n s e c u t iv e  r e p a ir s

R o b u s t :  H ig h  F H  a n d  lo w  
n u m b e r  o f  r e p a i r s

F ra i l ( le m o n s ) :  L o w  F H  a n d  
h ig h  n u m b e r  o f  r e p a i r s
34



Implications of the analysis

There are several potential policy implications of this finding. First it
may be cost efficient to retire lemons as soon as they can be identi-
fied. This would allow the Navy to free up maintenance resources as
lemons require more than their fair share. If lemons are replaced
with random parts, the replacements will increase the average reli-
ability of the overall stock of parts. Moreover, the replacement part
will be new and therefore more reliable than the parts they are replac-
ing. All of which will increase average reliability and provide cost sav-
ings.

However, replacement of lemons is not the only alternative. A simple
practice such as that of tracking the reliability of parts may provide
the Navy with cost savings—a Best in, First Out (BIFO) practice could
be implemented. This would mean that if we can identify the most
reliable parts, these should be the first ones issued from supply when
needed. This will ensure that it is the most reliable parts that are in
the air—the most likely to last for a long time before needing their
next repair. Other hybrid policies are also possible.
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Conclusions

Our analysis of the reliability of single parts over their life cycles shows
that:

1. Analysis of MTBF by repair cycle can help us determine optimal
retirement rules.

2. Event history analysis of the maintenance histories of parts can
help us identify the factors that affect the reliability of a part. It
also shows that it is possible to test whether parts of the same
type inherently have different levels of reliability.

3. Analysis of single part maintenance histories allows for the early
identification of lemons, which could help the Navy set cost effi-
cient maintenance policies.

The analysis presented in this paper is a proof of concept designed to
test whether analysis at the single part level has some advantages over
more aggregated analysis. We have found that several results can lead
to maintenance policies that can help the Navy lower its maintenance
costs.

First, we find that the FH service time for a new APG-65 radar assem-
bly declines quickly to level off after the first few cycles of repair. This
result confirms that newer parts consume less maintenance resources
and provide more up time. Further more, this suggest that, depend-
ing on the difference between the cost of repair and the cost of
replacement of the part, there may be optimal part retirement rules.

Using an event history model, we also found several factors that affect
the reliability of parts. One important finding is that the calendar age
of a part is not an important determinant of the reliability of parts.
Employment in terms of hours of service, but not sorties, are a better
metric for the age of a part.
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We also find that cannibalizations decrease the reliability of a part;
however, we do find a positive effect of removals on reliability. This
indicates that even operational parts may benefit from a visual inspec-
tion if thought to be faulty.

We found differential effects of sorties and FH on different TMSs for
the reliability of parts. We also found that there is some evidence that
BCMed parts become more reliable after depot repairs—we cannot
claim statistical significance, however.

Lastly, our model allowed us to test our hypothesis that parts of the
same type may have different levels of reliability for unexplained,
unobserved or unobservable reasons. We found statistically signifi-
cant evidence that parts can be more or less reliable than the average
part consistently over their life times.

We used cluster analysis to identify low reliability parts, or lemons, as
early as the seventh repair cycle. We note that many parts last beyond
20 repairs and some last as long as 40.

Based on this analysis, we propose different policy alternatives, such
as early retirement of lemons. Another policy may be Best In, First
Out (BIFO), in which the parts with best forecasted reliability after a
repair are always the first in line for further use.

We note some limitations to this study. First, because it is a proof of
concept of limited scope, we do not have reliable replacement and
repair cost data to be able to set optimal policy rules for the retire-
ment of lemons. Second, we focused solely on one particular part, the
APG-65 radar assembly, but these methods could be applied to other
types of spare parts. 

Access to cost data for this and other parts would allow us to investi-
gate when specific retirement rules would be optimal and to identify
where such rules are never optimal. These data would also allow us to
find the optimal time to identify lemons, balancing the probability of
misidentification at an early point in the life of a part with the cost of
keeping a lemon in stock for longer. 
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