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i

[Osama bin Laden is a] “...product of a new social
structure; a new social feeling in the Muslim world.
Where you have strong hostility not only against
America, but also against many Arab and Muslim
regimes who are allying to America... and that's why,
if bin Laden was not there, you would have another
bin Laden. You would have another name, with the
same character, with the same role, of bin Laden...

...That's why we call it a phenomena, not a person.”1

“Osama bin Laden’s most brilliant stroke may well
have been to allow the global Salafi Jihad network to
evolve spontaneously and naturally, and not interfere
too much with its evolution, except to guide it through
incentives because of his control of resources. The
system developed into a small-world network with
robustness and flexibility and became more militant
and global for both internal and external reasons.”2

1.Extract from an interview with Saad al Fagih (a London-based
Saudi Arabian exile who heads the Movement for Islamic Reform in
Arabia), on Public Broadcasting Service's Frontline, 1999. 

2.M. Sageman, Understanding Terror Networks, University of Pennsyl-
vania Press, 2004; page 172.
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Summary

“The enemy we face is a loose coalition of semi-independent terrorist cells, each with a well-
defined mission and a high degree of adaptability and flexibility in carrying out that mis-
sion. Al Qaeda does not rely on immediate direction from a central authority yet still main-
tains effective coordination...and hence has been far less susceptible to intrusion or
destruction. It adapts its methods to accomplish its goals.”—T. Irene Sanders1 

This paper---the first of a projected series of papers---examines the
proposition that terrorist networks, such as Al Qaeda, are complex adap-
tive systems; that is, they consist of widely dispersed, autonomous cells
that obey a decentralized command and control hierarchy; their mis-
sion operatives are highly adaptive and mobile; their cells are strongly
compartmentalized, structurally robust, and largely impervious to
(unfocused) local attack; and, though the networks, as a whole, are
typically covert and amorphous, they can also rapidly coalesce into
tightly organized local swarms. This implies that, in principle, terror-
ist networks, as dynamical systems, ought to be amenable to the same
methodological course of study as any other complex adaptive system
(such as a natural ecology, a biological immune system, or the human
brain). In particular, fundamental insights into the behavior of ter-
rorist networks—including an understanding of how they form, how they
evolve, how they adapt (to changing internal and external contexts),
and what their innate strengths and vulnerabilities are—may be gleaned by
studying the patterns that emerge from a multiagent-based simula-
tion of their dynamics.

This paper has two primary goals: (1) to review existing analytical and
modeling tools that are applicable to the study of dynamic networks
(including mathematical graph theory, social network modeling, complex net-
work theory, graph visualization, and multiagent-based modeling), and out-
line how these tools may be leveraged to help understand the
dynamics of terrorist networks, and (2) to introduce the conceptual

1. T. Irene Sanders is executive director and founder of the Washington Center for Com-
plexity & Public Policy, Washington DC. The quote appears in the article, “To Fight
Terror, We Can't Think Straight,” Washington Post, May 5, 2002.
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design of a new multiagent-based toolkit, called SOTCAC (Self-Orga-
nized Terrorist-Counterterrorist Adaptive Coevolutions). SOTCAC uses
autonomous, intelligent agents to represent the components of
coevolving terrorist and counterterrorist networks

Graph theory provides a mathematical formalism with which to repre-
sent arbitrary relationships among the components of a complex sys-
tem; as well as a computational aid for discovering latent patterns
embedded within those relationships. Social network analysis studies
patterns of relationships (such communication, information and
resource flow, etc.) among individuals and organizations, and is par-
ticularly adept at revealing otherwise “hidden” patterns inside of a
network; for example, information-flow bottlenecks and other vulner-
abilities of, say, a business organization, that are not obvious from a
wire-diagram of its members. 

While social network analysis has traditionally confined its attention
to the study of relatively small (and static) networks, the emerging
interdisciplinary research field of network science studies the statistical
properties of very large, complex networks, focusing on the relation-
ship between the structure and function of evolving networks. As the
size and complexity of a network of interest increases (beyond that of
a manageably small size of at most, say, a few dozen nodes that can all
be easily visualized at once), there is a growing need to develop algo-
rithms to graphically render the structure of complex networks.
Novel graph visualization techniques have recently been developed
that facilitate the visualization of multidimensional feature spaces
and the mapping of conceptual spaces into physical space.

Finally, SOTCAC builds upon the multiagent-modeling technologies
underlying both the EINSTein and SCUDHunt simulations, recently
developed at the Center for Naval Analyses (CNA).2 Agent simulations
provide a powerful, generative modeling environment for perform-
ing exploratory analyses on self-organized emergent behavior in com-
plex adaptive systems.

2. EINSTein and SCUDHunt are agent-based simulations of ground combat and
shared situational awareness in a wargame context, respectively. Those portions of
these models that bear directly on SOTCAC’s design are described in the main
text of this paper. For additional details, see A. Ilachinski, EINSTein, CRM 2239,
2000, and P. Perla, et al., Using Gaming and Agent Technology to Explore Joint Com-
mand and Control Issues, CRM 7164, 2002. 
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SOTCAC uses adaptive agents to describe the self-organized, emer-
gent behavior of terrorist networks---conceived as complex adaptive sys-
tems---on three interrelated dynamical levels:

1. Dynamics on networks, in which notional terrorist agents pro-
cess and interpret information, search and acquire resources,
and adapt to other agents’ actions;

2. Dynamics of networks, in which the terrorist network itself is a
fully dynamic, adaptive entity; and whose agents build, main-
tain, and modify the network’s local (and therefore, collec-
tively, its global) topology; and

3. Dynamics between networks, in which the terrorist network and
counterterrorist network mutually coevolve; the terrorist net-
work’s “goal” is to achieve the critical infrastructure (of man-
power, weapons, financial resources, and logistics) required to
strike, while the counterterrorist network’s mission is to pre-
vent the terrorist network from achieving its goal.

All actions within SOTCAC take place within two dynamically recip-
rocal domains: (1) a physical domain, which represents a notionally
real space in which both terrorist and counterterrorist agents are free
to move about in and interact, and (2) an information domain, which
represents the abstract space that contains the terrorist network’s
evolving social network (as well as an associated network that repre-
sents the counterterrorist’s “best guess” as to what the terrorist net-
work’s topology looks like at a given time. Figure 1 shows a schematic
of some of SOTCAC’s main components.

Although much is known about the statistical properties and behav-
iors of static networks (learned mostly from graph theory, social net-
work analysis and complex network science), the deeper question of
how the local properties of evolving networks are related to emergent
global structure and behavior remains essentially unexplored. 

It is this need for having an analytical and/or modeling tool that
addresses these fundamental dynamical relationships---and an espe-
cially urgent need by the defense intelligence community, as it strug-
gles to “understand” the new enemy; i.e., the complex adaptive terrorist
network---that has led directly to SOTCAC’s development. 
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Figure 1. A schematic overview of some of SOTCAC’s components discussed later in this 
paper (T=Terrorist, CT=Counterterrorist) 
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Introduction

“While nothing is easier than to denounce the evildoer, nothing is
more difficult than to understand him.”—Fyodor Dostoyevsky

The terrorist attacks on September 11, 2001 [1,2] unveiled to the
world the face of a powerful new adversary of an entirely different
character from the “conventional” enemies---and their tank- and
mortar-driven armies---of old. The new adversary is not bounded by
the geography of national borders; it is not driven by state-centric
political motives; it does not fight with traditional armed forces; it is
not organized according to traditional military rank and command
and control hierarchies; and it operates, always, in stealth and
remains largely invisible, until it is ready to strike. This new adversary
is the terrorist network (TN). 

Figure 2 shows the social network of ties among the 9/11 hijackers, as
reconstructed using information made public shortly after the terror-
ist attacks (Krebs [3]). While this “snapshot” of the 9/11 social net-
work is neither complete, nor completely accurate, it nonetheless
illustrates the TN’s manifestly intelligent design, one that is highly tai-
lored to efficiently carry out the terrorist operation. This network
does not result from a willful imposition of order, from a top master-
mind on down the chain of command, but is instead a self-organized,
emergent entity that is generated by a combination of Al Qaeda’s mis-
sion requirements and the (decentralized and essentially autono-
mous) initiative of its agents [4].

TNs are adaptive, amorphous, decentralized, dynamic, evolving and
self-organized; i.e., they constitute a perfect textbook example of a
complex adaptive system (CAS) [5,6,7] (see table 1): they consist of
widely dispersed, autonomous cells that obey a decentralized com-
mand and control structure; cell operatives are highly adaptive, com-
partmentalized, mobile; cells are structurally robust, and largely
impervious to (unfocused) local attack; and the network, as a whole,
typically functions in a localized, intensely swarm-like fashion. 
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Figure 2. Social network of ties among 9/11 hijackers (Krebs [3]) 

This strongly suggests that insights into the operation of TNs—as well
as into ways of intruding into them and/or disrupting their opera-
tions—may be gleaned by studying patterns and behaviors that
emerge from a multiagent-based simulation of their dynamics
[8,9,10]. Because TNs extend their roots just as deeply into an
abstract “information space” (whose activity is mostly hidden from
outside view) as they do into the physical world, identifying their
strengths and weaknesses require the use of a radically different set of
metrics from the ones that have been developed specifically for assess-
ing an enemy’s offensive capability (i.e., its “order-of-battle”).
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.

Table 1. Terrorist networks as complex adaptive systems; compare to table 1.3 in [11]
General Property of 
Complex Systems Description of Relevance to Terrorist Networks

Nonlinearity Terrorist networks are composed of a large number of nonlinearly interacting parts:
sources of nonlinearity include feedback loops in the command & control chain,
adaptation to counterterrorist actions, and elements of chance

Networked
Dynamics

Terrorist networks consist of many components (including foot-soldiers, mission
trainers, weapons and logistical specialists, cell leaders, financiers, etc.), all of
which are linked by a dynamic social network of ties 

Nonreductionist The terrorist network’s ability to project force and carry out acts of terror cannot be
understood as a simple aggregate function of the “fighting ability” of individual ter-
rorists

Adaptive In order to survive, terrorist networks continually adapt to both internal dissension
and external counterterrorist forces; the most powerful terrorist networks have the
additional capability to adapt both their tactics and strategies as their “enemies”
adjust their own policies and counterterrorist strategies

Bounded
Rationality

Individual terrorists have neither infinite resources nor operate in an environment
with infinite information; they are constrained to choose their actions quickly,
locally and use bounded (i.e., sub-optimal) information

Emergence Neither the function nor topology of terrorist networks is scripted; rather both
unfold, or emerge, out of a continual feedback of local interactions and adaptation
to external influences; for example, the 9/11 terrorist cells emerged, spontaneously,
from a friendship between Muhammad Atta and two other foreign students in Ger-
many [12]; Al-Qaeda’s evolving structure owes more to circumstance than design

Hierarchical
Structure

As is true of conventional military forces, the core organizational structure of terror-
ist networks is loosely hierarchical: there are leaders, an inner circle of close advi-
sors, lieutenants who run day-to-day activities, technical experts, and recruits.

Decentralization There is no single geographical base of operations or reference, nor is there a single
master “oracle” that dictates the actions of terrorist cells or individual agents; 9/11
cells were formed not via the “direction” of a central node, but by the loose, infor-
mal ties between a growing network of extremist Muslims sharing a common cause

Self-organization Though terrorist network activity appears chaotic, locally, it displays manifest long-
range order (both locally and globally); for example, just in terms of its finances, Al
Qaeda is built upon multiply redundant and distributed financial channels, and
both agents and cells are encouraged to nurture autonomous revenue channels [13]

Nonequilibrium
Order

Due to its fundamentally amorphous nature, a terrorist network is almost never at
equilibrium (either locally or with the external environment); rather, it is best char-
acterized as a system of perpetual “unfolding,” as it struggles toward achieving its
goal in the face of surrounding counterterrorist forces

Micro::Macro
Feedback

There is a continual feedback between the behavior of (low-level) foot-soldier ter-
rorists and the (higher-level) cell leaders; as well as between cell leaders and the
leader of the terrorist organization

Autopoiesis While the identity of terrorists and their leaders, as well as the composition of ter-
rorist cells, changes over time, the viability and function of the of the TN, as a
whole, persists; since part of what drives the TN’s evolution over time is its own,
internal, set of (counterintuitively, self-sustaining) disruptive forces, the process is
demonstrably autopoietic; (see quote on the top of the next page)
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Rather than counting the number of soldiers in the enemy’s army,
and the firepower of its tanks and bombers, new complexity- and net-
work-based measures must be defined to characterize a TN’s order-of-
battle. Such measures might include, for example, properties of a net-
work’s local and global structure, measures of how well nodes (and
groups of nodes) communicate with (and facilitate communication
with) one another, mathematical relationships between network
topology and information flow, relationships between cell autonomy
and group activity, the degree of cooperation and task-specific coor-
dination within cells, the “value” that a given agent (or any subnet of
the TN) represents in the context of the TN’s overall mission, and the
dynamical rules according to which TNs form, evolve, and adapt.

Because a TN’s lifeblood is decentralized, self-organized, coordina-
tion (of vision, missions, requirements, and structure) among other-
wise loosely and covertly connected parts---parts that “live” as much in
an incorporeal world of dynamic, distributed information as they do
in a physical one---traditional forms of attack against it, such as mass-
ing local firepower on selected physical targets, are doomed to fail.
New methods of assault, not to mention that of understanding, are
needed to combat this new enemy. As Dostoyevsky’s eloquent apho-
rism suggests (at the top of page 5), achieving a true “understanding”
of terrorist networks poses a formidable challenge. What one needs
to understand and combat a network, is another network:

[Al Qaeda] “...is directed from the bottom up as much as the top 
down. The typical pattern before September 11th was of local Al 
Qaeda cells initiating reconnaissance of potential targets, planning 
and then going back to the al Qaeda leadership for approval and 
possible funding. The foot soldiers are self-initiating and self-sus-
taining." [14]

“Governments wishing to counter netwar terrorism will need to 
adopt organizational designs and strategies like those of their adver-
saries. This does not mean mirroring the opponent, but rather learn-
ing to draw on the same design principles of network forms...
Netwar: an emerging mode of conflict (and crime) at societal 
levels, short of traditional military warfare, in which the protago-
nists use network forms of organization and related doctrines, strat-
egies, and technologies attuned to the information age.” [15]
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Purpose

The purpose of this report is to compel the reader to appreciate the
importance of the assertions made in the quote at the bottom of the
last page; in particular, to appreciate the critical need for the intelli-
gence and analytical research communities to develop network-based
counterterrorist tactics and strategies, as well as the methodology by
which the efficacy of these tactics and strategies is assessed, is empha-
sized throughout. 

The report both (1) outlines how existing analytical tools---borrowed
mostly from the mathematical graph and social network theory
research communities---may be leveraged to model the dynamics of
terrorist networks, and (2) presents a conceptual roadmap toward
developing a new multiagent-based toolkit---called SOTCAC (Self-
Organized Terrorist-Counterterrorist Adaptive Coevolutions)---that builds
upon the core agent modeling technologies introduced, and tested,
in the EINSTein [16] and SCUDHunt-Agent [17] simulations. 

SOTCAC uses autonomous, intelligent agents to represent the com-
ponents of coevolving terrorist and counterterrorist networks, and
includes interactions among notional terrorist and counterterrorist
intelligence agents, terrorist cells, training, logistical, and miscella-
neous support networks, weapons and financial resource networks,
and physical terrorist targets. It is designed to help analysts under-
stand the emergent “fitness landscape” of the new enemy, modeled as
a complex adaptive system. 

Three major theses underlying SOTCAC’s design:

1. That TNs are, fundamentally, self-organized, emergent “virtual mul-
ticellular organisms” that live as much in the physical domain as
they do in an abstract information space.

2. That the topology and function of TNs coevolve with their enemy.

3. That the best approach to understanding a TN---how it forms,
grows, and adapts to changing environment or overt attack----is
an interdisciplinary one that combines the precepts and meth-
odologies of systems theory, complex network science, social network
analysis, mathematical graph theory, and multiagent-based modeling.
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A number of recent papers discuss terrorist networks, in general---and
Al Qaeda, in particular---from the point of view of complex systems
theory; see Beech [12], Fellman and Wright [18], Goolsby [19],
Kaplan [20], Marion and Uhl-Bien [21,22], Mesjasz [23], Raab [24],
and Sageman [25]. An excellent overview of the formation, coordina-
tion, development and adaptation of small groups as complex systems
is given by Arrow, et al. [26]. Chapter nine of Rosenau’s monograph,
Distant Proximities [27], cogently summarizes the dynamical effect that
the micro behaviors of human institutions have on emergent, tran-
snational global complexity and stability (including terrorism).

Background

The primary focus of a recently completed CNA project---An Intelli-
gent-Agent Based Conceptual Laboratory for Exploring Self-Organized Emer-
gent Behavior in Land Combat [28,29]---was to harness the tools of
complex adaptive systems (CAS) theory to develop an “artificial-life”-
like simulation of land combat called EINSTein. EINSTein was con-
ceived with the premise that modern combat possesses the key char-
acteristics of complex systems, and pioneered the application of
multiagent-based modeling techniques to the fundamental under-
standing of the dynamics of warfare.

Even a cursory examination of the basic organizational and dynami-
cal properties of TNs shows that they encompass the critical hall-
marks of CASs (and, arguably, do so to an even greater degree than
does land combat): TNs consist of a large number of “parts” (i.e. cells
and individual terrorists) that are widely dispersed; TNs typically
operate under a decentralized command and control; individual cells
are autonomous, mobile and highly adaptive; attacks proceed in
swarm-like fashion; and TNs are, as a whole, robust and strongly
impervious to infiltration and random attack. Thus, it is reasonable to
expect that many of the same mathematical and agent-based simula-
tion techniques used to develop EINSTein, may also be harnessed to
develop tools to better understand the behavior of terrorist networks.

While purely topological and other static characteristics of social
(and terrorist) networks have been well studied, much less is known
about the self-organized emergent dynamical properties of such sys-
tems as they interact (and coevolve) with an “outside” environment. 
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Intuitively, if a TN is viewed as a CAS, one expects a rich coupling
between local interactions and global behavior; the full set of requi-
site conceptual and methodological tools needed for exploring this
coupling have yet to be developed, and is the focus and goal of this
study. This paper reviews the core ideas and mathematical techniques
needed to understand dynamic social networks, particularly as they
relate to terrorist nets and coevolutions between terrorist and coun-
terterrorist organizations.

The final section of this paper introduces a conceptual model, called
SOTCAC (Self-Organized Terrorist-Counterterrorist Adaptive Coevolutions),
that uses EINSTein-like agents to represent the components of terror-
ist and counterterrorist networks (agents, cells, financial and logisti-
cal resources, weapons, targets, and so on).

Approach
The approach consists of first generalizing the class of “agents” as
used by EINSTein (i.e., interpreted as information-processing entities
that live in a notional “physical” space, namely a battlefield) to a class
of agents that live in a more abstract information space (i.e. a mathe-
matical graph whose vertices possess an inner “semantic space”) and
assimilate, process and adapt to various forms of information (such as
a multidimensional feature space that describes the properties of the
Al Qaeda network, as derived from intelligence sources).

Figure 3 shows a schematic of how graphs---which are mathematical
constructs consisting of abstract nodes and links [30]---can act as both
analytical and conceptual intermediaries between a dynamic data
space and multiagent-based models, such as SOTCAC.

Figure 3. Schematic of how mathematical graphs can be used to capture arbitrary relation-
ships among objects, and serve as conceptual anchors of multiagent-based models 
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The typical “data space” of a physical system consists of a set of objects,
the objects’ properties, and the dynamical relationships among objects;
relationships may further be classified according to type and strength.
A graph may be used to represent the topology of the system: objects
are associated with nodes (or vertices); object properties with vertex
labels; and relations with links. If the system is dynamic, one may still
use a graph to represent the system, but the components of the graph
assume an active role: agents replace vertices, and become free to
sense, think, move, and/or act; a dynamic space of internal states
replaces static vertex labels; agent agent communications replace
link labels; and interaction strength replaces a graph’s visual repre-
sentation of the strength of a relationship between objects.

Semiotic Agents

We christen the generalized, dynamical graphical entities introduced
above as semiotic agents, to distinguish them from “software agents,”
used in more conventional, and simplified, agent models than is
being proposed for SOTCAC. Semiotic agents generalize local deci-
sion making to networked, local/semi-global information sharing
and collaboration. They are able to sense, interpret, understand and
communicate the meaning of signs and symbols. “Living” within a
multidimensional space (that contains both physical and abstract
information components), semiotic agents are motivated by, and
behave according to, various social, cultural, financial, and strategic
influences, integrate bits of a-priori isolated and/or unrelated data,
are able to discover resources by exploiting latent social connections,
and strengthen or weaken existing connections to other members of
the network and/or forge new links. The coevolving web of semiotic
agents, as a whole, thus essentially forms a self-organized, “self aware”
dynamic social network in which hidden meanings and patterns are
allowed to emerge naturally on their own. 

Potential applications of this approach range from understanding
the fundamental dynamical characteristics and behaviors of terrorist
networks, to developing dynamic models of terrorist networks as aids
to intelligence analysts, to adaptive data-retrieval and data-mining, to
semi-automated knowledge discovery and pattern recognition in
intelligence databases.

↔
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While there are prototype systems that use certain aspects of this
approach (see, for example, [31]-[36]), the author is unaware of any
existing research that successfully integrates dynamic graph theory,
social network modeling and visualization, multiagent-based simulation and
latent pattern recognition and knowledge discovery.

For example, while the SNA community has developed tools for cor-
relating static properties of graphs (such as connectivity, maximal
degree and degree distributions, spanning trees, and so on)3 to its
“dynamics”---the latter of which (in a social dynamics setting) typically
involves such metrics as “who plays the central role in an organiza-
tion,” or “who monitors communication flow”)---few, if any, tools exist
for exploring networks that evolve and adapt to (internal and exter-
nal) stimuli. 

Still fewer studies have analyzed the dynamics of coevolving networks,
such as the one being proposed in this paper. Moreover, conven-
tional SNA typically confines its focus to relatively small networks,
whose nodes have minimal (or no) internal states, and gives little or
no attention to how such networks scale with size and/or complexity
of inner dynamics.

EINSTein and SOTCAC both describe the emergent behaviors of sys-
tems of interacting agents, each of which has access to only a limited
set of features of its immediate environment, adapts only to local stim-
uli, but also communicates, and interacts with other agents. More-
over, both programs depend, fundamentally, on conflict as a major
source of dynamics. In EINSTein, the conflict is explicitly between a
“red” and “blue” force; in SOTCAC, the conflict is between a terrorist
network (equivalent to EINSTein’s “red force”) and a counterterror-
ist net (equivalent to EINSTein’s “blue force”).

The major difference between EINSTein and SOTCAC, is that while
all of EINSTein’s agents live and act entirely in a physical (albeit only
notionally physical) space, SOTCAC’s agents extend roots into both
physical and abstract, information, spaces (see figure 4); the informa-
tion space contains the terrorist network’s dynamic, adaptive web of
social links.

3. See discussion in the section Complex networks: metrics and Appendix 1:
social network analysis. 
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Figure 4. Schematic illustration of SOTCAC’s coupled information and 
physical spaces; in contrast, the dynamics of the EINSTein 
combat model are confined solely to the physical domain 

Thus, while in EINSTein, the agent action-space is effectively
restricted to movement and combat (combined with, on a more superfi-
cial level, communication and targeting), in SOTCAC, the central com-
ponent of an agent’s action-space consists of the dynamic
restructuring of its local “ego-centered map” of vbarious kinds of
social contacts (along with the information and resources that those
contacts represent, or serve as indirect links to). SOTCAC’s agents
also move about on a notional 2D “activity field,” but physical move-
ment plays a subordinate role to the action that takes place in the
information domain
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Where network analysis has traditionally been used to explore the
dynamics of human relationships in business organizations [37]-[40]
and social communities and systems [41]-[45], the approach taken in
this paper is to develop a broader, semiotic-agent-based methodology
to help understand self-organized, emergent dynamical behavior in
general information and communication networks. This approach
represents a fundamental shift in focus away from studying relation-
ships of static properties (such as correlating a business firm’s finan-
cial “success” with its executive organization) to exploring the
generative causes (and local and global consequences) of adaptive
structural changes in evolving networks, tasked with performing pos-
sibly conflicting functions.

Modeling terrorist-counterterrorist coevolutions

SOTCAC has two opposing sides---terrorists and counterterrorists---that
interact and coevolve. The main conceptual difference between EIN-
STein and SOTCAC (aside from the obviously different issues they
address: one combat, the other dynamic terrorist networks), is that
while EINSTein’s agents confront each other in battle directly and com-
plimentarily (as the two forces are essentially “copies” of one another,
albeit with different offensive/defensive capabilities and agent behav-
iors), in SOTCAC, the two ostensibly opposed sides have dynamically
related but substantively different objects of focus: 

• Terrorists are interested in acquiring whatever manpower and material
resources are required to commit acts of terror; a major aspect of this task
is to create and maintain a robust social network of ties with other ter-
rorists that simultaneously “optimizes” two general classes of conflicting
constraints:

— maximize coordination capability and/or information/resource
flow through open channels, and

— minimize the risk of discovery, intrusion, and/or destruction by
counterterrorist forces.

• Counterterrorists are interested in either preventing this from happening
or prolonging the time it takes the terrorists to marshall the requisite
resources for launching their first strike.
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Both terrorist-agents (or T-agents) and counterterrorist-agents (or
CT-agents) “live” in two coupled dynamical spaces (as illustrated in
figure 4): (1) a physical space, and (2) an information space. The phys-
ical space consists of an N-by-M sized “box,” and defines the region in
which T-agents and CT-agents maneuver and interact. Initially, the
motion of all agents is random, but gradually assumes a unique agent-
specific character as individual agents acquire experience and build
and restructure their social networks (in the case of T-agents) or
build their database of accumulated INTEL-discovery (in the case of
CT-agents). The information space contains the TN’s evolving social
structure, and is where the counterterrorist network (CTN) fuses
INTEL-reports and updates its beliefs regarding the structure and
actions of the TN.

While both T-agents and CT-agents have a relatively large palette of
possible “actions” to choose from in any given context, all actions fall
into one of three general classes: (1) physical movement (which applies
to both types of agents), (2) creating, or deleting, communication chan-
nels (which applies, at least in the prototype version of SOTCAC, to T-
agents only), and, for CT-agents, (3) selective targeting of TN-components
(including both agents and links), for detection, intrusion, and/or
capture.

Creating and deleting communication channels is the social-network-
equivalent of “moving” in a physical space. Each T-agent sits at the
center of its own unique “ego-centered” local map of the larger TN
(which we will later just call the T-agent’s ego-map); it does not know
the entire structure, only those parts that are accessible to it within its
sensor range. The sensor range (=R) on a network is the maximum
value of a generalized distance function, where “distance” is defined
to be the minimum number of links that must be traversed along a
path that connects one point in the network and another. For exam-
ple, if the sensor range R=3, a T-agent’s local view extends only to
those agents that are at most three “steps” removed. Since the TN’s
social structures are dynamic, local map are not fixed.

The degree to which a given agent is motivated to accomplish specific
tasks (within the physical domain) changes with time and context,
and most strongly depends on its type. For example, while a recruit---
who has not yet joined the TN---is also not yet explicitly motivated to
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do anything, a recruiter (who is already a T-agent) is motivated to find
new recruits (and the weights of his movement-personality vector are
thus valued to favor chance encounters with possible recruits); and
mission operatives are motivated to acquire the skills, weapons and
other miscellaneous resources necessary to accomplish their assigned
missions. A CT-agent may be “called” over by another CT-agent (who
has detected a high-valued T-agent) to assist in “capturing” that T-
agent.

Issues, problems and questions

The primary focus of this report is the understanding of TNs as com-
plex, adaptive, self-organized, dynamic graphs. However, implicit in
the ensuing discussion is that TNs are but a single---albeit singularly
important---exemplar of a vastly larger general class of dynamic
graphs, characterized by nodes that possess an interior dynamical
space, communicate and exchange information with other nodes,
and adaptively forge new links and/or sever existing ones. Conse-
quently, the study of the dynamics of TNs shares (and is plagued by)
many of the same outstanding issues and problems facing other inter-
disciplinary studies of complex networks.

The three main sets of generic research questions, that apply to any
class of complex networks, are [46]-[49]:

1. “What properties are appropriate for characterizing the topology and
behavior of real networks?”; “How can these properties be measured?”

2. “How do these observable properties arise, dynamically, within real net-
works?”; “How are they interrelated?”; “Can they be modeled in simu-
lated networks?” 

3. “What is the relationship between an evolving network’s local properties
(i.e., its nodes and links---or, more generally---its agents), and its emer-
gent global structure and behavior?”

While none of these questions have been fully explored or answered
(particularly in the case of terrorist networks, about whose topology
and properties reliable information is obviously difficult, if not impos-
sible, to obtain), the first two sets of questions have garnered the
widest attention. Sections two and three of this report review several
recent models of network formation and structure. 
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The third question echoes the central— and, as yet, unsolved—prob-
lem in both natural biology [50] and artificial life research [51], which
is to understand the relationship between an organism’s genotype (or
the primitive instructions that are genetically encoded by the organ-
ism’s chromosome), and an organism’s phenotype, or its emergent,
macroscopic form (which includes both its physical morphology and
how it interacts with other organisms). 

While considerable progress has been made toward understanding
the genotype-phenotype relationship for biological systems in recent
years, the more general study of the effects of local dynamics and
topology on emergent behavior in large complex networks is in its
infancy.4 It is fair to say that complex network theory---as a nascent
“science”---is at the present time roughly where the mathematical
theory of chaos was in the early 1970s [58]-[60], and complexity theory
was in the middle 1980s [61]-[63]. Many of the necessary analytical
tools and theoretical methodologies have yet to be developed. It is
fervently hoped that the SOTCAC model described later in this paper
will prove to be useful not just for studying the dynamics of terrorist
networks (for which it is being explicitly designed), but for helping
usher in an entirely new class of general-purpose multiagent-based
dynamic graph models that can be used to explore the fundamental
properties of complex adaptive, evolving networks [64,65].

4. For example, while the recently completed Human Genome Project (HGP) succeeded
in identifying the approximately 25K genes in human DNA [52], the associated
problem of understanding how the information that is encoded in those genes gen-
erates bodily forms and organs remains mostly a mystery. Two reasons why the prob-
lem is so difficult is that whatever is the true form of the mapping from genotype to
phenotype, it is almost certainly both nonlinear [53, 54] and nonlocal [55]. Our cur-
rent understanding of the genotype-phenotype problem in complex networks lags
even farther behind. This is mainly because it is only very recently that, with the
advent of telecommunications and computer networks, and the World Wide Web,
the graph research community has shifted its focus away from analyzing small net-
works to studying the global properties of extremely large complex networks [56].
Moreover, just the problem of visualizing the structure of large complex networks
(that contain more than, say a few thousand nodes), has spawned a major research
effort to develop novel 3D graphical rendering techniques [57]. On the one hand,
because the efficacy of these techniques obviously depends on how closely rendered
structures correlate, visually, with the innate topological and statistical measures
that characterize a given network, considerable effort is being put into developing
new global (i.e. phenotypic) measures. On the other hand, because this work is so
new, and it is not entirely clear how to best describe a network’s global “fitness,” the
deeper issue of how local dynamics and topology are related to global network
behavior is largely unexplored.
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What follows is a sampling of complex-network-theory-inspired issues
and questions that relate specifically to the analysis of terrorist net-
works; almost all of the problems listed below are examined, to vary-
ing degrees, in the remaining sections of this paper:

• “What are the environmental factors (cultural, familial, financial,
legal, political, and/or religious) that influence the dynamical forma-
tion of terrorist networks?”

• “How do TNs adapt to changing local and global environments?”

• “What environmental factors can be influencesd, and in what way, so
that the terrorist network’s ability to sustain itself is maximally dis-
rupted?” 

Goolsby [66] argues that Al Qaeda’s network evolved from
local insurgencies. Although the goals, needs, and ideologies
of local groups are typically varied, Al Qaeda is able to sustain
itself by tapping into these groups, transforming and/or
realigning their ideologies as necessary, and subsuming them
into a more global cause. Paradoxically, it is the diversity of
these local, and only loosely associated, groups that provides Al
Qaeda the links necessary for it to sustain its global network.
The problem is to find ways of disrupting a terrorist network’s
activities---beyond the simple, conventional, targeting of its
existing links and structures---but attacking the core of its for-
mative dynamics. 

• “What kinds of TN topologies emerge as a function of network evolution
rules and/or strategies?” 

Multiagent-based models are particularly relevant for this issue,
in that they provide a powerful “laboratory” in which to explore
alternative TN evolutions in graph space, and to map out the
superspace of all possible network landscapes.

• “What are the appropriate metrics to characterize the communication
and information flow within a TN?”; “How can an evolving network’s
efficiency of information flow be tracked over time?”
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• “What is the relationship between a TN’s leadership structure, cell topol-
ogy, ability to marshal resources (and other emergent global behavior),
and the local rules that define how the TN’s agents interact and create/
delete social links?” 

• “What are the vulnerabilities of a TN to infiltration and/or attack, and
how are they correlated with its agent dynamics and/or dynamic topol-
ogy?”

• “What is the ‘best’ counterattack strategy (or strategies) that a TN can
use to minimize the effects of whatever ‘disruptive’ attacks are used
against it?”

• “What are the effects of “missing data” and/or missing “intelligence?”;
“What analytical, computational and/or visualization tools are appro-
priate for inferring and/or predicting network structure given only an
incomplete or uncertain ‘snapshot’ of network topology?”

• “What are the (possibly time-dependent) criteria by which critical nodes/
links and/or local components of a TN may be identified?”; “Are there
observable topological and/or information-flow patterns that can be
used to predict TN activity (and/or provide insight into its otherwise
covert operations)?”

• “What set of topological (and/or emergent dynamical) features charac-
terize the subspace of all possible network structures to which GA-bred
TNs evolve?” Genetic algorithms (or other evolutionary pro-
gramming techniques) can be used to explore space of possible
networks vis-a-vis various fitness measures. Sample “terrorist
mission” fitness measures might include simultaneously maxi-
mizing intra-network cell communication ability and cell auton-
omy and minimizing vulnerability (from discovery, intrusion &
disruption).

Genetic algorithms may also be used to search for viable coun-
terterrorist strategies to use against TNs. For example, a typical
counterterrorist “mission” might consist of using a specified set
of intelligence agents, with specified constraints on their abili-
ties, to delay as long as possible the TN’s ability to marshall
whatever resources it needs to conduct its own mission. 

• “What are the emergent properties of the coevolution of two or more inter-
acting (that is, adversarial) networks?” 
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Given that one of the basic lessons of systems behavior from
complexity theory is that a “network” (thought of as an the
“enemy”) is best attacked by another network (rather than by a
traditional top-down “hierarchy” ruled by hard-wired com-
mand and control structures), an obvious question is, “What
network properties are most conducive to a successful attack (as well as
defense)?”

• “What is the dynamical relationship between a network’s ‘error toler-
ance’ (i.e. imperviousness to removal or random malfunctioning of a
network’s nodes) and its ‘vulnerability to attack’ (that is, vulnerability
to a focused disruption, by an outside force, of its existing communica-
tion links and/or nodes)?”

• “What graphical visualization tools are best suited for rendering the
dynamic topologies of TNs?”; 

• “What metrics are most useful for relating physical distance (such as
that between nodes of a graph embedded in a conventional Euclidean
space) and conceptual distance between, say, the ‘information’ content
(defined in some suitable manner) of individual nodes?” 

• “What network metrics (of both form and function) are necessary and
sufficient to identify the critical components of a TN?” “What are the
appropriate measures of ‘criticality’?”

• “What observable features of the TN ought the intelligence community
focus its data collection resources on in order to maximize the probability
of detecting the TN’s most valuable components?”; “If the counterterror-
ist organization must decide between destroying node A or B, what are
the criteria by which an ‘optimal’ decision may be made?”

• “How can a TN be surreptitiously ‘probed’ (or indirectly stimulated)
into revealing information about its structure and activity? “

• “What actions can a counterterrorist organization take to either prolong
the period of time the TN requires to self-organize and marshal the
resources it deems necessary to initiate an attack, or to prevent such an
attack from ever taking place?”

• “How does a TN’s vulnerability to attack depend on its developmental
timeline?”; “Is there a phase during which an intervention by the coun-
terterrorist organization to intervene “optimally” disrupts (and/or
destroys key parts of) the TN, and/or the TN’s ability to adapt?”
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Organization of paper
The remainder of this paper is divided into four relatively self-con-
tained sections (the third section uses some of the formalism intro-
duced in the second, and some details of SOTCAC discussed in the
fourth section assume the reader has read portions of the third), and
four appendices (that contain additional background material and
links to resources:

• Complex networks: overview. The first section provides the
framework for the ensuing discussion by introducing graphs
(as conceptual modeling tools), the basic nomenclature, for-
malism and mathematical representation of complex networks,
and an an overview of graph visualization techniques. 

• Complex networks: zoology. The second section contains a
primer on random graphs (including discussions of the prop-
erties of, and constructive models for, Erdos-Renyi random
graphs, small-world random graphs, scale-free random graphs,
and clustered networks), local search and the general problem
of “navigability” in complex networks, and an introduction to
dynamic graphs. Dynamics graphs, which lie at the heart of the
SOTCAC model, are graphs whose topology evolves according
to dynamical rules that are functions of local information. A
simple, but concrete example, of a dynamic graph is given,
called structurally dynamic cellular automata

• Complex networks: metrics. The third section surveys the local
and global topological properties of complex networks, empha-
sizing those metrics that have proven to be particularly useful
in studies of human social networks. Properties discussed
include the characteristic path length, clustering coefficient,
degree, link and information centralities, betweenness, and sev-
eral different measures of network efficiency. The section also
contains discussions of structural hole theory and how topolog-
ical metrics may be used, in practice, to understand emergent
dynamical behavior; the latter topic is discussed in the context
of network reliability and vulnerability to attack. The section
concludes with an example of how ordered set theory, com-
bined with a knowledge of basic structural properties of real
networks, can be used to “break” Al-Qaeda terrorist cells.
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• SOTCAC: a conceptual model. The fourth, and last main, section
of this report introduces SOTCAC. SOTCAC is a conceptual
model that uses autonomous, intelligent agents to represent
the components of coevolving terrorist and counterterrorist
networks, and includes interactions among notional terrorist
and counterterrorist intelligence agents, terrorist cells, train-
ing, logistical, and miscellaneous support networks, weapons
and financial resource networks, and physical terrorist targets.
SOTCAC serves as the core “logical engine” within which the
TN CTN coevolution takes place, adjudicates the commu-
nications between, and interactions among, all terrorist and
counterterrorist agents, and provides a visualization of the
emerging graphical structures.

• Appendix 1: Social network analysis. The first appendix intro-
duces social network analysis by applying network communica-
tion metrics, as defined in the main text for abstract networks,
to a simple case study of human interactions.

• Appendix 2: Mapping Al-Qaeda. The second appendix summa-
rizes a case study that applies the same social network analysis
methodology that has traditionally been applied to understand-
ing organizational structures for business firms, to mapping the
structure (if not dynamics) of the Al Qaeda terrorist network.
The case study uses only public information gleaned from
major newspapers. 

• Appendix 3: Social network analysis and SOTCAC development
resources. The third appendix contains brief descriptions of
(and WWW URL links to) some of the mathematical analysis,
modeling and simulation toolkits that the author has tested for
suitability for use in developing SOTCAC. The list includes
toolkits that are both freely available, or shareware, programs
that are designed mainly for academic research, and full-fea-
tured commercial development packages that run under mul-
tiple operating systems.

• Appendix 4: World Wide Web resources. The fourth appendix
contains World Wide Web URL links to resources related to ter-
rorism, nonlinearity and complex adaptive systems.

↔
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Complex networks: basic concepts 

“As a net is made up of a series of ties, so everything in this world is
connected by a series of ties. If anyone thinks that the mesh of a net
is an independent, isolated thing, he is mistaken. It is called a net
because it is made up of a series of interconnected meshes, and each
mesh has its place and responsibility in relation to other meshes.” 

—Buddha

Introduction

In 1967, Stanley Milgram, a social psychologist at Harvard, was inter-
ested in learning how many acquaintances it would take to connect
two randomly selected individuals from the population [67]. To esti-
mate this number, he sent out hundreds of letters to people in
Nebraska, asking them to participate in his social contact study along
with instructions about what to do regarding the identity of a selected
“target” person (a stock broker in Boston).5

Since (at that time) no study of this kind had ever been performed
before, Milgram had no idea what number of steps would be required
to establish a link, or even if the number of letters he sent out was suf-
ficient to establish any links at all. He was surprised, therefore, when
the first letter found its way to the “target” within only a few days,
having passed only through two intermediate links. In the end, Mil-
gram discovered that 42 out of 160 letters made it to the “target,”
some having passed through a dozen intermediaries. The median
number of intermediate “nodes” was 5.5!

5. Those willing to participate in Milgram’s study were asked to follow these
steps [68]: (1) add their name to the roster at the bottom of the letter; (2)
detach a postcard (with their name and location), and send it to Milgram;
(3) mail the study folder to the “target” if they already know the target; or (4)
if they do not know the “target,” mail the study folder to some personal
acquaintance of their’s who they believe may know the target.
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What Milgram discovered is a basic property of an important class of
large networks that is both ubiquitous and (and, up until fairly
recently) mysterious, in the sense that there has heretofore not been
a generative “explanation” for why this property exists. It has come to
be known as the small worlds property.6 A “small world” network is a
network that may be very large, but has at least one relatively short
path (and, typically, many short paths) between any two of its nodes.
This property is colloquially known as the “six degrees of separation”
concept (after Milgram’s experiment), and has recently been
extended and popularized by Watts [71,72].7

The small worlds property, alone, does not imply that a network has
evolved according to a particular organizing principle. Indeed, large
networks consisting of completely random links will possess this prop-
erty, as do many different kinds of real-world networks, ranging from
networks of chemical interactions in cells, to the coauthorship and
citation networks of scientists, to the distance of separation of actors
in Hollywood, to the foodweb of predator-prey interactions, to the
neural network of the Caenorhabditis elegans worm [75].8 However,
what is noteworthy about the small worlds property is that---due partly
to its ubiquity and partly to its counterintuitive-seeming nature---it has
served as a catalyst, stimulating further research into the properties of
complex networks; research that in recent years has resulted in
deeper insights.

6. The existence of a “small-worlds” property (though not by this name)
was speculated upon about 30 years before Milgram’s work, in a 1929
Hungarian short-story [69]. See also [70].

7. The familiar colloquialism “Six Degrees of Separation” is due to a play
by that name, written by John Guare [73]. In mathematical circles, there
is a related “Erdos Number,” that is assigned to all mathematicians, and
which measures the minimum number of steps required to trace an
individual’s academic papers to some paper authored by the prolific
Hungarian mathematician, Paul Erdos. See the Erdös Number Project:
http://www.oakland.edu/enp/. Watts has also recently reproduced
Milgram’s experiment using email [74].

8. See, for example, Albert-Barabasi [76], Buchanan [47], Newman [46]
and Strogatz [77].
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Kleinberg [78] points out that Milgram’s experiment actually reveals
not one, but two fundamentally surprising results, both of which play
important roles during the ensuing discussion: 

1. That short paths exist in acquaintanceship networks (i.e., the
aforementioned small-worlds property), and 

2. That individuals belonging to these networks are able to deter-
mine what these short paths are.

While the first result is arguably counterintuitive, it is also demonstra-
bly real and existential in nature; the second result is subtle, and is
really an algorithmic assertion: it implies that individuals possessing
only local knowledge (i.e., the locations of their direct acquaintan-
ces) can nonetheless, collectively, construct a short path between two
points in the network. We will return to this important observation
later in this paper, where we use it as a conceptual stepping stone for
suggesting ways in which terrorist-agents (thought of as components
of a terrorist-acquaintance “social network”) rely on decentralized
search algorithms to acquire the resources required for performing
their missions.

Traditionally, the study of complex networks has been under the pur-
view of mathematical graph theory. While early studies focused on
relatively simple structures (mainly those that could be readily
described mathematically), attention shifted in the 1950s to the study
of random graphs as a basis for understanding large networks with no
apparent design. Pioneering studies of this type were first performed
by Erdos and Renyi [79].9 While random graph theory, as it has come to
be known, established itself as the prevailing conceptual and model-
ing methodology during the ensuing decades, there has been grow-
ing interest in recent years to explore alternative models of complex
networks in order to better understand the evolution, structure and
dynamics of complex systems. 

9. Random graphs are generated by randomly adding links between a
fixed number of nodes, n, so that each of the n(n-1)/2 possible links has
the same probability, p, of being added. See pages 52-55.
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Examples of complex systems taking the form of networks include the
nervous system, the internet connectivity and WWW, interdependen-
cies of business organizations and the global economy, food chains,
epidemics, social networks of family, acquaintances and relations with
other people, and---as we shall argue at length later in this paper---ter-
rorist organizations.

Many (if not all) of these systems also fall under the broad rubric of
complex adaptive systems theory (see pages 101-114 of [11]). Therefore,
all of the interdisciplinary tools and (still evolving) methodology
developed for studying these systems, from the point of view of self-
organized emergence, apply.

However, the focus of this paper is on those aspects of the behavior of
complex systems that derive explicitly from a given system’s topology;
i.e., the focus is less on the details of how parts interact locally
(though that is obviously still important), and more on how interact-
ing parts are organized, and on how that “organization” changes in
time, as the system adapts to both internal and external stimuli.

In essence, the abstract, but fundamental, question being asked is:

“To what extent does a complex system’s global behavior
depend on the network of local interactions of its constituent
parts?” 

The more specific question in the context of using the theory of com-
plex networks to obtain a deeper understanding of the dynamics of
terrorism, is:

“To what extent is the behavior of terrorist organizations, and
their interaction with counter- (and anti-) terrorist organiza-
tions, driven by their internal structure?”

If the topology of a system is an integral component of a given complex
systems’ dynamics, and it does not exhibit the properties expected of
random graphs, new methods are clearly needed to identify and
describe the underlying organizing principles. Before we review the
theory and apply it to the study of terrorist networks, we will first
introduce some basic terms and present some illustrative examples.
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Formally, a network (or graph) is a set of abstract objects, which we will
interchangeably call nodes, vertices or (if they are also endowed with an
internal space) agents, with connections between them, called edges
(or links). 

The “nodes” of a network can be simple (for example, they can be
used as nothing more than alphanumeric labels of individual compo-
nents of a system) or more complex (by possessing a dynamic state
that changes as a function of the states of other nodes in their local
neighborhood and/or consisting of entire networks that evolve
inside of them). 

Likewise, “links” can be simple abstract “lines” that represent some
form of connection between simple nodes, or more complex, and be
directed, weighed, and/or consist of multiple edges. We will eventu-
ally make heavy use of these, and even more complicated, variants of
a basic network.

Figure 5 shows four examples of large, complex networks. Though
the examples come from very different contexts, they reveal some
properties that appear to be shared, along with others that are unique
to a particular example. 

It is the chief task of complex network theory to develop the metrics
and tools necessary to discriminate among the many different kinds
of graphs that can exist. Figure 5-a, taken from [80], contains a map
of interacting proteins in yeast, and is color coded according to level of
importance for as cell’s survival: red = essential proteins (i.e., their
removal cause the cell to die); orange = important proteins (i.e., their
removal slow cell growth); and green/yellow = less essential proteins (or
those whose importance is unknown). The figure reveals, sugges-
tively, that high1y linked proteins--or the hubs---tend to be the most
critical for a cell's survival.

Figure 5-b shows a social map of the CNN news agency, as generated
by Tom Sawyer Software’s graph visualization toolkit (see Appendix 3).
Note the relative sparseness of the graph, but with a high degree of
local clustering. Figure 5-c shows a graph of internet industry partner-
ship alliances among 250 companies, as recorded during the period
from 1998 to 2001, and mapped using OrgNet.Com’s social network
analysis toolkit Inflow [81].
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Figure 5. Examples of large complex networks; see text for explanation

Two nodes are linked if the companies they represent had a joint ven-
ture, strategic alliance or other partnership during those years.
Observe that most companies appear to have few partnerships, but a
few have very many. The industry as a whole is dominated by several
hubs. The network shows that, prior to 2002, the best positioned com-
panies (where “best positioned” means companies that effectively
serve as bridges to connect the unconnected) are Microsoft, AOL-Time-
Warner and IBM.

Finally, figure 5-d, created by the Internet Mapping Project [82], is a
snapshot of the internet links as recorded in December 1998.

As we commented earlier, while systems such as those appearing in
figure 5 have been traditionally modeled as random graphs, it is
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increasingly recognized that the topology of many real networks is not
random, and that their evolution is governed by robust, possibly uni-
versal, organizing principles. For example, an important feature that
is common in social networks is clustering, which represents a local
clique of friends and acquaintances, all of whose members know each
other. That some model other than a random graph is necessary to
describe such social networks was first pointed out by Watts and Stro-
gatz [83], who observed that clustering in most (if not all) real net-
works is typically much larger than exists in a random network with
an equal number of nodes and links. 

The next section introduces basic nomenclature and concepts that
will be used throughout the ensuing discussion, and reviews some
recent advances in the field of complex networks that are particularly
relevant to the focus of this study.

Formalism
A significant fraction of complex network research uses the formal-
ism of mathematical graph theory, a subject that goes back to the
Konigsberg Bridges problem devised by the great mathematician Leon-
hard Euler in the late 1700s.10 This section covers only those aspects
of graph theory that are needed to describe the coevolutionary ter-
rorist counterterrorist model---called SOTCAC---that is intro-
duced in a later section.

There are many excellent texts that develop the theory more fully
than is possible to do here. See, for example, the texts by Berge [30],
Diestel [85], and Harary [86]. The classic reference on random
graph theory is by Bollobas [87]. In-depth reviews of complex net-
works are given by Albert and Barabasi [88], Dorogovtsev and
Mendes [89], Newman [46], and Strogatz [77]. 

For insightful discussions of virtually any topic in graph theory the
reader may wish to consult CRC’s Handbook of Graph Theory [90].
Appendix 3 lists several readily-available academic and commercial
software packages that provide analytical tools for studying and visu-
alizing graphs.

10. The Konigsberg Bridges problem consists of finding the shortest route around
the city’s bridges in such a way that each bridge is crossed only once; see,
for example, [84].

↔
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Research problems

There are three fundamental (and partially overlapping) research
problems that define current studies of complex networks [46]:

1. The characterization, and measurement, of local and global properties
of real-world networks; 

2. The development of models to simulate the evolution of real-world net-
works; and

3. Understanding the relationship between the structure of complex net-
works and the processes that take place on those networks.

Unfortunately, complex networks are inherently difficult to study.
Strogatz [77] suggests six reasons why this is so: (1)structural complex-
ity: topologies are usually very complicated, as already evidenced by
figures 5-a and 5-d; (2) structural dynamics: the topology of networks
can change over time, such as happens to the World Wide Web as its
many pages and links change very minute; (3) topological diversity: the
links between nodes can assume many different forms, be directional,
and/or contain additional tags or weights (the synapses of the brain,
for example, alter their strength over time and can be either inhibi-
tory or excitatory); (4) dynamical complexity: the (typically coupled)
states of the nodes may change according to nonlinear dynamical
functions and thus display complicated behavior; (5) nodal diversity:
complex networks typically contain a complicated heterogeneous
mix of nodal forms and functions (for example, figure 6 shows only a
small portion of the molecular interaction map for the regulatory
network responsible for mammalian cell cycles11); and (6) nodal-topo-
logical coupling: the nodal states and overall topology of complex net-
works are typically also coupled and coevolving (for example, neural
dynamics in the brain, which depend on the spatial synaptic patterns,
do not only alter the neural states themselves but alter the synapses;
i.e. nodal and synaptic patterns coevolve).

11.Figure 6 is taken from the second of four panels that appear between pages
2708 and 2711 in [91]. Different colors encode different interactions: black =
binding interactions; red = gene expression; green= enzyme actions; and blue =
stimulations and inhibitions. 
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Figure 6. A small portion of the molecular interaction map for the regu-
latory network responsible for mammalian cell cycles [91]

While almost all existing networks models (such as random graphs,
small world graphs, and scale-free networks; see below) are probabi-
listic, and are designed so that certain desired properties (that are
typically selected to reflect some desired real-world behaviors)
emerge as the graphs evolve, the SOTCAC model introduced later in
this paper is unique in two ways: (1) the nodes of its associated (ter-
rorist and counterterrorist) graphs are fully autonomous agents,
intelligent enough to use local information to “decide” their own
manner of evolution; and (2) part of the information accessible to
them, and is that forms the basis of their actions, is the set of graph
metrics that describe their local topology. SOTCAC therefore repre-
sents not just a multiagent-based model of terrorist counterter-
rorist net dynamics, but may be used as a more general model of
intelligent graph evolution.

↔
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Basic terminology

A graph, , is a finite, nonempty set  of vertices
(or nodes) together with (a possibly empty) set  of
edges (or links). Each edge , connects vertex “i” to “j.” If
the edges represent ordered pairs of vertices, then G is a directed
graph: each  defines an edge directed from i to j, and is denoted
by ; graphically, directed links will be depicted using arrows,
with tails anchored on the starting vertex and arrow-head pointed
toward the terminal vertex. If, on the other hand,  for all
“i” and “j,” then G is an undirected graph and all edges are denoted
simply by . Two vertices, i and j, are said to be adjacent if

. An example of a small graph with eight nodes and ten
links is shown in figure 7.

Figure 7. Graph consisting of eight nodes ( ) and ten links 
( )

A simple graph is one that contains only single links between any two
nodes. If all the links in a graph are used to denote only the presence,
but not strength, of a connection between the nodes, the graph is
called unweighted; if, on the other hand, links are assigned a strength
of a connection, the graph is called a weighted graph. As we will see in
a later section, SOTCAC generalizes the notion of a weighted graph
by incorporating both multiple links (with each link representing dif-
ferent domains of possible connectivity) and endowing each link with
strength-vector (the components of which are metrics that define a
particular link, such as type, strength, duration, and vulnerability to
eavesdropping and/or disruption). Finally, a sparse graph is one in
which the number of links is significantly less than the maximal pos-
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E G( ) e1 … eM, ,{ }=

e e i j,( )= E G( )∈

e i j,( )
e i j,( ) ij=
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{ }1,2,...,8V =
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sible number for the graph; i.e., a graph G(N,M) is sparse if
.

The order of a graph G is the number of vertices of G: .
The size of G is the total number of edges in G: . In
principle, the order and size of G may both be infinite, but we will
mostly consider cases in which they are both finite. Clearly, for every
M, , there is a graph G(N,M). The graph of order N and size

 is called a complete N-graph; it is denoted by KN. 

A graph G(N,M) is labeled if all of its N vertices are associated with N
distinct labels in a one-to-one manner. An edge-labeled graph is defined
in an analogous fashion.

Two graphs, G1 and G2, are isomorphic---which we write as , if
there exists a bijection which preserves adjacency (i.e.
such that  if and only if ). Isomorphic
graphs necessarily must have the same order and size. It is easy to see
that isomorphism is an equivalence relation on graphs: it divides the
collection of all graphs into equivalence classes, for which any two
member graphs must have the same structure. Since all graphs in the
same class are in this sense topologically equivalent, a representative
member of each class, devoid of explicit vertex (or edge) labels,
defines a unique unlabeled graph.

Figure 8, for example, shows all of the undirected and unlabeled
graphs of order 4.

Suppose π is a permutation of the N labels, {1,2,...,N} and G is a
labeled graph of order N. Let π(G) represent the graph obtained from
G by relabeling each vertex, i, by π(i). Then the set P(G), consisting of
all permutations such that G and π(G) are identical graphs is called
the automorphism group of G. Since any graph G can be labeled in any
of n! distinct ways, the order of the automorphism group, , tells
us how many of these labellings will be topologically equivalent: i.e.
the number of ways of labeling an unlabeled graph is given by:

. (1)

( 1) / 2M N N −=

( )G V G N= =
G E G( ) M= =

0 M N
2 

 ≤ ≤
N
2 

 

G1 G2≅
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Figure 8. All undirected, unlabeled graphs G of order 4

It is easy to show that the number of graphs of order N, , and

the number of graphs of order N and size M, .

is a subgraph of G = (V,E), written , if  and
. If  contains all edges of G that join two vertices in , then

 is the subgraph induced (or spanned) by , and is denoted by
. A subgraph  is an induced subgraph if .  is a

spanning subgraph of G if .

The set of vertices adjacent to a vertex  is denoted by . The

degree of i, deg(i), is defined to be the number of vertices adjacent to

(i.e. the neighbors of) i: . Note that, for undirected graphs,

the sum of the degrees is exactly twice the number of edges:

. We will denote the minimum degree of G by

δ(G), and the maximum degree by ∆(G). In general, of course,

, where  is G’s average degree.

If δ(G) = ∆(G) = r (i.e. each vertex of G has the same degree deg = r)

then G is an r-regular graph. A circuit, for example, can be alternatively

defined as a 2-regular connected graph.

A walk from the vertex v1 to vertex vi is a finite sequence of edges of
the form {(v1; v2), (v2; v3),...,(vi-1; vi)}. In general, a given vertex or
edge can be visited any number of times. A walk in which each vertex
is distinct is called a path. A path of length N is therefore a graph con-
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N =N
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N

M
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G̃ Ṽ Ẽ,( )= G̃ G⊂ Ẽ E⊂
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sisting of the distinct sequence of vertices {v1,...,vN} and edges {(v1;
v2),...,(vi-1; vi)}. If the edge (vN, v1) is added, the path becomes a cir-
cuit of length N. If we substitute the arrows (or arcs)  for the
lines (vi-1; vi), the circuit becomes a cycle of length N. If a graph G con-
tains at least one cycle which itself contains all of the vertices of G,
then G is said to be Hamiltonian.

G is connected if for every pair of distinct vertices in G there exists at
least one path along existing edges. The connected (undirected)
graph of order N which has the smallest size is called a tree. Any G that
is described by any one of the following four properties is a tree: (1) G
contains no circuits and has N - 1 edges; (2) G is connected and has N
-1 edges; (3) any two vertices of G are connected by exactly one path;
and (4) G contains no circuits and the addition of any new edge cre-
ates exactly one circuit.

A spanning tree in G is an edge-subgraph of G which has N -1 edges and
contains no circuits (i.e., a subgraph of G that contains all nodes in G
and is also a tree). It is easy to show that a graph is connected if and
only if it has a spanning tree. 

The minimum spanning tree of a weighted graph is the spanning tree
that minimizes the total weights on the spanning tree of the graph.
(If G is unweighted, then any spanning tree is a minimum spanning
tree.) The minimum spanning tree is not difficult to find, computa-
tionally; polynomial time algorithms include those by Prim and
Kruskal [92].

The distance in G between nodes i and j, Dist(i,j), is equal to the length
of the shortest path between i and j.12 If no path exists (such as, for
example, in the case when i and j are on two disconnected compo-
nents of G), .

The maximal distance between a node i and any other node in G is
called the eccentricity of i, Ecc(i). The diameter of G, Diam(G), is equal to
the greatest distance between any two nodes in G (i.e., the maximal
eccentricity value of all nodes; the minimal value of eccentricity is G’s
radius). 

12. The shortest path between any two nodes in a graph is called a geodesic [84].

vi 1– vi→

( , )Dist i j ≡ ∞
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Mathematical representations

Although many properties of a graph may be identified by visual
inspection alone (although even the seemingly “simplest” properties,
such as connectivity, may often be difficult or even impossible to dis-
cern for large graphs), any kind of formal analysis requires the use of
a symbolic mathematical representation. 

A commonly used representation of a graph, G, is its adjacency matrix,
A(G). A(G) of an order N graph with  is an N-by-N
matrix [aij] with entries aij = 1 if  and aij = 0 otherwise.
Therefore, for loopless graphs, A(G) is a symmetric (aij = aji) (0,1)-
matrix with trace Tr(A) = (i.e. A’s diagonal entries are all
equal to zero). Note that this is an exact correspondence: i.e., the set
of all N-by-N matrices satisfying these properties represents the class
of all graphs G of order N.

The entries of the nth power of A(G) have a simple interpretation:

 is equal to the number of different walks from vi to vj of

length n in G. In particular,  is the number of vi---vj paths of

length two and . Since there are  possible

links among N nodes, and the maximal length of a path between any

two nodes is N-1, the average number of independent paths between

nodes in G is given by .

While the rows and columns of A obviously depend on a particular
choice of vertex labels, the generic structural properties of G must
remain invariant under a permutation of rows and columns. Informa-
tion about a graph’s structure can often be extracted, analytically,
from its spectrum: the spectrum of a graph G,

, (2)

is the set of eigenvalues, λi of A(G), together with their multiplicities,

m(λi). Since A(G) is real and symmetric, it follows that the eigenvalues

must also be real. For example, the spectrum of the complete graph
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of order n, Sp(Kn)= . Two non-isomorphic graphs, G1 and

G2, are cospectral if Sp(G1)= Sp(G2).

The relationship between the topological properties of graphs and
their spectra is an intensely studied field [93]. For some questions,
the spectrum yields a wealth of knowledge; for other questions, it add
little to what can be obtained using other methods. Some useful struc-
tural information about G can also be obtained from the characteristic
polynomial of A(G):

. (3)

Since the coefficients ai can be interpreted as sums of principal
minors of A(G), it is easy to check that (i) a1 = 0, (ii) a2 = the number
of edges in G, and (iii) a3 = twice the number of triangles in G. Consid-
erably more powerful versions of this result can be proven; see, for
example, chapter five in [94].

Another way to describe a graph is by its adjacency list, L(G). L(G) con-
sists of a list of links {(vi,vi’), (vi,vi’’), ...} incident to vertex i, for each

.

A third way to describe G is via its incidence matrix, B(G). If G has vertex
set  and edge set , then B(G) is a N-
by-M matrix [bij] for which the (ij)th entry is defined by: 

(4)

B(G) can be used to define the complexity of a graph G, κ(G), equal to
the number of spanning trees of G:

(5)

where J is an N-by-N matrix all of whose entries are equal to one, D is
an N-by-N diagonal matrix in which [dii] = d(vi), det(x) is the determinant
of x, and Bt is the transpose of B. (Note that the relationship between
between G’s adjacency and incidence matrices is revealed by κ(G) via
the relation BBt = D - A.) [95]

1 1

1 1

n

n

− −

−
 
  

( )
0

( )
N

N i
G i

i

det A - I aχ λ λ λ −

=

≡ ⋅ = ∑

i V G( )∈

V G( ) v1 … vN, ,{ }= E G( ) e1 … eM, ,{ }=

1 if  is the initial vertex of edge ,

1 if  is the terminal vertex of edge ,

 0  otherwise .

i i

ij i j

v e

b v e

+
= −



( ) ( ) ( ),tG det J BB det J D Aκ = + = + −



40

Graph visualization

The most important kinds of visualization tools for the purposes of
this study are those that optimize maps between physical distance (such
as that between nodes of a graph embedded in Euclidean space) and
conceptual distance between, say, the semantic content of individual
nodes. A prototypical example is WEBSOM [96], which is a neural-
network-based aid for, among other things, displaying self-organized
maps of voluminous text data in which the physical distance between
two documents is maximally correlated with semantic distance (as
defined by keywords and/or subject matter).13

Intuitively, it is easy to visualize a graph, geometrically, in a two or
three dimensional Euclidean space: use points to represent the
graph’s nodes and draw lines between nodes wherever they are linked
(or arrows in the case of directed graphs). However, in practice, find-
ing the best (or even merely “good”) way to render a given graph---so
that the rendering simultaneously respects the graph’s topology,
allows direct visual inspection (with minimal distractions, such as
multiple line crossings, for example), and is aesthetically appealing---
can be an extremely difficult (if not impossible) problem to solve,
particularly for large complex graphs.

A visual representation of a graph is useful to the researcher only to
the extent that it conveys meaningful information. A “good” visualiza-
tion aids in understanding the system, and often helps to reveal oth-
erwise latent and/or hidden patterns; a “poor” visualization is
confusing at best, and misleading at worst.

13. WEBSOM (websom.hut.fi/websom/) is but one example of more general
physical to conceptual space mapping techniques, most of which use some vari-
ant of a “spring relaxation” algorithm: a network is modeled as a system of
springs the nodes of which adjust their position by responding to attractive
and repulsive forces due to other nodes (and the details of which depend
on the “conceptual” space being probed); this is, in principle, very similar
to the system of “personality weights” that EINSTein’s combat agents use to
maneuver on a battlefield. The system---or graph---relaxes over time to min-
imize the stress on all springs, thus evolving toward a state in which two
nodes are close (in the graph), if their distance in the conceptual space is
small.
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There is an entire subfield of graph theory that is devoted exclusively
to developing algorithms to automate visualization. See, for example,
the texts by Battista, et al. [97], Kaufmann and Wagner [98], and
Mutzel and Junger [99]. Texts on computational geometry, such as by
O’Rourke [100], provide the mathematical background used by
many graph drawing algorithms.

Some of the criteria used by graph drawing algorithms are purely aes-
thetic. That is, they attempt to satisfy as many (mostly intuitive) mea-
sures of readability as possible. These measure include minimizing
the number of line crossing, minimizing the area of the graph, mini-
mizing the maximum length of links, minimizing the variance of link
size, maximizing the symmetry of the whole graph, among many oth-
ers. Not all possible criteria can (or ought to be) applied to a given
graph; a subset of properties may directly contradict one another
and/or be aesthetically incompatible in other ways, and it has been
shown that for certain aesthetic criteria the rendering problem is NP-
complete [101] (meaning that its solution, in general, requires a time
that grows exponentially with the size of the graph).

The most useful graph drawing algorithms, at least as far as the topics
covered by this paper are concerned, are those that make some
attempt at mapping the information that is encoded symbolically in
the graph to the physical space in which the graph is being embed-
ded. Some of the most common rendering are: (1) circular, (2) ranked,
(3) radial, (4) rooted, and (5) force-directed.

The simplest graph rendering is a circular embedding, in which the
positions of the nodes are all evenly spaced on a unit circle. While it
does not take into account any aesthetic criteria for the arrangement,
one virtue of a circular embedding is that each link is unambiguously
represented (since no two nodes are colinear).

A ranked embedding is one in which nodes are placed on evenly spaced
lines. This embedding is useful when the graph consists of loosely
connected subsets of nodes, or nodes are selectively ranked accord-
ing to a desired measure. For example, one might wish to rank the
nodes according to their distance from a selected clique of nodes
within the graph. A radial embedding generalizes a ranked embedding
by arranging the nodes of a graph on a series of concentric circles
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(around a selected node) in such a way that nodes of the same rank
appear on the same circle. Nodes of the same rank that share a
common neighbor of smaller rank are also clustered together.

A rooted embedding, which is used primarily for hierarchical structures,
starts from an arbitrary (or selected) “root” node and distributes all
other nodes along parallel lines. Nodes are ranked according to their
distance from the root node, and each line contains nodes of the
same rank.

So-called force-directed (or spring-embedding) methods are based on
drawing an analogy between the links in a graph and forces acting
between physical objects, to render graphs. Typical algorithms of this
kind consist of two parts: (1) defining a model for the force system that will
be used to assign an interaction strength between nodes of a graph,
and (2) choosing a technique for finding an equilibrium state of the
force system. The final rendering is achieved by allowing all the nodes
of the graph to relax to their equilibrium positions that minimize ten-
sion throughout the (physically realized representation) of the
abstract graph; i.e. a position in which the sum of the notional forces
on each node is zero.

The simplest force-directed methods use a combination of spring and
electrical forces: links are modeled as springs (with forces fij exerted on
node j by the spring between i and j), and nodes are charged particles
that attract or repel one another with force gij (whose exact form
depends on the criteria that are appropriate for a given problem).
The total force on node j is then defined by [97]:

. (6)

Typically, fij follows Hooke’s law (i.e., fij is proportional to the differ-
ence between the distance between i and j, Dij, and the zero-length of
the spring, ), and gij obeys an inverse-square law. If the graph is to be
rendered in a two-dimension Euclidean space, for example,

( ) ( ), ( )
( ) ij ij
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, (7)

where  and  are the positions of the ith and jth nodes, respectively;
sij is the stiffness coefficient of the notional spring between i and j (so
that larger values tend to more strongly compel Dij to be near );
and eij represents the strength of the electrical attraction (or repulsion)
between i and j. The “aesthetics” of the rendering are controlled by
the three parameters , sij, and eij.

Figure 9 shows an example of applying each of these embedding algo-
rithms to a random graph consisting of 25 nodes and 49 links. The
graph has no distinguishing features, and is chosen for illustrative
purposes only. 

Figure 9. Sample renderings of the same (order 25 and size 49) random graph using the five 
visualization algorithms discussed in the text

The ranked embedding ranks the nodes according to their distances
from the first four nodes (drawn at left-hand-side of the graph shown
in the figure; note also that the labels do not appear). Both the radial
and rooted embeddings use the center node of the graph as the root, the
distance to which is used to rank the other nodes. The “center” con-
sists of all nodes with minimum eccentricity, where the eccentricity of a
node i is defined as the maximum distance from i to any other node
in the graph; intuitively, the center consists of that part of a graph that
is closest to the rest of the graph. Finally, the force-directed embed-
ding shown here uses only the spring force; i.e., the notional electri-
cal forces between nodes are ignored.

Of the five embeddings introduced here,14 force-directed methods
come closest to embodying what might loosely be called an “objective
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aesthetic”; that is, an aesthetic that derives from an explicit map
between abstract topology and physical (i.e., graph rendering) space.
If employed wisely, in a way that respects those aspects of the relation-
ships of a system that are of greatest interest to the researcher, force-
directed algorithms can also be used as powerful pattern-recognition
tools to help identify otherwise invisible structures and substructures
within a graph; particularly when the graph is large and/or complex.

Figure 10. An example of graph visualization using spring-embedding

Consider, as a real-world example of the utility of spring embedding,
the graphs shown in figure 10. Figure 10-a shows a circular embed-
ding of the social ties of a homeless woman [106].15 The points on
the circle represent various social contacts and the lines of various
thickness represent the strength of ties. The existence of any latent
patterns or relationships is not immediately apparent. Figure 10-b
shows the same network, but is rendered using spring-embedding. The
existence of subgroups is now obvious.

Force-directed methods are particularly adept at revealing hidden
structures when the spring (or electrical) forces are not just (other-
wise arbitrary) analogues of physical forces---defined by, and used
solely for, generating geometrically pleasing renderings---but include

14. Many more graph embedding algorithms are available in the literature: see
[97]-[99] and [102]-[105].

15. The node labeled “Respondent” is the homeless woman that was the focus
of the study.
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components that depend on the information content of the (nodes
and/or links of the) graph.

For example, the “force” between nodes may be generalized to
include a term that is a function of how “similar” the nodes are with
respect to some selected subset of an internal feature space; or a func-
tion that depends on the degree of mutual interest, cooperation
and/or motivation to achieve certain goals (if the nodes are “agents”
in a social setting); or a component may be added that depends on
various local and/or global information processing metrics, such as
centrality, betweenness, efficiency, and symmetry (network metrics are
defined in a later section.) Using such generalized information-
driven, force-directed renderings, otherwise latent relationships
among a system’s “hidden variables” that are a priori cloaked behind
a jumble of unsorted, overlapping links, may be revealed.
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Complex networks: zoology

“Far away in the heavenly abode of the great god Indra, there is a
wonderful net that has been hung by some cunning artificer in such
a manner that it stretches out infinitely in all directions...the artifi-
cer has hung a single glittering jewel in each ‘eye’ of the net, and
since the net itself is infinite in all dimensions, the jewels are infinite
in number...If we now arbitrarily select one of these jewels for inspec-
tion and look closely at it, we will discover that in its polished sur-
face there are reflected all the other jewels in the net, infinite in
number. Not only that, but each of the jewels reflected in this one
jewel is also reflecting all the other jewels, so that there is an infinite
reflecting process occurring.”—Avatamsaka Sutra (F.H. Cook)

Graph space

Consider the set of all possible undirected graphs; that is, graphs con-
taining only symmetric links between originating and terminating
nodes. Figure 11 shows, schematically, the spectrum of graphs
belonging to this set, in which the number of nodes, N, is fixed, and
the graphs are arranged---from left to right---according to their
number of links, M.

Figure 11. Schematic of the spectrum of all possible graphs, G(N,M), of size N and order M 

The spectrum starts with the totally disconnected graph on the left,
and ends with the totally connected graph on the right. The red-col-
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ored graph, G(N,M), that appears in the dotted box near the center
of the spectrum, represents some particular graph, with N nodes and

 links.

Implicit in the figure, is the fact that some set of graphs---the member
graphs of which are not necessarily adjacent in the spectrum (since
the differences among them are likely to depend on a significantly
greater number of features than simply the number of links they con-
tain)---best performs some associated global function (or set of functions).
A graph---any single graph---is but one abstract exemplar of a typically
much larger set of possible graphs, each of which represents the
topology and information processing capabilities of a real physical
system. The problem is to identify the core set of features that a graph
must have in order to best perform its task.

For example, if the graph represents the social network of a company
that produces “widgets,” G’s associated function is to produce wid-
gets; or, if the graph represents the ties of a terrorist organization, G’s
function is perform acts of terror. The (possibly myriad) set of inter-
mediate local steps that are required to accomplish these global tasks,
both by the real systems and the components of whatever graph is
used to model them, are purposefully left unspecified. Indeed, the
reson detre for developing a dynamic random graph model of any com-
plex adaptive system---in which intelligent agents are substituted for
conventionally static nodes---is to provide the graph with a sufficient
set of local decision rules, along with an evolutionary algorithm that
allows the graph to learn, so that it may “discover” the steps necessary
to accomplish its goal.

The two fundamental problems for the research analyst can be stated
formally as:

Given a graph G that is a model of a physical system tasked with
performing a global function F, and that G performs that function
with “efficiency” , (1) identify the set of primitive local
and/or global topological and information-processing properties of
G, {πi(G)}, that are most relevant to describing G’s behavior (in the
context of G performing function F), and (2) determine the set of
values of G’s primitive properties that maximize the value of εG(F).

0 ( 1) / 2M N N≤ ≤ −

( )0 1G Fε≤ ≤
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Figure 11 already shows a decomposition of graph space according to
one global metric; namely, the number of links, M, in a graph. Unfor-
tunately, knowing only M yields little or no information about a
graph; in the sense that M alone is generally a poor predictor of the
efficiency with which G will perform function F. Thus a much broader
set of both local and global properties of graphs is needed to under-
stand the relationship between their structure and function. 

Figure 12. An overview of the zoology of graphs, partitioned according to heterogeneity, ran-
domness, and modularity (taken, partially, from [107]); see text for details

Zoology of graphs

A schematic of the zoology of graphs, in which graphs are character-
ized according to each of three measures, appears in figure 12; the
figure is taken partly from a recent review of the properties of infor-
mation flow in complex networks by Sole and Valverde [107]. A given
graph is specified---and thereby physically positioned in the three-
dimensional “zoo”---according to the degree to which it is either heter-
ogeneous, random (in the Erdos-Renyi sense), and/or modular.
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While even this broader partitioning is still far from complete, it illus-
trate some basic ways in which graphs may be distinguished, both on
the local and global levels. We will make frequent references to this
figure throughout the ensuing discussion, as we introduce the met-
rics that are depicted schematically in it.Examples of graphs that are
least random, least modular and least heterogeneous, located at the
bottom left of the graph space in the figure, are lattice meshes and r-
regular trees. The nodes of these graphs are all alike, in that they all
share essentially the same local neighborhood structure.

As more and more random links are injected into these homogenous
nets, via the Erdos-Renyi RG model, the local neighborhood struc-
tures obviously assume a random structure; but there is also a global
regularity that emerges: the degree distribution, P(k), is strongly peaked
at degree, k = <k>, and decays exponentially with k. 

As RGs become more and more modular (and we move toward the
lower right of the graph space in figure 12), the graphs occupying this
volume of the space are characterized by a power-law behavior of
their clustering coefficient, . C(k) (defined more precisely
below), measures the density of connections in the local neighbor-
hood of a node.

An important set of graphs, called scale free networks (which were
mentioned earlier during our discussion of RGs), is located near the
top left portion of the graph space in figure 12, and is characterized
by a power-law behavior of the degree distribution: . A scale
free network is extremely inhomogeneous: while the majority of nodes
typically have only one or two links, a few nodes have a large number
of links (thus also assuring that the network is fully connected). 

The colored graph that appears in figure 12 at the bottom right of the
plot of log P(k) vs log k (taken from [108]) illustrates this property by
coloring red the five nodes with the highest number of links, and col-
oring their closest neighbors green. While in the sample Erdos-Renyi
RG (i.e. the colored graph that appears in the center of the bottom
row of figure 12) only 27% of the nodes are nearest neighbors of the
five most connected nodes, in the scale-free network more than 60%
are. (Note that both networks contain the same number of nodes and
links, 130 and 430, respectively.) This also illustrates the important
roles that hubs play in scale-free networks; a property noted earlier.

( )C k k δ−∼

( )P k k γ−∼
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In what region(s) of graph space do TNs live?

A natural question to ask about terrorist networks---viewed as mathe-
matical graphs---is “What region of the abstract graph space do they occupy?”
While figure 11 frames the question, suggestively, by pointing to a
(red dashed-line) region, the size and location of that region (or mul-
tiple regions, as there is no a priori reason to expect the space of viable
terrorist structures to constitute a connected subspace in the space of
all graphs) is unknown. It is with this basic problem in mind that
SOTCAC is being designed. 

Reserving a more detailed discussion of the dynamics of terrorist net
structure and formation until a later section (see SOTCAC), we will
here only comment that it is precisely because terrorist organizations
self-organize---rather than come into existence, all at once, according to
the decree of a de facto master central plan---that we can use dynamic
graph models to help us identify the relevant emergent features of
terrorist networks. Terrorist nets evolve according to their (possibly
changing) operational needs, the motivations, skills and personality
of their members, and various internal and external constraints
(including their coevolution with antiterrorist and counterterrorist
organizations).

One can guess that terrorist nets will be neither completely random
nor completely regular; but to exhibit local and global regularities
that reflect the ethnic-, geo-, political-, and religious-arenas in which they
are spawned and within which they grow, adapt, and evolve. We can
expect terrorist nets to be strongly modular, and partly hierarchical.
And, to the extent that the Barabasi-Albert RG model has shown
“preferential-link” attachment as a necessary ingredient of real-world
scale-free network formation, we can expect large terrorist networks
to be scale-free; though the degree to which a terrorist net’s major
hubs constitute a true vulnerability of the system as a whole depends
on the specific network.

In Appendix 2: Al-Qaeda we show how social network analysis can be
applied to publicly available information to generate snapshots of
part of the Al Qaeda network’s structure prior to September 11, 2001. 



52

One of the most important conceptual problems that must be solved,
before actually developing any multiagent-based, dynamic graph
model of terrorist counterterrorist network coevolutions, is to
determine what the appropriate set of measurable topological proper-
ties is by which the behavior of terrorist networks may be described
and characterized mathematically.

Random graphs

The theory of random graphs (RGs) was developed principally by
Erdos and Renyi in the late 1950s, and offers a mathematical frame-
work for posing questions about the general topological structures of
computational systems and the expected behavior of certain random
dynamical systems [79].

Although there are many alternative models of RG evolution (three
of the most popular of which are introduced briefly in this section),
and different models exhibit unique properties, the essential idea is
to think of a graph as a living organism that develops by acquiring
more and more links. The problem for the researcher is to explore
the manner in which the evolving graph’s local and global topologi-
cal features emerge (usually in a dramatically abrupt and unexpected
fashion).

RG theory is important in the context of this paper for two reasons:
(1) because it provides the basis for describing the evolution---and not
just the structure---of graphs, and (2) because it provides the founda-
tion on which the more general agent-mediated evolution that lies at the
core of SOTCAC itself depends. While RGs typically evolve probabi-
listically, according to tunable probabilities of adding nodes and
links, SOTCAC’s networks evolve according to local rewiring deci-
sions made by “intelligent” nodes, using information that consists, in
part, of the decisions made by other neighboring nodes, and, in part,
of local topology (see SOTCAC: a conceptual model; page 121)).

Erdos-Renyi random graphs

In their classic 1960 paper, Erdos and Renyi consider a sample space

in which each realization of the  order-N labeled graphs G(N,M)

of size M are equiprobable. An alternative, and equivalent, definition
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of an RG (called the binomial model), uses a sample space in which the

probability of G(N,M), PG is given by:

(8)

where p is an independent probability, , and is typically taken
to be a function of N. 

The first model can be compared to the microcanonical ensemble in
physics, in that it depends on the direct enumeration of possible con-
figurations of a given graph. The alternative model, with its tunable
probability, resembles the canonical ensemble. As for physical systems,
these two models give the same results in the limit as . Depend-
ing on the problem, the sample space can be generalized to include
loops, multiple edges or even ensembles of graphs embedded in
other topologies. In all cases, the fundamental problem of RG theory
is to determine the point at which (as defined either by M(N) or p(N),
depending on the sample space being used) a particular property of
a graph almost certainly appears. The main contribution of Erdos
and Renyi, apart from formulating the RG “problem” itself, is the
demonstration that many important structural properties appear
quite suddenly, usually at well-defined critical points (i.e., at well-
defined values of either Mc(N) or pc(N)).

In order to show the emergence of some specific property, Q, of a
graph G, a probability space of graphs must first be defined, in which
the probability that G has this property is positive. Erdos and Renyi
used the criterion that almost every G has Q if the probability of
having Q approaches 1 as .

In fact, as more and more edges are added to G (or the probability of
adding an edge is systematically increased in the binomial model), G
undergoes a succession of abrupt structural changes. For example, if M
= cN in Erdos’s and Renyi’s original formulation (or p(N) = 2c/N),
then a “phase transition” occurs at c = 1/2: for 0 < c < 1/2, G consists
entirely of isolated points or small trees of order at most ~ Nlog(N); at
c = 1/2, these small trees are suddenly replaced by a single tree span-
ning ~ N2/3 vertices. Another dramatic structural change occurs
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when M = (1/2)cNlog(N) (or p(N) = clog(N)/N): while G is almost always
disconnected for 0 < c < 1, for c > 1, G is not only almost always con-
nected but is Hamiltonian as well.

Figure 13. A schematic illustration of several important epochs during the evolution of a 
random graph, in which links are added with a probability  (N is the 
fixed number of nodes in the graph; see text for discussion; 

A somewhat more complete summary of the sequence of changes that
takes place during G’s “evolution” appears, schematically, in figure
13.16 The chart traces several distinct epochs in the evolution of an
Erdos and Renyi RG, in which the link probability scales as

, where x is a tunable parameter.

The figure shows that for x greater than 3/2, almost all graphs consist
only of isolated nodes and links. As x passes through 3/2, suddenly
trees or order 3 appear. Trees of order 4 appear as x passes through
4/3. As x gets closer and closer to 1, trees of increasing order start
appearing. However, as long as x < 1, the (possibly disconnected)
graph consists only of trees; in particular, no cycles are yet present.

As x passes through 1, cycles appear spontaneously; in the sense that
the asymptotic probability for having a cycle of all orders approaches
one (as ). Complete subgraphs of order 4 appear for the first
time only as x passes through 2/3; of order 5 as x passes through 1/2;
and so on. As x approaches 0, the asymptotic probability that almost
all RGs of order N approaches one. 

Since the individual degrees of an Erdos-Renyi RG are distributed
binomially, it follows that a random variable xk, that represents the
number of nodes with degree d, is distributed asymptotically accord-
ing to the Poisson distribution [87]:

16. Figure 13 is adapted from the illustration that appears on page 11 of [88].

( ) xp N N −∝

( ) xp N N −∝

N → ∞
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, (9)

where  and d is any integer.

Small-world random graphs

In their seminal 1998 paper, Watts and Strogatz [83] formalize the
notion of a small-world graph by showing that the topology of many real
networks is neither completely regular nor completely random (as
are Erdos-Renyi graphs).17 

Like regular graphs, small-world networks exhibit a high clustering
coefficient (=C);18 and, like random graphs, small-world networks
have a small characteristic path length, L (= average distance between
two arbitrary nodes in the graph). More precisely, small-world graphs
of order N have diameter , which means that between any two
nodes there exists a path of size . 

Watts and Strogatz [109] propose a two-step algorithm for generating
random small-world networks:

1. Start with an ordered graph, and 

2. Randomize it. 

The algorithm works, essentially, by randomly rewiring a circulant
(i.e., 2K-regular) “seed” network. A circulant network is a graph such
that each of its N nodes is linked to 2K of its nearest neighbors (or to
K of each neighbors on its right and left sides when the graph is
drawn on a circle).

17. The specific examples cited by Watts and Strogatz include collaboration
social-networks of film actors, the neural network of a neotode (the C. Ele-
gans; neotodes are a form of microscopic worm, and are among the most
numerous multicellular animals on earth), and the US electric power grid.

18. The clustering coefficient measures the average “cliquishness” of a node
within the graph (or subgraph), or the degree to which a graph is modular
(i.e., is organized in a hierarchical fashion); see Complex networks: met-
rics.
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The Watts-Strogatz algorithm proceeds from a circulant network by
by selecting a node i and a link e(i,j) connecting it to another node j.
The link e(i,j) is then rewired, with probability p, by replacing j with a
random node s (with multiple edges being forbidden). This probabi-
listic rewiring is repeated for each node in the graph. A second round
of rewirings is performed in the same manner, but on links between
second nearest neighbors; followed by a third round on nodes a dis-
tance D = 3 apart; and so on, for a total of K rounds. In effect, the algo-
rithm provides an interpolation between a regular lattice (when p =
0) and a random graph (when p = 1), without changing the average
number of neighbors. 

In practice, the algorithm described above can generate discon-
nected graphs. To prevent this from happening, Watts and Strogatz
later added the constraint , where  ensures
that the resulting RG is connected [87].

Figure 14 shows an example that uses a “seed” circulant graph consist-
ing of 16 nodes and K = 3.

Figure 14. An example of using the Watts-Strogatz algorithm to “rewire” 
an (N=16; K=3) circulant graph into a small-worlds graph; 
adapted from [71]

Figure 15 shows, on a semi-logarithmic scale, the typical behavior of
C and L as the values of p range from about 10-4 to 1 [71]. Initially, as
might be intuitively expected, C and L both decrease as the amount
of rewiring increases, albeit at different rates: as long-range short-cuts
are added, the ordered lattice only slowly loses its innate clustering,

( )1 ln 2K nn= = = ( )2 lnK n?
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while L drops off at a must faster rate. The most important structural
changes occur during this early phase; by the time the first ten nodes
are rewired, a graph is generally already indistinguishable from a
random graph. 

Figure 15. Typical decays of characteristic path length (=L) and cluster-
ing coefficient (=C) using the Watts-Strogatz small-world 
random graph model; after [110]

The shaded region in figure 15 represents the “small-worlds” regime
in which graphs have large C, but small L. These are the graphs that
have both a high degree of local clustering, and many shortcuts
between clusters; they possess the short average path lengths that Mil-
gram [68] found in his social networking experiments and associated
with other “six degrees of separation” phenomena [72].

Scale-free random graphs

Scale free networks are characterized by a power-law behavior of their
degree distribution: , where P(k) is the probability that a
node has degree k, and γ is the power-law scaling exponent. A scale
free network is thus extremely inhomogeneous.

The discovery that many real-world graphs have a power-law degree
distribution (by Barabasi [48], Faloutsos [111], and others) is of par-
ticular fascination to physicists, because power laws play a fundamen-

( )P k k γ−∼
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tal role in statistical mechanics. It is well known, for example, that a
physical system that is poised exactly at a phase transition between an
ordered and random state exhibits “self-similar”---or scale-free---prop-
erties; i.e., it will appear the same whatever scale it is examined at.
Mathematically, if we take f as our functional “probe” of the scale-free
system, this means that at the phase transition, f must be such that
f(ax)=bf(x), where a is a scale parameter, and b is a constant. The only
solution to this equation is a power-law: . Graphs with a
power-law degree distribution are for this reason called scale free.

While the majority of a scale-free network’s nodes typically have only
one or two links, a few nodes have a large number of links. Such net-
works are called “scale free” because the ratio of the number of very
connected nodes to the number of nodes in the rest of the network
remains constant as the network changes in size. Compare this to, say,
Erdos-Renyi RGs, in which one expects to have few, if any, strongly
connected nodes (or to have, at most, so few as to be statistically insig-
nificant); most nodes in an Erdos-Renyi RG typically have a number
of links near a small, average value. Moreover, as a Erdos-Renyi RG
evolves, the relative number of very connected nodes decreases. 

Note that while both Erdos-Renyi graphs and scale-free networks can
possess the small-worlds property, only in scale-free networks is it
probable that one or more small-worlds-like “short” paths will pass
through one of the network’s highly-connected hubs. This has signif-
icant ramifications both for how the system behaves and for how the
system tolerates outside intrusion and/or a targeted attack.

Randomly connected nets tend to degrade steadily and predictably,
slowly losing their connectivity as nodes (or links) are either ran-
domly or selectively removed; eventually they break apart into multi-
ple disconnected subgraphs. While scale-free networks may not
initially suffer any ill effects from random node removal---since it is sta-
tistically unlikely that any key (i.e., highly connected) nodes will be
removed by a random attack---if the attack on the network is intelli-
gently focused on its most important hubs (which are, typically, rela-
tively few in number), the results may be catastrophic. One needs to
remove only a few of a scale-free network’s most vital hubs to cripple
the entire system.

( )f x x γ−∼
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Among the many real-world networks that have been shown to be
scale-free in the literature are power grids, the connectivity of the
internet (in which the nodes are computers and the links are the var-
ious physical and wireless connections and routers) and WWW (in
which the nodes are web pages and links are the hyperlinks connect-
ing them), social networks of collaboration among researchers (in
which the nodes are scientists and links exist only between coau-
thors), research citation networks (in which links are citations among
papers), metabolic networks and protein regulatory networks, and
the dispersal networks of sexually transmitted diseases [80]. The crip-
pling effects suffered by the US airline system, financial markets and
telecommunications networks as a direct result of the 9/11 terror
attacks testify to the vulnerability of critical hubs.

Scale-free behavior does not appear in either Erdos-Renyi random
graphs or in the Watts-Strogatz small-world model. Both models actu-
ally yield P(k) distributions that are highly peaked around the average
degree [46]. Barabasi and Albert [88] have proposed an alternative
algorithm to evolve random scale free networks that relies on two crit-
ical ingredients: 

1. Growth, so that new nodes and links are continually added to
the system (much in the same way as, for example, the WWW
grows exponentially in time by continuous creation of new web
pages and hyperlinks among new and old pages); and

2. Preferential link attachment, so that new nodes are more likely to
be connected to existing nodes with high connectivity (i.e., new
links are assigned via a “rich-gets-richer” rule). As an example
of preferential attachment, consider again the WWW, in which
new webpages are more likely to include links to sites (and doc-
uments) that are already well known and have high connectiv-
ity. 

The basic algorithm proceeds by starting at time t=0 with a small ini-
tial graph G=G(N0,M0). At each time step t, one adds a new node nt to
which are assigned m new links (to already existing nodes).
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The probability that nt is added to a node  (where Vt-1 is the
set of nodes in the graph at time t-1) is proportional to the degree of
the old-node candidates:

.19 (10)

As the Barabasi-Albert graph, Gt, evolves, the number of nodes at time
t is  and the number of links grows as M0 + mt. Barabasi and
Albert [88] show that Gt has an asymptotic degree distribution that
obeys a power law with  and is independent of t.20 

Crucitti, et al. [113] use a measure called efficiency21 to analyze the
error and attack tolerance of random networks, and find that scale-
free networks display both a high degree of (local and global) error
tolerance and an extreme vulnerability to attacks that target crucial
nodes.

Mossa, et al. [114], consider another generalized model of scale-free
networks that is particularly relevant for studying the growth of real-
world networks such as terrorist networks; their model assumes that
nodes can process information about only a subset of the existing

19. Barabasi’s and Albert’s preferential link attachment rule is manifestly linear:
a new node is, say, twice as likely to be connected to an existing node that
has twice as many connections as its neighbor. Krapivsky and Redner [49]
show that using link-creation probabilities that scale nonlinearly with the
degree of old-node candidates results in networks whose degree distribu-
tions deviate from the generic power-law behavior observed in scale-free
networks. Moreover, links are often added to real networks between exist-
ing nodes, or nodes and links can disappear. Dorogovstev and Mendes [64]
show that if one adds to the dynamics elements of both creation and deletion
(so that nodes and links can both appear and disappear as a network
evolves, as they do in the SOTCAC model), then the presence of such
events can modify the power-law exponent, γ, so that it can assume essen-
tially any value between one and infinity. 

20. Barabasi, Albert and Jeong [112] use a mean-field theory approach to argue
that γ ~ 3. Having demonstrated that growth and preferential attachment
are sufficient to generate scale-free networks, Barabasi and Albert also show
that uniform attachment does not lead to a power-law degree distribution,
but rather to an exponential decay: Prob(k)~exp(-βk) [88]. 

21. Efficiency is introduced in a later section (see discussion in Complex net-
works: metrics that begins on page 94), and is used by SOTCAC.
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nodes in the network. The authors find that the distribution of the
number of incoming links to a node decays as a power law with an
exponential truncation controlled by two factors: (1) system size, and
(2) the subset of the network that is accessible to the node.

The Watts-Strogatz small-worlds model and the Barabasi-Albert scale-
free network model are both important because they emphasize that
nonuniform structure in the connection topology of complex net-
works. Unlike Erdos-Renyi RGs, in which nodes and links are essen-
tially homogenous, the small-worlds and scale-free models begin by
assuming, and respecting, the fact that some nodes and links in real
networks are fundamentally more or less important than---and exert
unequal influence over--- other nodes and links.

Clustered scale-free networks

While the Barabasi-Albert scale-free network model reliably generates
graphs with small average characteristic path lengths and degree dis-
tributions obeying a power law, it lacks the high clustering found in
many real social networks [115]; in other words, the Barabasi-Albert
does not yield small-world networks. However, two alternative algo-
rithms have recently been introduced that effectively produce hybrid
scale-free/small-world networks; that is, scale-free random networks
that exhibit both small average path lengths and strong clustering: 

• Triad-creation, and 

• State-activation/deactivation.

Triad-creation

Holme and Kim [116] modifies the basic Barabasi-Albert algorithm
by adding a “triad creation” rule:

If a link between n1 and n2 was added during the previous
step of preferential attachment, then add a link from n1 to a
randomly chosen neighbor j of n2. This forms a triad; i.e., a
local clique of three vertices linked to each other. If there are no
available nodes to link with (within the set Γ (n2)) then per-
form preferential attachment as before.

For each new node, the triad creation rule is applied with a probabil-
ity Pτ, and a preferential attachment rule is applied with probability
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with the probability 1 - Pτ. The average number of triad creation trials
per added node is Nτ = (m - 1)*Pτ is used as a control parameter in
the clustered scale-free network model. The virtue of the model is that
while it introduces a desired (and tunable, via the control parameter
Nτ) level of clustering, it preserves the scale-free degree distribution,
and other properties, of the original Barabasi-Albert model. (Note
that the clustered scale-free model reduces to the original Barabasi-
Albert model in the limiting case of Nτ = 0).

State-activation/deactivation

Klemm and Eguiluz [117] have recently introduced another variation
of the Barabasi-Albert algorithm that produces scale-free degree dis-
tributions and maintains the small-world properties of small average
distances and strong clustering.

The algorithm depends on an assignment of a binary state variable
(that represents, say, an active or inactive state) to each of the nodes of
a developing network. A random graph is “seeded” with a completely
connected graph of M active nodes. The three-step Klemm-Eguiluz
algorithm is then iterated for t steps:

1. Growth: A new node with M links is attached to the network.

2. Preferential Attachment: Each of the M links of the new node con-
nects either to one of the active nodes (with probability 1 - µ)
or to a random inactive node (with probability µ). If the latter,
the random node is selected according to Barabasi-Albert’s
preferential link attachment (i.e., the probability that a node
obtains a link is proportional to the node’s degree; see equa-
tion 10).

3. Node activation and deactivation: One of the active nodes is deac-
tivated, with probability . The new node is made
active.

The Klemm-Eguiluz algorithm generates scale-free random networks
with degree distribution  for  and average connec-
tivity  [117]. Moreover, by varying µ (between the
values zero and one), the algorithm permits one to study the transi-
tion between cases with large path length and clustering [118] and

1 1/deac i j jP k k− −= Σ
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cases with small path length and clustering (note that for µ=1, the
Klemm-Eguiluz algorithm reduces to the Barabasi-Albert model).
Klemm and Eguiluz [117] show that only a few long-range connec-
tions (which arise as soon as µ becomes nonzero) are needed to
induce a small-world transition. In fact, when their algorithm is used
with any  (say, µ = 0.1), the resulting graphs exhibit all three
basic properties of real-world complex networks: scale-free degree distri-
butions, small characteristic path lengths, and a high degree of clustering.

Search in complex networks

As mentioned in the introduction to this section, social networks pos-
sess not one but two surprising fundamental properties. The first
property is the ubiquity of short paths between any two nodes (i.e.,
the “small-worlds property”), which is discussed earlier and which is
reproduced using the Watts-Strogatz algorithm.22 The second prop-
erty is the fact that individuals belonging to these networks are able
to determine what these short paths are. What is surprising is that short
paths not only exist, but that individuals can find them using only local
information. Since one can easily imagine networks in which short
paths exist (and can be recognized as such, globally), but in which
there is insufficient local information to help guide searches for
them, the understanding of why real social networks are easily naviga-
ble cannot be derived simply from knowing that they possess the
small-worlds property.23 

In Milgram’s experiment, individuals found short paths to other dis-
tant people---at least, occasionally---by pursuing a greedy strategy
whereby they passed the message to whichever one of their immedi-
ate acquaintances they felt was nearest to the intended target recipi-
ent. Contrast this to all Erdos-Renyi-type random graphs: although
they may also (by chance) contain short paths, since all search algo-
rithms are effectively equivalent to performing random walks on the
network, it is impossible to construct a local algorithm. 

22. See section Small-world random graphs; page 49.

23. The distinction between possessing short-paths and being able to find them
was first made by Kleinberg [78] and (in the context of searching the World
Wide Web) by Albert, Jeong and Barabasi [112].

0 1µ< =



64

Navigability Problem

The social network navigability problem consists of ascertaining the
properties a network must possess to ensure that arbitrary pairs of
agents in the network are able to find short paths of acquaintances
that link them using only local information. A related question is,
given a network, and a resource R located somewhere on that net,
what is the “optimal” local search strategy to use to find R, starting
from an arbitrary node?24 These already difficult problems become
even more difficult in the event that the underlying topology of the
network being searched itself changes as a function of the search. For
example, the structure of the World Wide Web constantly changes as
its pages and links adapt to searches. A popular method used by Web
search engines (such as Google, Yahoo, and others) is to first create a
distilled local map of the Web, which is indexed---or “crawled”---by a
search engine spider. Although this strategy is certainly effective---par-
ticularly so for networks that exact a heavy communication cost for
real-time searches (the WWW is a prime example)---it is only loosely
local, since it uses a local snapshot of global information.

Local Search

Kleinberg [119] was the first to study the navigability problem in the
context of small-world graphs. Introducing an infinite family of net-
work models that generalizes the Watts-Strogatz model, Kleinberg
shows that---for one of these models---there exists a local, decentralized
algorithm for finding short paths with high probability. 

24. We introduce and briefly discuss the navigability problem in this section for
two reasons: (1) the general problem of how to best “search” a network cur-
rently constitutes an important, and open, general research area in com-
plex network theory; and (2) the success of SOTCAC’s notional terrorist-
agents at finding mission-required resources scattered throughout the ter-
rorist network (the state of which they have only a local understanding of),
depends on their ability to “solve” the navigability problem on a dynamic
topology; and therefore draws on the observations and algorithms that have
been introduced in the recent literature. On an even more basic level, the
ultimate goal of complex network theory is to understand the relationship
between a given network’s structure and the function (or functions) that it per-
forms. Viewing “navigability” as a basic network function, the fundamental
question becomes, “What properties must a net possess in order for it to be locally
navigable?”
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Kleinberg’s model combines a two-dimensional regular lattice with a
number of long-range links. The distance between nodes i and j (=∆ij)
is taken to be the number of steps that separate them on the underly-
ing lattice (i.e., independent of the set long-range links that are to be
added). The set of long-range links is constructed randomly, with the
probab i l i t y  tha t  node  s  i s  l inked  w i th  another  node  t ,

, where r is a tunable parameter. Kleinberg inter-
prets his model by associating the geometry of the underlying lattice
with the agents’ “social space” (which therefore defines where they
“live” and who they “know”); the parameter “r” roughly measures the
extent of one’s long-range network, with larger values yielding “long-
range” contacts that are more tightly clustered in the vicinity of a
given agent. number of outgoing links per node is fixed. While the
underlying lattice obviously oversimplifies the complexity of real
social spaces, the model nonetheless captures an essential ingredient
of the navigation problem: how does one minimize the routing time of a
message, given only local information about the network’s metric?

Now, consider two arbitrary nodes in this network, a and b. The prob-
lem is to send a message from a to b that requires the minimum
number of steps. Kleinberg assumes that each agent, after receiving
the message, knows only three local facts: (1) the set of his own local
contacts (on the underlying lattice); (2) the location (on the lattice)
of the intended target, b; and (3) the locations and long-range-con-
tacts of the all agents that have previously received (and passed on)
the message. In particular, it is assumed that no agent, at any time, has
any knowledge of the long-range contacts of agents that have not yet
received the message. With these assumptions and constraints, Klein-
berg’s search algorithm may be stated, simply, as follows: 

Each node sends a message to one of its neighbors (either local
or long-range) that is closer to the destination, in terms of lat-
tice distance, ∆.

Kleinberg’s major finding is that only for r = 2 does this decentralized
routing algorithm yield an expected delivery time of  on lat-
tices of order N; for all other values of r, the delivery time grows as Nβ,
for some β > 0.25 (Similar results are found for cases in which the
underlying lattice assumes a different topology; for example, when
the underlying graph is a tree [119]).
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Adamic, et al. [120], have recently introduced an alternative locally
guided search algorithm, that exploits the statistical features of scale-
free networks (see Scale-free random graphs, page 51). Aimed at opti-
mizing search times on the World Wide Web and other, related, peer-
to-peer distributed filesharing systems that do not have a central
server (such as Gnutella26 and Freenet27), the algorithm generalizes the
more conventional “breadth-first” search (in which each node, after
receiving a query of the form, “Do you have the information I need?”,
either answers “yes” and stops the search, or forwards the query to
each of its neighbors) by having each node that does not have the
required information send back the reply, “No, but I have k neighbors.”
The original sender node sifts through its responses, chooses the
neighbor with the highest k value, and passes the responsibility of
finding the target to that neighbor (who then proceeds to take the
same steps). 

The algorithm is obviously tuned to work well on scale-free-like net-
works, because a significant fraction of the nodes in such networks
are made up of neighbors of high-degree nodes. Therefore, on aver-
age, only a few iteration steps of the query must be processed until a
node with a neighbor that contains the required information is
found. Adamic, et al. have tested their algorithm numerically on a
variety of real and simulated random networks, and have found that
the behavior roughly matches the expected scaling behavior [121]. 

Unfortunately, neither of the two algorithms discussed above
addresses the problem of how real networks evolve navigable struc-

25. This surprising result may be understood, heuristically, by noting that the
value of r represents a trade-off between relying on long-range contacts and
their utility in reducing the expected wait time. As r increases, Kleinberg’s
decentralized algorithm makes increasingly frequent use of long-range
contacts, but, at the same time, “long-range” contacts (which become more
and more tightly clustered on the underlying lattice) are also less likely to
improve on a routing that only makes use of the underlying lattice’s origi-
nal links. The value at which this trade-off is “optimal” is the inverse-square
distribution; that is, at r = 2. More generally, on d-dimensional underlying
lattices, Kleinberg’s algorithm performs optimally at r = d [119].

26. http://www.gnutella.com/.

27. http://freenet.sourceforge.net/.



67

tures. Kleinberg’s result only characterizes the structure that a static
network must have in order to be locally navigable (and assumes that
the target node’s location is known a priori). Adamic, et al.’s algo-
rithm, while useful for decentralized file-sharing systems, merely
exploits the scale-free property that peer-to-peer networks must
already possess, prior to applying the search algorithm. In reality, of
course, a social network’s structure is never fixed, but is constantly
changing as its members rewire their local neighborhood in an effort
to “optimize” their (ego-centered) searches. Therefore, the deeper
navigability problem requires an answer to two interrelated ques-
tions:

• “What local search strategies are optimal for a given network?,” and

• “How are navigable topologies self-organized?”

Evolving searchable nets

A decentralized search algorithm that is both directly applicable to a
certain class of searchable networks and offers a model to explain
how this particular class of searchable social networks may arise natu-
rally (constrained only by a set plausible assumptions of human social
structures), has recently been introduced by Watts, Dodds, and
Newman [122]. 

Earlier work by Killworth and Bernard [70,123] suggests that people
tend to navigate networks by searching for any social characteristics
that they perceive the target and their acquaintances to have in
common (such as social status, occupation, or location). While in
random networks, the overlap between a node’s neighbors and a
node’s neighbor’s neighbors is typically very small, social networks
are very different: many of one’s friends’ friends are also one’s
friends. While the Watts-Strogatz small-worlds model shows that it
takes only a few random links between people outside their local
cliques to generate a sufficient number of small-paths to spawn a
small-world network, the model did not explain how people are able
to select just the right subset of acquaintances to form all the neces-
sary links.

Building upon these ideas, Watts, et al. introduce a class of networks,
the nodes (or agents) of which are all endowed with a set of social
characteristics, and are assigned to groups that are hierarchically
chained to larger groups. For example, an individual may be a
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member of certain work group, that belongs to a certain organiza-
tion, which in turn is part of a larger business network, and so on. The
result is a tree-like hierarchy (which serves more as a conceptual scaf-
folding rather than a model of the actual network; see discussion
below) that lends itself naturally to define a “social distance.”

Watts, et al. base their hierarchical network model on six propositions
about real social networks [122]:28

1. Individuals are defined not only by their network ties, but by unique
identities. Groups are defined as collections of individuals all
sharing some well-defined set of social characteristics. (Note
that this proposition entails a bit of dynamic self-reference,
insofar as the “characteristics” are derived from how individuals
view themselves and how they perceive others in the context of
their mutual association (vis-a-vis the group to which they all
belong.)

2. Individuals are grouped in (and therefore partition the world into) a
hierarchy of categories (see figure 16). The top layer of the hierar-
chy contains the entire network, and each successively deeper,
and multitudinous, layer represents an increasingly finer dis-
tinction of features and groups. The bottom layer represents
the set of individuals, each of whom effectively defines their
own group.

3. Social interaction (i.e., acquaintanceship) is a function of group mem-
bership: individuals are increasingly likely to know each other the closer
they are within the hierarchy. Watts, et al., assume that the proba-
bility that two individuals, A and B, are acquainted, P(A,B),
decreases exponentially with decreasing group similarity:

, where α is a tunable parameter,29 k
is a normalization constant, and xA,B is the “height” of the
lowest level of the hierarchy at which the two people are linked.

28. Many of these properties are reminiscent of holons, introduced by Koestler
in the 1970s [124]: “No man is an island- he is a holon. A Janus-faced entity who,
looking inward, sees himself as a self-contained unique whole, looking outward as a
dependent part. His self-assertive tendency is the dynamic manifestation of his unique
wholeness, his autonomy and independence as a holon. Its equally universal antag-
onist, the integrative tendency, expresses his dependence on the larger whole to which
he belongs: his part-ness.” 

( ) { },, exp A BP A B k xα= ⋅ − ⋅
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Figure 16. Schematic illustration of a single chain in Watts, et al.’s hier-
archical social network model; in this example, b (=2) is the 
branching ratio, g (=6) is the group size, the height of the hier-
archy is equal to five, and xij is the “similarity” between 
groups i and j (= height of the lowest common ancestor level)

4. Each feature of social identity defines a separate hierarchy. This prop-
osition supposes that social worlds are formed using multiple
independent attributes, in the sense that proximity in one hier-
archy (that is, say, defined by occupation) does not imply prox-
imity in another (for example, defined by location). Watts, et
al., thus represent each node i by an H-dimensional identity vec-
tor, , where the hth component is i’s position in the hth hierar-
chy (or dimension).

5. The social distance between two nodes A and B, RSocial(A,B), is the min-
imum “ultrametric” distance between the two nodes in all hierarchies:

. (11)

29. The parameter α is best described, heuristically, as a tunable homophily
index; i.e., it measures the degree to which nodes associate with other
nodes that are “like” them. When exp(-α) << 1, all links are very short and
individuals only associate with individuals that are most like them (that is,
belong to the same bottom-dwelling group in the hierarchy); when exp(-α)
= b, individuals are equally likely to associate with any other individual and
the result is a random graph in which any two nodes are as similar or dis-
similar as any other two randomly selected nodes. Homophily plays an
important role as tunable parameter in SOTCAC, where it is used by
notional terrorist-agents to tune the way in which they “rewire” their local
communication nets.

iv
r

{ },
h
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R Minimum x=
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Social distance thus effectively measures the degree to which
two nodes (or agents) perceive themselves as being similar,
where “similarity” is defined according to the social features
that characterize the multidimensional hierarchies. RSocial cap-
tures the intuitive property that for two people to be socially
“close” it is sufficient that they are similar in a single social
dimension (such as when two individuals working for two differ-
ent firms collaborate on the same project). However, RSocial is
not a true metric function since it violates the triangle inequal-
ity: RSocial(A,C) can be large even if RSocial(A,B) and RSocial(B,C)
are both small.

6. It is assumed that each individual node knows only the identity vectors
of (1) itself, (2) its friends, and (3) the target node. Moreover, it is
assumed that individuals can estimate the social distance
between their friends and the target. 

Thus, nodes possess two complementary kinds of information: (i)
social distance, which encodes (a processed form of) global informa-
tion, but is not a true distance; and (ii) network distance, which is a true
distance, but of which they only have a local view. It is important to
note that neither kind of information---by itself---is sufficient for navi-
gating the social hierarchy. However, Watts, et al., show that the same
greedy algorithm as used by the participants of Milgram’s experiment
[68], provides an efficient means of directing messages throughout
the network:

Each node i along the message chain forwards the message to its
neighbor j who i perceives to be closer to---in terms of social distance,
RSocial ---the target node t.

Let Ptarget to be the probability that a random message---originating
from a random node and targeting another random node---reaches
the target. Watts, et al., then define a searchable network as one in which

, for any desired r. 

They report two significant findings [122,125]: 

• Searchable networks make up a broad region of the (α,H)
parameter space; and, moreover, this regions corresponds to
the choices in the model parameters that are the most sociolog-
ically reasonable; and

TargetP r≥
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Figure 17. Comparison between the number of message chains, n(L) of 
length L, as observed in Milgrim’s original “small-worlds” 
experiment and numerical results derived from Watts, et al.’s 
hierarchical social network model using model parameters 
that are consistent with Milgrim’s experiment; after [122]

• The distribution of message path lengths, calculated for param-
eter space values that are consistent with Milgrim’s experiment
(as well as subsequent variants), closely matches the empirically
observed data (see figure 17).

As Watts, et al., point out in their paper, while their model is sociolog-
ically based, its utility is considerably more general, as it applies to any
decentralized network whose nodes are organized according to the
same two primitive discriminatory components used in defining a
social hierarchy; namely, an identity (that derives from a multifaceted
feature vector) and similarity (which is defined by a suitably general-
ized multidimensional social distance).

For the purposes of this paper, Watts, et al.’s model provides several
important ingredients for SOTCAC’s conceptual design. As discussed
in a later section,30 one of the major tasks of SOTCAC’s notional ter-
rorist-agents (or T-agents) is to acquire resources that are distributed
across the terrorist-link network. Since T-agents are innately local enti-
ties, all issues having to do with local search---such as determining the
best search strategies, adaptively maintaining local searchability by

30. See SOTCAC: a conceptual model, page 121.



72

rewiring a node’s local network structure, and assessing “closeness”
and “similarity”---are direct analogues of the corresponding sets of
issues as explored by Watts, et al., using their hierarchical social net-
work model. Their use of the ultrametric distance as a measure of
“similarity” in a mutlidimensional social hierarchy is particularly rele-
vant, since all of SOTCAC’s T-agents are also defined by a multidimen-
tional “personality” vector, the components of which describe such
features as network value (or rank, as a terrorist), function (as a
member of a given terrorist cell), and various social and/or commu-
nicative propensities and motivations. Watts, et al.’s, social distance---
after a suitable “translation” into the context of an analogous, but
considerably more complicated model---thus provides a natural start-
ing point for incorporating a well-defined social metric into SOT-
CAC’s dynamic terrorist network.

Network search and information theory

Sneppen, et al. [126,127] examine the navigability problem---that is,
of how to best navigate a network using only local knowledge---by
using information theory to describe the constraints a network’s struc-
ture imposes on global communications. A byproduct of this work is
that it implicitly provides an information-theoretic metric for identi-
fying certain “key” nodes of a network (such as nodes that provide the
best access to the system, and those that are the best “hidden”).
SOTCAC needs metrics of this kind (many more will be introduced
in the next section) because, in order to “discover” (and to determine
the efficacy of) tactics and strategies to use against the notional ter-
rorist network, SOTCAC’s counterterrorist network needs to base its
actions on well-defined measures of “value” that individual nodes
(and groups of nodes) represent to the terrorist network. Search infor-
mation, defined here, is one such objective measure.

Following Sneppen, et al. [126], suppose an agent is at node i and
wants to send a message to node b (see figure 18). Assuming that the
message follows the shortest path, path(i,b)---or, in the event that there
are multiple shortest paths, along a randomly selected path in some
set, {path(i,b)}---the probability that a given shortest path is followed is
given by:
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, (12)

where deg(x) is the degree of the xth node and the product is taken
over all j nodes on the path excluding the start (=i) and end points
(=b). The expression follows immediately from observing that, absent
any information about where the target is, an agent first randomly
selects one of the deg(i) links available to it at node i, and then one of
deg(j)-1 links at each subsequent node (taking into account the infor-
mation gained by following the path up until that point; i.e., having
no need to travel back along a previously traversed link).

Figure 18. Network schematic for calculating search information, target 
entropy and road entropy (after [126]); see text for details

The information that the agent needs to identify one of the degener-
ate paths between i and b is what Sneppen, et al. [127] call the search
information, :

, (13)

where log2 is the logarithm base two, and the sum is over all degener-
ate paths between nodes i and b. A large value of S means that the
agent needs to ask a large number of yes/no questions to find b; a small
S means that there are a large number of degenerate paths, and the
agent will likely be able to easily find b. 
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Search information’s practical utility is in providing an objective mea-
sure by which key nodes of a network may be identified. For example,
suppose one is interested in finding the node that provides the best
access to the entire network? From an information theoretic point of
view, the node that has best access, ibest-access, is the one from which the
total search information is minimal:

. (14)

Similarly, if the problem is to identify the part of a network that is the
most difficult to find---i.e., the best place to hide, bhide---the answer is to
determine the node that maximizes the search information:

. (15)

A third measure related to search information is predictability [126]:
the ability to predict local message traffic both to and across nodes in
a network. More precisely, from the point of view of an agent at node
i, the problem is to predict the neighboring node from which the
next message will arrive. Without any advance information, all deg(i)
incoming links are a priori equally likely and i requires on the order
of log2[deg(i)] yes/no questions to guess the active link. On the other
hand, one can expect fewer yes/no questions to be necessary if the
agent has access to some information regarding local message traffic. 

Sneppen, et al. [126,127] define two measure to quantify predictabil-
ity: target entropy (=Ti) and road entropy (=Ri). Target entropy is defined
as the entropy of the messages that are targeted toward a specific node
i (see figure 18-a); road entropy is defined as the entropy of all mes-
sage across a given node (see figure 18-b):

, (16)
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where both sums are over all neighbors of the jth node, cij is the frac-
tion of message that are targeted toward i that pass through j, and bij
is the fraction of messages that pass through i that also pass through
j.31 Heuristically, as the number of alternative pathways increases in a
network, the search information is minimized, and both T and R will
be large. Values of target entropy tends to be small for networks in
which message traffic is concentrated into hierarchies; since, in such
cases, most nodes are able to easily predict where the next message
will come from. Similarly, values of road entropy tend to be small
when the network consists of loosely connected tight clusters (or
hubs); since, in this case, relatively many links are important.
Sneppen, et al. [126] thus relate road entropy to an edge attack in a
network, and target entropy to node attack [46].

Dynamic graphs
A “dynamic graph” is a network whose topology changes in time
according to a set of nontrivial local and/or global “rewiring” rules.
While all of the random graph models discussed thus far in this sec-
tion are generated by “evolving” the structure (and sometimes the
nodal composition) of some initial “seed” graph---and therefore also
technically model dynamic graphs---the dynamical “rules” in all of
these models are, physically speaking, trivial, and amount to little
more than defining probabilistic additions or deletions of nodes
and/or links. 

The structure changing rules in RGs are generally not functions
either of local topology or of any information that may be encoded
within a graph’s transient local topology. The sole exception is the
Barabasi-Albert scale-free model’s “preferential link attachment”
rule, but even this rule merely constrains what remains a simple prob-
abilistic evolution; the rule is introduced only to refine what remains a
probabilistic growth, and whose aim is to achieve a power-law degree
distribution in a random network. None of the random graph models
discussed thus far depend in any way on a more general set of tunable

31. The quantity bij is proportional to a well-studied network metric called
betweenness, that--roughly speaking---masures the extent to which a node
mediates, or plays the role of “information broker” between, any two other
nodes in a social network. It is introduced in the next section.
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decision rules that, effectively, allow nodes to rewire themselves locally,
according to their unique needs and motivations.

SOTCAC, on the other hand, is a fully dynamic graph: its global struc-
ture evolves according to rewiring decisions made by each of its nodes
(which, in turn, base their decisions on local structure and informa-
tion states). As in most multiagent-based models, probabilities are
used by SOTCAC mostly as tunable randomizations of otherwise
deterministic decision rules.

Structurally dynamic cellular automata

A conceptual precursor of SOTCAC is a model called Structurally
Dynamic Cellular Automata (SDCA) [128]. In SDCA, the topological
structure of a network is explicitly, and dynamically, coupled to the
primitive information contained at each of the network’s nodes. The
coupling treats geometry and information on an approximately equal
footing: the structure of the graph is altered locally as a function of
individual neighborhood information states and geometries, while
the topology is used propagate local information states according to
conventional cellular automata (CA) rules.32 

In addition to providing a natural framework for analyzing the gener-
ation, transmission and interaction of topological disturbances in
graphs, the SDCA model was the first model that allowed researchers
to study properties of self organizing geometry (which is distinct and
more general than, say, the analogues of geometry one finds in the
self organized space-time patterns of cellular automata defined on
fixed lattices). Applications range from simulations of crystal growth,
to studying pattern formation of random cellular structures, to

32. CA are a general class of spatially and temporally discrete, deterministic
mathematical systems characterized by local interaction and an inherently
parallel form of evolution. First introduced by the mathematician John von
Neumann in the 1950s as simple models of biological self-reproduction, CA
are prototypical models for complex systems and processes consisting of a
large number of simple, locally interacting homogenous components. CA
are fascinating because very simple rules often yield highly complex emer-
gent behaviors. In their most common form, CA “live” on one-, two-, or
higher-dimensional Euclidean lattices; the lattices, themselves, however, do
not evolve. See [94] for additional details.
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endowing neural networks with a dynamic synaptic plasticity, to
describing fluids in which the particle flow is coupled to a dynamical
geometry (i.e. chemical self-assembly). Majercik [129] has studied
SDCA as generalized models of computation, and shows that SDCA
are actually more efficient “computers” than conventional CA; more-
over, he defines a class of CA-universal SDCA that is capable of simu-
lating any conventional CA of the same dimension. More recently,
O’Sullivan [130] and Saidani [131,132] have introduced graph-based
CA models: the former is applied to the study of urban dynamics,
while the latter is introduced in the context of self-reconfigurable
robots.

CA are usually defined on two-dimensional lattices, the sites of which
are populated with discrete-valued dynamic elements, σi, evolving
under certain local transition functions. More generally, an N-node
lattice may be characterized as an order-N undirected graph G, with
adjacency matrix: 

. (17)

Using the graph metric function Dist(i,j) =MinP[Number of links between
i and j on path P], a general CA transition rule f (i.e., the local algo-
rithm by which the value of the ith node at time t-1, σi

t-1, is “updated”
to the value σi

t, at time t) that depends on a given node’s r neighbors
may be written as follows:

, (18)

where  is the radius-r graph-sphere at time t-1, cen-
tered on site i.

In the simplest case of elementary one-dimensional CA, for example,
for which r=1, the graph-sphere about the ith node consists of the
node’s immediate left (=σi-1) and right (=σi+1) neighbors, and a typical
function (for binary valued σ's) is, say, , where  is addi-
tion modulo-2.33 Of course, in a conventional CA, the underlying
graph does not change in time, and so  for all i, r and t.

SDCA models are defined by endowing G’s adjacency matrix with a
generalized form of (a conventional CA’s) transition rule:
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. (19)

In words, the value of aij, and therefore the decision to either link, or
sever an existing connection between, nodes i and j at time t is a function
of both (1) the local topology of the graph (as defined by the value of
the graph’s adjacency matrix at time t-1, , and where “local”
includes any nodes k within distance r from either i or j on the graph
as it appeared at time t-1), and (2) the values of neighboring nodes
(in a manner that is entirely analogous to what is usually done in con-
ventional CA).

Figure 19. Schematic of partitioning a local neighborhood into three dis-
joint sets: the nodes i and j, a set of nodes denoted by Aij, and 
another set of nodes denoted by Bij; see text for details 

Because the core of SOTCAC’s adaptive topology dynamics shares
many basic features of the SDCA model, it is instructive to give an
explicit example of an SDCA transition function. Toward this end,
consider figure 19, which shows, schematically, a partition of a local
neighborhood of an arbitrary graph G into three disjoint sets (that
are to be used to define the value-component of the combined value/
topology transition function): (1) the nodes i and j, (2) the set of
nodes that belong to both i and j (=Aij), and (3) the set of nodes in G
that belong to either i or j, but not both (=Bij). (Note that both Aij and
Bij can also be generalized to sets of nodes that are a distance
Dist(i,j)=d apart from i and j.)

33. It is easy to show that, in the more general case where σ takes on one of k
possible values (σ = 0,1,2,...,k-1), the total number of possible elementary
one-dimensional CA radius-r rules for which is equal to  [94].
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The SDCA transition function used in [128] consists of a conven-
tional CA rule (=f [...] in equation 18) that is applied only to the
values of nodes, and a link-processing rule (=g[...] in equation 19)
that is further broken down into two basic actions: (1) coupling, which
links previously unconnected nodes (selected from set Bij); and (2)
decoupling, which severs existing links (selected from set Aij). Because
the topology can be altered only by either deleting links (between
adjacent nodes) or adding links between next-nearest nodes, the
dynamics is always strictly local.

Figure 20. Sample step of applying an SDCA transition rule to a 5-by-5 
lattice of nodes; see text for details 

Figure 20 shows a sample step of applying the following SDCA transi-
tion rule to a 5-by-5 Euclidean lattice (=G):

1. CA (i.e., value) rule---at each time t, for each node i, add up all
the values of the nearest-neighbor nodes, , and
set  if and only if  (nodes where σ=0 are empty,
nodes where σ=1 contain a black circle); 

2. Link-decoupler rule---for each link aij=1, first calculate the sums
 and  (i.e., a sum of the all of

i’s and j’s immediate neighbors), then unlink i and j if and only
if  and ; 

3. Link-coupler rule---for each i and j that are separated by distance
Dist(i,j)=2 (i.e., i and j are next-nearest neighbors), link them if
and only if  and , where  and  are the sums
calculated in step 2.
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For example, carrying out the calculations explicitly for node 22 and
pairs (18,23) and (17,23), we find:

(20)

Figure 21. Four snapshots of an evolution of (an initially regular 35-by-
35) Euclidean lattice, the valuers of whose nodes are ran-
domly seeded (with prob(σ=0) = prob(σ=1) = 1/2.) 

Figure 20 thus shows a black circle centered on node 22 at time = 0,
and a blank node at time = 1. Similarly, the figure shows that the link
between pair (18,23) that exists at time = 0 is absent at time = 1, and a
new link is established between initially unconnected nodes 17 and
23. The updated graph, at time = 1, can be drawn when we apply the
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above rules to each of the 25 nodes, each of the 20 links (at time = 0),
and each of the 56 next-nearest neighbors (at time = 0). One can con-
tinue in this fashion, applying the same rule to each new graph at
time t, to evolve the full set of emergent structures.

A typical evolution starting from an initial state in which all sites are
randomly assigned σ = 1 with probability p = 1/2 is shown in figure 21.
Notice the rapid emergence of complex local connectivity patterns,
the appearance of which points to a geometrical self-organization. In
general, structural behaviors emerging from random value states
under typical rules can be grouped into four broad categories: (1)
decay (in which initial states decay into structurally much simpler final
states in which most links have been destroyed so that the resulting
graph consists mostly of a large number of small local subgraphs);
(2)periodicity (in which periodic, and globally connected, geometries
emerge); (3) complexity (exemplified by systems that continue to
change over the course of a long evolution, and punctuated by com-
plicated local and global topologies); and (4) dynamic equilibrium
(which is a remarkable set of rules whose action appears to lead to a
prolonged series of topological changes, but during which the global
effective dimensionality (defined as the average ratio of the number
of next-nearest to nearest neighbors in the graph at time t [128]) stays
approximately constant.
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Complex networks: metrics

“Measure what is measurable, and make measurable what is not so.”
—Galileo Galilei

Complex networks---whether natural, technological, or social---all
reflect the rules and conditions under which they evolve; though
what those rules and conditions are may not be obvious by direct
visual inspection alone.

A useful way to think of network evolutions---mentioned earlier in our
discussion of RGs---is to think of networks as living organisms that
grow and develop by acquiring nodes and links. Their growth may be
constrained by physical space (so that the number of nodes cannot
exceed a certain number), by available energy (which may limit the
number of neighbors a given node may establish a link with), or by
certain rules that preferentially induce (or inhibit) the creation of
links between nodes possessing certain features.

Much in the same way as complex adaptive systems theory is con-
cerned mostly with understanding the relationship between the
emergent global properties of a given system and the local rules gov-
erning its constituent parts, an important goal of complex network
theory is to understand the relationship between a network’s emer-
gent form (and function) and the set of rules and constraints by which
it evolves. The first step toward achieving this goal is to develop a set
of local and global metrics by which otherwise large, often apparently
featureless (at least via only a “visual” inspection), classes of networks
may be distinguished.

Overview

This section provides a brief survey of the structural properties of
graphs, with an emphasis on those metrics that have proven to be par-
ticularly useful for solving social network problems.
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Since social network analysis is typically interested in identifying the
“most important” individual in a social network, or the “most impor-
tant” groups and communication links, many of the metrics discussed
below may be used to establish implicit hierarchies (at least in terms
of context-specific measures of “importance”) by ranking various com-
ponents of a graph. We will later exploit this implicit ranking in defin-
ing SOTCAC’s local decision rules.

Tables 2, 3 and 4 (adapted from [133]) list some common metrics for
links, local topology, and global topology, respectively.

Characteristic Path Length

The characteristic path length of a graph G, L(G), measures the typical
separation between the nodes in G [41]:

(21)

where Dist(i,j) is the length of the shortest path between i and j.
Because  if i and j lie on disconnected subgraphs of G, L(G)

Table 2. Some typical social network metrics that measure properties of 
links between nodes

Metric Description
Capacity Measures the load capacity of a link to carry information

(or general “resource”) of a given type
Duration Measures the duration of a link; is a link permanent, tran-

sient, decay of strength in time, general stability over time?
Frequency Measures how often a link is active

Multiplexity Extent to which a link between two nodes represents multi-
ple kinds of relationships

Strength Measures the intensity of the relationship between nodes;
communicative, emotional, degree of sharing, reciprocity

Symmetry Measures the extent to which a link (and/or the information
that it is a conduit for) is bidirectional

Type Direct/indirect, directed/undirected, weighted/unweighted
Visibility/

Vulnerability
Measures the degree to which a link is vulnerable to eaves-
dropping, jamming, physical disruption or destruction
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is defined only for connected graphs. (This deficiency is remedied by
using another measure called global efficiency, which is defined later in
this section; see page 94.)

In the limiting cases of regular and Erdos-Renyi RGs, it can be shown
analytically that, for large N (= the number of nodes in G), L(G=Regu-
lar) ~ N/2k and L(G=Random) ~ ln(N)/ln(k-1), respectively, where k is
the average degree [88]. Newman, et al. [109], have shown that, for
the Watts-Strogatz model, LW-S(N,p) ~ (N/K) f(pKNd), where f(x) is a
universal scaling function of the form, f(x) = const if x much less than
1, and f(x) ~ ln(x)/x if . Albert and Barabasi [88] report that, for

Table 3. Some typical network metrics that measure properties of indi-
vidual nodes; adapted from [133]

Metric Description
Betweenness Measures the extent to which a node mediates, or plays the

role of “information broker” between, any two other nodes
Brokerage Measures a node’s “brokerage” strength; i.e., the degree to

which a node manages the information flow between two or
more groups that otherwise would not be linked

Centrality Measures the degree to which a node plays an important (or
“central”) role in a network

Closeness Measures the extent to which a given node is “close to” other
nodes in the network; typical defined by averaging over all
possible paths to other nodes

Degree Number of links to other nodes
Diversity Number of links to different node (where “different” means

either that they are not linked to one another and/or other-
wise represent agents that have different internal states)

Eccentricity Measures maximal distance between a given node and any
other node in the graph

Effective Net-
work Size

Measure introduced by [134] in his analysis of “structural
holes” in a network; based on supposition that links among a
node’s neighbors attenuate the effective size of that node’s
local network

In-degree Number of directional links that point toward a given node
Isolation Measures the degree to which a node is isolated, relative to

others in the group to which it belongs
Out-degree Number of directional links that point away from a given

node
Prestige Measures how strongly a given node is on the receiving end

of information flow; it is defined only for directions graphs

1x ?



86

scale-free RG models, the path length scales approximately logarith-
mically with N: L ~ a ln(n - b)+c (where a, b, and c are constants).

Clustering Coefficient

Many real complex networks exhibit a high degree of local clustering.
For example, social networks are typically transitive: if nodes i and j are
linked, and nodes j and k are linked, there is a strong likelihood that
i and k are also linked. A simple way to measure the degree of transi-
tivity of a graph G, is to calculate the ratio of transitive triplets (i.e. tri-
angles) over the number of connected 3-tuples of nodes.

Table 4. Some typical social network metrics used to describe entire 
graphs; adapted from [133]

Metric Description
Clustering 
Coefficient

Measures the average “cliquishness” of a node within the
graph (or subgraph); estimates the degree to which a graph is
modular (i.e., is organized in a hierarchical fashion)

Component The largest connected subset of nodes and links; all nodes
within the component graph are connected, either directly or
indirectly, and none of the nodes have any connections to
parts of the graph outside the component

Connectivity Measures the extent to which agents are linked to one
another by either direct or indirect routes; typically defined
using the maximum or average path distance

Density Ratio of the actual number of links in a network to the total
possible number

Inclusiveness Measures the total number of nodes in a network minus (and
sometimes the ratio to) the number of isolated (or minimally
connected) nodes

Path Length Measures the typical separation between nodes
Size Number of agents and links in a graph

Spanning Tree A subgraph of a network that is a tree that contains all nodes;
of particular interest (for weighted graphs) is the minimum
spanning tree (= the spanning tree that minimizes the weights
along all links in the network)

Symmetry Ratio of the number of symmetric to asymmetric links (or the
total number of links) in a network

Transitivity Measures the ratio of the number of transitive triples over the
total number of possible transitive triples (= number of paths
of length two); x,y,z are transitive if whenever x is linked to y
and y is linked to z, z is also linked to x
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Watts and Strogatz have introduced a more general measure they call
the clustering coefficient of G, Clus(G). In order to define it, we first
define the local clustering coefficient Clusi, which measures the aver-
age “cliquishness” of node i:

(22)

where Gi is the subgraph of G consisting of all neighbors of i, and ki =
deg(i) is the number of i’s neighbors. The maximum number of links
that can exist among nodes making up i’s immediate neighborhood
is achieved in the case when Gi is completely connected, and is equal
to ki(ki-1)/2. Clusi is the fraction of those possible links that actually
exist. A large value of Clusi suggests that i is located in a highly con-
nected region of G (more so in the case where G is sparse).

Figure 22. An example of how to calculate the local clustering coeffi-
cient Clusσ of the vertex σ. The solid black circles denote the 
nodes that belong to Gσ; thick lines indicate links among 
nodes in Gσ; since there are seven edges and the degree 
kσ=8, equation 17 yields Clusσ = 7/28

G’s global clustering coefficient is the average of the local clustering
over all nodes:

(23)

In an Erdos-Renyi random graph, the links are distributed randomly;
therefore Clus(G) = p. Watts and Strogatz [83] were the first to point
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out the discrepancy between this behavior and the typically much
larger values of the clustering coefficient that are observed in real net-
works (of the same size and order). Using the measures L(G) and
Clus(G), small-world graphs are somewhere “in between” regular and
random graphs: they are highly clustered (like regular lattices), but
have very small characteristic path lengths.

Degree centrality

The degree of a node  is an individual node’s simplest, and
most obvious property; it also represents the simplest measure of a
graph’s central---or most “important”---nodes, by identifying the most
active nodes, in the sense that they have the largest number of links
to other nodes in the graph. 

Recalling that  is the set of nodes adjacent to i, the degree of i,
deg(i), is defined to be the number of nodes adjacent to (i.e. the neigh-
bors of) i: . For undirected graphs, the sum of the degrees is
exactly twice the number of edges: . We will
denote the minimum degree of G by δ(G), and the maximum degree
b y  ∆(G ) .  In  genera l ,  o f  cour se ,  ,  w h e r e

 is G’s average degree. 

For directed graphs, we can define the analogous metrics in-degree
(=degin(i)) and out-degree (=degout(i)), which provide measures of the
number of directional links to a node from other nodes and the
number of directional links from a node to other nodes, respectively.

To ensure commensurability of measures for graphs of different
order, we normalize them with the maximal possible value, dmax=N-1:

, (24)

where aij is G’s adjacency matrix.

The degree of a given node provides some (albeit limited) informa-
tion. In social networks, for example, in which communication and
information flow plays a prominent role, the nodes having the high-
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est degree often serve (and are characterized) as the “centers” of the
network. As such, “degree” as a metric can be said to be a local central-
ity metric. 

Degree can also be interpreted as the probability that a node will suc-
cumb to the influence of (or adopt an innovation offered by) other
nodes. Without factoring in other features of a network, degree cen-
trality essentially measures the relative risk (or reward) of accepting
whatever is flowing throughout the network. Other kinds of “central-
ity” metrics are discussed below.

For example, calculating the degree centrality for each of the three
graphs shown in figure 23, we find that dStar = {1,1/6,...,1/6}, dCircle =
{2,...,2} and dLine = {1/6,1/3,...,1/3,1/6}.

Figure 23. Sample star, circle and line graphs used for comparing cen-
trality metrics; see text

A property of the graph, as a whole, is the probability density function
of the degree, or the degree distribution. We have already alluded to its
utility in our discussion of the power-law decay of the degree-distribu-
tion in Barabasi-Albert’s scale-free random graphs. Recall that, for
scale-free networks, the degree distribution, p(k) scales as p(k)=αk-γ,
where k is the degree, and α  and γ are constants. Of course, a net-
work’s degree distribution is not confined to being scale-free, as it can
obey a variety of forms. For example, degree distributions can be
scale-free but with a cutoff (do to the finite size and order or real-world
networks), they can obey Gaussian statistics [88], or they can decay
exponentially [108].
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Group degree

A metric that represents an intermediate step between individual
degree and degree distribution is group degree, deggroup, introduced by
Freeman [135]. The idea is to measure the variability of individual
degrees across all the nodes of a graph:

(25)

The group degree obviously measures the dispersion of degrees in a
graph, by comparing each degree with the maximum possible value.
Note that the graph for which (dgroup)max = 1 is the one in which one
node has deg = N-1 (i.e., it is linked with all other nodes), and all other
nodes have deg = 1; i.e., a star graph. The group degree attains is min-
imal possible value, (dgroup)min = 0, when deg(i) = ∆(G) for all i; i.e. a
regular graph. Graphs for which  harbor intermediate
degree of centralization of degree.

Link Degree

Holme, et al. [136,137], in the context of surveying attack strategies
on a network’s nodes and links (see section Vulnerability; page 109),
generalize the definition of degree, as it naturally and intuitively
applies to nodes, to the links between two nodes. They suggest four
ways to assign a measure of “importance” to a link as a function of the
degrees of the nodes it connects:34

(26)

where deg(lij) is the degree of link lij connecting nodes i and j.

34. The “link degrees” are used in SOTCAC as primitive measures by which
notional agents assign value to emerging social-network links (see SOT-
CAC: a conceptual model; page 121).
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Link Density

The link density of a graph, , provides a coarse measure of the
general connectivity of G. It is defined as the ratio of the number of
links in G to the maximum possible number of links (which occurs for
a complete graph) [42]:

. (27)

One can also define a local, egocentric, link density that measures the
connectivity around a given node. It is defined by the following
expression:

, (28)

where Γ (i) is the set of nodes that are directly adjacent to σi, and
deg(σi) is σi’s degree. Thus, ρG(σi) measures only the local density, as
“seen” from σi’s point-of-view; it ignores σi itself, and focuses only on
the links that exist among σi’s contacts. The average egocentric link
density, for the entire graph, , is then given by:

. (29)

Figure 24. Sample calculations of global and local link densities (for two 
selected nodes, σ1 and σ2), computed for a graph consisting 
of 10 nodes and 20 links; see text for details

Figure 24 shows sample calculations of global and local link densities
(for two selected nodes, σ1 and σ2), computed for a graph consisting
of 10 nodes and 20 links. The dotted lines in the middle and right-
hand-side graphs denote, respectively the links between σ1 and σ2
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and their nearest neighbors; and which are therefore excluded from
the local density calculations. The light-grey nodes and links appear-
ing in the graph on the right-hand-side of the figure represent com-
ponents of G that are at least a distance two away from σ2; and are
thus also excluded from the calculation of σ2’s local density.

Eigenvector centrality

Eigenvector centrality, CE(i), introduced by Bonacich [138], is essentially
a generalization of degree centrality. In the context of social net-
works, it is based on the supposition that one’s “importance” is not
solely a function of the number of people one knows, but a function
of how many people that one knows are themselves also important;
i.e.  (where Γ (i) is the set of i’s neighbors). Bonac-
ich formalized this notion by defining centrality as the ith component
of principal eigenvector of G’s adjacency matrix, A = [aij]. Recall that
an eigenvector of a symmetric square matrix is any vector e which sat-
isfies the equation:

, (30)

where λ is a constant (i.e., the largest eigenvalue), and ei gives the cen-
trality of node i. 

One can show that an eigenvector is proportional to the row sums of
a matrix, M, equal to the sum of powers of A, weighted by correspond-
ing powers of the inverse of the eigenvalue [139]:

. (31)

Since the entries of the nth power of A give the number of different
walks of length n from node i to node j [140], eigenvalue centrality
can thus be interpreted as effectively counting the number of walks
of all lengths starting from a given node, weighted inversely by length.
As such, it assumes that information flows by all available means, and is
not confined to taking into account only the fastest route (i.e., flows
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along geodesics); a fact which alleviates a conceptual drawback found
in some other popular measures of centrality. 

Eigenvalue centrality is also frequently used to design World Wide
Web search engines (such as Google), for which an intelligent estimate
of “relevance” of a hyperlinked page is of obvious importance
[141].35 The search variant assumes that a given page is “important”
if other important pages link to it. Kleinberg [119] generalizes this
ranking to include both the set of nodes that link to some node of
interest and the set of nodes the node of interest itself links to. Nodes
that link to highly ranked nodes are hubs: though they may not con-
tain the desired information, they are likely to provide links to nodes
that do.

Information Centrality

A metric related to eigenvalue centrality is information centrality, CI,
introduced by Stephensen and Zelen [142]. The idea is to combine
all possible paths from one node to another, and to assign weights to
the paths so that the “information” in the combined path is maxi-
mized. Geodesics are typically assigned weight one, while longer
paths receive smaller weights that are functions of the information
they carry (assumed to vary inversely with their length).

To define CI, first consider the matrix B with the following elements:

(32)

Then, assuming B has an inverse, B-1,36 the information centrality of
node i, CI(i), is defined by [143]:

35. The more general “navigability” problem in complex networks is dis-
cussed on page 58.

36. In practice, only connected networks considered; i.e. isolated nodes
and/or disconnected subgraphs are simply ignored (their information
centralities would be equal to zero in any case, so there is no loss in gen-
erality).
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, (33)

where Trace(x) is the trace of matrix x (i.e., ), and the
first term, , is a normalization factor that ensures that

.

Loosely speaking, the metric assumes that if information travels
among various routes between nodes, it is inversely proportional to
the variance of the signal strength. The information centrality is the
harmonic average of the of the signal strengths along all the possible
paths (or “bandwidth”). CI(i) thus measures the amount of informa-
tion contained in all paths that start and end on the ith node; it may
be interpreted as the fraction of the total information flow in the net-
work that is controlled by the ith node [142]. Because nodes with
larger values of CI(i) tend to have a large number of short paths to
many other nodes, they typically have a greater control over the flow
of information within the network than nodes with smaller values.

For example, calculating the information centrality for each of the
t h r e e  g r a p h s  s h o w n  i n  f i g u r e  2 3 ,  w e  f i n d  t h a t  d S t a r  =
{0.234,0.128,...,0.128} , dCircle = {0.143,...,0.143} and dLine =
{0.104,0.168,...,0.168,0.104}.

Closeness centrality

The second of several related “centrality” measures (the first was the
degree of an individual node; see above) is closeness centrality, intro-
duced by Beauchamp [144] and Sabidussi [145]. Providing a sense of
a node’s global importance, it is based on the idea is that a given node
is central if it is best able to interact quickly with all other nodes in a
graph; and not just with its immediate neighbors. Closeness centrality
may thus also be interpreted as an index of expected time of arrival---
at a given node---of whatever is flowing throughout the network. 

Generalizing the notion of closeness as defined by immediate prox-
imity between nodes i and j (i.e., in which i and j are said to be “close”
if and only if distance Dist(i,j) =1) to one that respects all distances
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between a given node and all other nodes of a graph, the (normal-
ized) “closeness centrality” of node i, CC(i), is defined by:

(34)

The metric simply measures the inverse of the sum of the distances
between node i and all other nodes in G. Its maximum value is one,
and is attained when i is adjacent to all other nodes. Its minimum
value is equal to zero, and occurs whenever there is at least one node,
j, that is disconnected from i (in which case, ).

For example, calculating the closeness centrality for each of the three
graphs shown in figure 23 (on page 83), we find that dStar =
{1 ,0 .545 , . . . , 0 .545} ,  d C i r c l e  =  {0 .5 , . . . , 0 .5}  a n d  d L i n e  =
{0.286,0.5,...,0.5,0.286}.

There are two subsets of nodes of a graph G, related to closeness cen-
trality, that are useful in describing G: (1) the centroid of G (which is
typically used for trees), and (2) the center of G (which applies to any
graph).

To define the centroid, first count---for each node i (with deg(i)>1)---
the number of nodes that appear in each of the subtrees emanating
from i. Let Ni be the maximum of these numbers. It can be shown that
if the tree has N nodes then either there is exactly one node, j, for
which Nj = 1/2(N-1)---which is called the tree’s centroid---or there are
two adjacent nodes i and j for which Ni = Nj = N/2, which is called the
bicentroid. (It is easy to see that every tree either has a centroid or
bicentroid, but not both.) In either case, the centroid of a tree is
essentially equivalent to the tree’s center-of-gravity.

The “center” of G consists of the subset of nodes in G that share the
same minimal value of the maximum distance to all other nodes.

Group closeness

In the same way as the degree of a single node may be used define the
group degree for the entire graph, deggroup (see equation 20), we can
define the group closeness centrality, CC,group, by summing over, and nor-
malizing, the differences between the maximum possible value of
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closeness centrality over all nodes (= CC,max), and the value of CC for
each node:

(35)

CC,max attains its maximum value of one when there is at least one
node from which the minimum distance to all other nodes is equal to
1, and the minimum distance from the other nodes to all (N-2)
remaining nodes is equal to 2. As is true for deggroup, this occurs for
the star graph. CC,max attains its minimum value of zero when the min-
imum distances between any two nodes in the graph are all equal; for
example, in a complete graph or in a circle graph.

Betweenness centrality

The betweenness centrality of node i (or simply, betweenness), CB(i), is a
metric that measures how “important” a role a given node (or link)
plays in the information flow throughout the entire graph. Intuitively,
the metric is derived from the supposition that interactions between
nonadjacent nodes, i and j, are a function not just of the local infor-
mation content of i and j, but on the information residing at, and
communicated by, other nodes that are located on some path
between i and j. A node is deemed “central” if it lies “between” many
other nodes. 

Freeman’s [135] original definition of CB(i) is as follows:

(36)

where  is the number of geodesics (i.e., shortest paths) between
nodes u and v, and  is the number of geodesics from u and v
that pass through i. The sum is taken over all pairs of nodes such that

. An analogous measure of link-betweenness, CB(l), can be
defined using the same equation, but with  interpreted as the
number of geodesics between i and j that contain link l.
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For example, calculating the betweenness centrality for each of the
three graphs shown in figure 23, we find that dStar = {1,0,...,0}, dCircle
= {0.2,...,0.2} and dLine = {0,0.6,.533,...,.533,0.6,0}.

Computation times

An important issue associated with many of the most useful network
metrics, particularly for large networks, is computation time. For
example, since the definition of betweenness requires us to compute
the length of the geodesic between all pairs of nodes, calculating its
value of is, in principle, at least as difficult as solving the all-pairs short-
est-paths (APSP) problem. The fastest known algorithms for solving
APSP on sparse graphs entail solution times that scale as ~ NM on
unweighted graphs (where N is the number of nodes in a graph, and
M is the number of links), and scale as ~ NM+N2log(N) on weighted
graphs (which is the type of graph that SOTCAC depends on) [56].
For dense graphs, the computation is even more costly and scales, in
the worst case, as ~ N3; although some progress has been made
recently to lower this bound [135]. In practice, both closeness and
betweenness centrality measures can be calculated fairly quickly for
relatively small graphs (containing up to a 100 or so nodes).37 

While betweenness provides valuable insight into the information flow
between nodes of a graph, its main drawback is that it assumes that
communication always flows along the shortest paths. This is a reasonable
approximation, but it is certainly not always true. Communication
paths often take indirect, circuitous, and/or sometimes intentionally
long routes. Internet traffic, for example, often becomes jammed and
data packets are forced to make indirect excursions to reach their tar-
get.

A number of refinements and generalizations to the basic between-
ness metric defined above have been introduced in recent years: (1)
flow betweenness [146,147]; random-walk betweenness [143] (which esti-
mates centrality by the fraction of times a random walker visits a given
node, averaged over time and starting location); (3) ε-betweenness

37. Appendix 3 lists several freely available and commercial graph analysis
packages that include algorithms to compute network metrics.
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[148]; and (4) efficiency [149,150] (see discussion of information cen-
trality in next section). Because of their importance, we conclude this
section with brief descriptions of flow betweenness and ε-betweenness.

Flow betweenness

Flow betweenness was introduced by Freeman, Borgatti and White
[147], and is derived from the concept of “maximum flow.” First treat
each link of the graph as a physical “pipe” through which a unit
amount (or some over value equal to a link’s assigned weight) of “liq-
uid” is able to flow. Now, consider some arbitrary node i as the source
of flow, and another node j as the target. The Max-Flow Min-Cut Theo-
rem [56] allows us to calculate the maximum possible flow between i
and j, mij. The flow betweenness centrality, CF(k), of node k is then
defined using the fraction of the total flow mij passing through node
k, mij(k):

(37)

ε-betweenness

Motivated by an additional limitation of the basic betweenness cen-
trality metric, as defined in equation 29, in dealing with imprecisely
specified network topology, Carpenter, et al. [151] have recently
introduced a refined metric called ε-betweenness.

Carpenter, et al. note that, in trying to understand many real net-
works---in particular, dynamic terrorist networks---one can expect there
to be many uncertainties and/or inaccuracies in the available intelli-
gence data that is used for determining sets of shortest paths. Rela-
tively small differences in a network’s structure---whether real, or
apparent, as the structure may be inaccurately reflected in incom-
plete and/or erroneous intellgence reports---may result in large
changes to the set of geodesics within the network; and therefore
result in (potentially very) different estimates of centrality.
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For example, the sample network shown in figure 25 (abstracted
from [151]) illustrates how betweenness, as defined in equation 31, is
vulnerable to even minor changes to a graph’s weight values.

With the given numerical weights assigned to each of the links, using
equation 31 to compute betweenness yields the estimate CB(A)=0,
despite the fact that the node labeled “A” in the figure is the intu-
itively “central” node. Carpenter, et al. [151] point out that if the links
that are assigned weight w = 1.1 in the figure, are all instead assigned
the weight w = 1.3, A does become the central node, and its value of
betweenness becomes CB(A)=4.

Figure 25. Sample weighted graph for which CB(A) = 0; adapted from 
[151] 

ε-betweenness is defined by first introducing the notion of a simple
path between nodes i and j, PS(i,j): PS(i,j) is a regular path between i
and j that never visits any node more than once. An ε-shortest path
between i and j, Pε(i,j), is a simple path for which:

(38)

where Length[P] is the length of path P. The ε-betweenness is then
defined by:

(39)

( ) ( ) ( , ) ,, 1SLength Dist i jP i j ε  ≤ + ⋅ 

( )
( )( )

( )
( )( ), ( ), , 0

, ,
1 2

, ;1

,
,B

u v V G u v
u v u i v i

N N

u v i
C

u v
iε ε

ε∈ ≠
≠ ≠ ≠

− −
= ∑

N

N
N



100

where  is the number of ε-shortest paths between nodes u and
v, and  is the number of ε-shortest paths that pass through i.
Using this expression to calculate ε-betweenness for the sample graph
shown in figure 25, we find that, for ε = 0.1, .

Efficiency centrality

Latora and Marchiori [150,152] have recently introduced a metric
called efficiency centrality38 that is designed to rank nodes according to
the relative role they play---both locally and globally---in a network’s
overall information flow.

The metric is based on two basic ideas: (1) that information propa-
gates in parallel (i.e., that all nodes communicate concurrently), and
(2) that the relative importance of a given node (or group of nodes)
depends on how the network performs when that node (or group) is
removed from the network. Latora and Marchiori show how informa-
tion centrality can be used to identify the critical components of a net-
work (and thereby aid in vulnerability analyses), and then apply it to
the protection of communication flow on the internet and disrupting
the dynamics of terrorist networks.

Before defining efficiency centrality, we must first introduce the
node-to-node communication efficiency, εij, which is assumed to be
inversely proportional to the shortest distance between nodes i and j,
εij = 1/Dist(i,j). Latora and Marchiori [152] define the global (=Eglobal)
and local (=Elocal) efficiency of a graph G as follows:

(40)

where Gi is the subgraph of G consisting of neighbors of i. That is, Gi
consists of ki=deg(i) nodes, and contains, at most, ki(ki-1)/2 links; thus:

38. Latora and Marchiori [152] actually call their measure information centrality.
Because we have already defined another centrality measure by that name
(introduced by Stephensen and Zelen [142] in 1989), and which differs
from the measure being introduced here, we will hereafter refer to Latora’s
and Marchiori’s metric as efficiency centrality.; see also [153,154].
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(41)

where εij appears as εij(Gi) as a reminder that each term in the sum-
mation must be computed as though the entire graph consisted, tem-
porarily, only of the subgraph Gi.

Node information centrality

Using the definition of efficiency that appears in equation 35, we can
now define the information centrality of node i, CI(i) [152]:

(42)

where G - Gi is the graph that remains after node i and all ki links
attached to i are removed from G. Since the deletion of links can only
result in communication paths between points that ar at least as long,
and possibly longer, as the paths in the original graph, the efficiency
of the smaller graph, , and .

Group information centrality

The definition of point information centrality is easily extended to an
arbitrary group of nodes in G,  [152]:

(43)

where  is the graph that remains after the set of nodes, , and
all the links attached to each of the nodes in  are removed from G.

Graph efficiency centrality

The node and group information centralities can be generalized to
provide a measure of how centralized the entire graph is, with respect
to the node-to-node communication efficiency defined above. The
graph efficiency centrality, CE(G), is defined analogously to how we pre-
viously defined group degree (equation 20) and group closeness (equa-
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tion 30). The basic idea is to use local centrality to measure the extent
to which the graph’s global topology is organized around its most
central point (or group of points).

(44)

where vmax is the node with the highest information centrality, and
the maximum possible value of  is obtained for
the N-node star-graph.

Comparison with other centrality measures

How does efficiency centrality compare to other measures of central-
ity, such as degree, closeness, and betweenness? For graphs that contain
“obviously” central nodes, such as the central node in a star graph or
the equicentral nodes of a regular graph, all four measures of central-
ity agree on which nodes are central. However, Latora and Marchiori
[149] point out that this agreement breaks down for graphs between
these extremes.

They cite the example of a graph, , that consists of two
(possibly large) subgraphs G1 (of order N1) and G2 (of order N2 < N1)
that are not directly connected to each other, but a few nodes of each
of which are linked to an “intermediate” vertex v. Thus, Dist(G1,G2)>1
and . While the efficiency and betweenness centralities
agree in their assessments of importance for this graph, in the sense
that they both identify the node v as the most “central” by assigning
it the highest measure, it is unlikely that v would be so identified
either by degree or closeness; it is likely that either G1 or G2 contains
nodes with a higher degree than v, and the node that is closest to all
other nodes is likely to be in G1 (with an even stronger likelihood of
being in G1 if ).

Structural Holes

Burt [134] introduced several metrics that describe the extent to
which an individual node (or group of nodes) fills what he calls
“structural holes” in a network. Developed primarily as a way to iden-
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tify and harnass the latent entrepreneurial value in business organiza-
tions, these metrics effectively measure properties of a node’s “ego-
centered” network; i.e., the local subset of the network that---from an
individual node’s point of view---is the only part of the whole that is of
immediate importance.

Since Burt’s goal is to better understand the social structure of com-
petition in business environments, his calculations focus heavily on
rates of return on, and profits from, capital investment. Objectively
speaking, this appears---a priori--- to have little to say about the dynam-
ics of terrorist networks. However, much of the theory behind Burt’s
otherwise business-centric use of structural holes, is based on consid-
erably more abstract (and therefore more generally applicable) con-
cepts. The basic question that Structural Hole Theory (SHT) addresses
is [155], “How does a node’s local perception of the “ambient world” around
itself, along with the local perceptions of its partners, relate to the value that
node represents to the network (in terms of its ability to process, coordinate and
control information)?” 

Burt partitions the “capital” in a network into three abstract catego-
ries: (1) resource capital (which, in a financial context, refers to lines of
credit, reserves in a bank, investments due, and cash on hand; more
generally, it refers to any consumable, dynamical entity, physical
and/or virtual, that an agent needs to perform its actions); (2) human
capital (which refers to the innate personality, knowledge and skills
possessed by each agent); and (3) social capital (which refers to the set
of relationships a given agent has with other agents, and through
which agents may identity and exploit opportunities to harness their
resource and social capital for personal and/or group gain).

The network, thought of as a competitive arena in which agents vie
for higher returns on their investments, is defined by the coevolving
social structure that both provides opportunities for, and constrains
the possible actions that can be taken by, individual nodes (or
agents). Who should I establish a relationship with? Who do I trust enough
to make a deal with? What information do I need to gain an advantage over
my peers? Who do I need to connect with in order to establish an indirect link
with those who have the information I need? Agents who are best able to
answer these, and other similar, questions regarding the nature and
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flow of capital throughout the network, are best positioned to recog-
nize and seize opportunities as they arise.

In a financial setting, “seizing an opportunity” is strictly entrepre-
neurial, and translates to mean that agents are generally motivated to
harness their social networks to maximize the return on investment;
in a terrorist organization, “seizing an opportunity” means being
adept at marshalling resources, recruiting agents, and harnessing the
latent social terrorist-network capital to achieve its ultimate goal of
committing acts of terror. While the details of how agent go about
recognizing and seizing opportunities are obviously different in dif-
ferent contexts, the social network dynamical rules according to
which this evolves is essentially the same.

SHT provides metrics by which the “action potential” of any given ter-
rorist’s ego-centered network may be objectively graded. The
SOTCAC model, which is discussed in a later section, borrows many
of the ideas outlined in this section. 

Effective Network Size

A node’s effective network size, S, is based on the premise that links
among a node’s neighbors attenuate the effective size of that node’s
local network. The maximum effective size occurs when the nodes
that a given node is linked to have no links among themselves. The
value of S is reduced by the average number of links that neighboring
nodes have among each other. 

To define S, we first introduce the notion of redundancy, which mea-
sures the extent to which a node’s local ties (i.e. its “ego network”) are
mutually interconnected. The two simplest ways in which this can
happen are by cohesion and structural equivalence [134]:

1. Redundancy by cohesion, in which two nodes are redundant to the
extent that they are linked by a strong relationship. Consider a
node, A, that is linked to three neighboring nodes, each of
which are connected to one another, and each of which thus,
redundantly, provides the same network benefit to A. 
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2. Redundancy by structural equivalence, in which two nodes are
redundant to the extent that they have the same contacts. Con-
sidering the same node A with its three ties, even in the case
where none of A’s three neighbors have direct links to each
other, each may nonetheless have ties to another (more dis-
tant) group of nodes, none of whom have direct ties back to A.
In this case, the information A’s neighbors receive, and the
nodes responsible for sending this information, are all redun-
dant.

Structural holes are, essentially, the implicit boundaries separating
groups of nonredundant nodes; they serve as buffers between nonre-
dundancy, waiting to be “discovered” and exploited by the entrepre-
neur (or, in the context of terrorist net dynamics, by the
organization’s mastermind or terrorist cell leader); figure 26 shows a
simple example. 

Figure 26. Illustration of two similar local topologies; one of which has 
no structural holes (a) and one that has three (b)

If a node’s effective network has many structural holes (and none are
attached to the node itself), it is rich in “entrepreneurial” opportu-
nity. Burt calls such a state of affairs, structural autonomy; which
effectively measures the degree to which a given node (relative to
other nodes) has unconstrained access to structural holes. The prob-
lem, for agents, is to have some metrics by which to recognize the
structural holes around them.
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Let lij be the (possibly asymmetric) matrix of values that represent the
strengths of ties between nodes i and j. Heuristically, high values of lij
indicate strong, cohesive links between the two nodes. Nodes i and j
are “structurally equivalent” to the extent that their relationship with
other nodes k are the same. Consider an arbitrary node i, with deg(i)
neighbors, and ask, “What is the redundancy of one of i’s neighbors, j?” 

The information that i receives via j is redundant (in the sense
defined above) to the extent that i has a strong tie to another node,
k, to which j also has a strong tie:

, (45)

where pik is the fraction of i’s network ties (“attention”) that are
focused on its relationship with k:

, (46)

and mjk is the marginal strength of j’s relationship with k (i.e. its inter-
action with k divided by the strength of the strongest relationship j has
with other nodes):

. (47)

The fraction of i’s relationship with j that is redundant to i’s relation-
ship with other neighboring nodes is then given by the sum:

. (48)

Finally, i’s effective network size, , is computed by sum-
ming over the nonredundant fraction of i’s relationship with each of
its neighbors (equal to one minus the redundancy):

ik jkp m

( )
( ) ,ik ki

ik
ij ji

j

p
l l

i j
l l

+
= ≠

+∑

( )
( )

jk kj
jk

ij jii j

m
l l

Maximum l l
≠

+
=

+

,
ik jk

k i j

p m
≠
∑

1 ( ) deg( )S i i≤ ≤



107

. (49)

If a node j is completely disconnected from all of i’s immediate neigh-
bors, the jth term (in brackets) is equal to one, which is interpreted to
mean that j contributes a unit-valued nonredundant link in the net-
work. As the strength of the relationship between j and other nodes
increases, the bracketed term approaches pij, meaning that j is com-
pletely redundant with other nodes in i’s effective network. The value
of S(i) ranges from a minimum of one, to a maximum equal to deg(i),
achieved when each of i’s contacts are nonredundant.

Efficiency

The efficiency of a node, which is simply the effective network size nor-
malized by the maximum possible value (=S(i)/deg(i)),39 measures the
extent to which a node has maximized the effective size of its egocen-
tric network. Jumping ahead a bit toward our discussion of SOTCAC,
one of the ways in which users can “tune” agents’ otherwise autono-
mous local rewiring decisions is to “weigh” their efficiency. That is, in
choosing to take specific actions, terrorist agents may be more or less
“motivated” to maximize the effective size of their ego-networks.

Community structure

Among the vast number of complex networks---ranging from uncor-
related Erdos-Renyi random graphs, to small-world networks, to scale-
free networks (see the “zoology” illustrated in figure 12)---one prop-
erty that has attracted particular attention among social network
researchers, and is of obvious interest to intelligence analysts seeking
to “discover” hidden cells and other structural patterns within terror-
ist networks, is community structure. 

By “community structure” we mean a topology whose nodes and links
are arrayed in such a way that nodes are both highly clustered within
local groups and relatively loosely connected to the nodes living in
other tight clusters. 

39. Burt’s “efficiency” is not the efficiency metric, defined by equation 35. 
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Figure 27. An illustration of a network with “community structure”

Figure 27 shows a typical example of a small graph that contains five
communities; the “communities” are indicted by the groups of nodes
lying within the dashed circles. Intuitively, we expect this kind of
modular structure to arise in social contexts, since people tend to
divide naturally into groups based on common interests, geography,
occupation, age, and so on. For the purposes of this paper, we are
interested in two classes of problems: (1) how to find community
structures in arbitrary networks, and (2) how to characterize them,
mathematically.

Finding community structures

The problem of finding community structures in complex networks
is closely related to the graph partitioning problem in graph theory40

[90] and cluster analysis in social networks [42]. As for most “pattern

40. For example, in the context of computer science, where a node might
represent a single component of a parallel processing computer, a typ-
ical graph partitioning problem consists of finding an optimal alloca-
tion of nodes that balances the processing load on nodes, and
minimizes the total number of internode connections. While simple to
state, the problem is believed to be NP-hard, meaning that solution
times grow exponentially with the size of the problem [101].
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detection” problems of this kind on graphs, one can visually discern
communities only in relatively small graphs (that have, at most up to
a few hundred nodes, and only by using a good graph visualization
program); as the size of the network grows much beyond that, one
must typically resort to using automated cluster-finding algorithms.

A powerful graph visualization tools for finding community structures
in networks (along with other latent patterns) is the force-directed (or
spring-embedding) algorithm described on page 34. The method con-
sists of representing the links by linear springs (with a force constant
proportional to an appropriate measure of communal “similarity”),
and allow the system to relax to its equilibrium position.

Figure 28. Spring-embedding visualization of the patterns of friendships 
among children in a US school; taken from [157] 

Example 1: social networks

Figure 28 shows a spring-embedding visualization of the social net-
work of friendships among children in a US school [156], color
coded according to the race of individuals each node represents (and
divided, top/bottom according to age). Although the graph is very
large and it is hard to distinguish individual links, the strong commu-
nity structure if immediately obvious.
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Example 2: terrorist networks

Figure 29 shows a schematic of the “community structure” evident in
the global Salafi network.41 

Figure 29. Schematic of the global Salafi network; after Sageman [25]

The figure shows that the network is dominated by four large clusters-
--labeled Central Staff, Core Arab, Maghreb Arab, and Southeast Asian---
that are highly connected internally, but are only loosely associated
with nodes in other clusters. Moreover, the internal architecture of
each of these clusters is built around central hubs; Osama bin Laden
(shown in red and labeled in the middle of the figure) is the obvious
hub of the Central Staff;42 the two Arab clusters, in particular, approx-
imate small-world networks. The Southeast Asian cluster consists of the
Jemaah Islamiyah, which is more hierarchically organized than, say,
Al Qaeda [25].

41. “Salafi” is a term that is used to describe fundamentalist islamic thought, and is here
used to denote the global jihad that includes not just Al Qaeda, but the Egyptian
Islamic jihad, Jemaah Islamiyah, and Abu Sayyaf group, among others; see [158]

42. Not shown in the figure are the central players in the Core Arab, Maghreb Arab, and
Southeast Asian clusters: Sheikh Mohammed, Zein al-Abidin Mohammed Hussein,
and Abu Bakar Baasyir, respectively [159].
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Cluster finding algorithms

A number of algorithms for discovering communities in social net-
works have been introduced in recent years [42]. The pioneering
work on community recognition is due to Laumann [160], who
applied early forms of multidimensional scaling techniques to test for
modularity in patterns of embedded social distance. “Social dis-
tance,” which was discussed earlier in the context of navigability of
graphs,43 measures the degree to which two nodes (or agents) per-
ceive themselves as being similar, where “similarity” is defined accord-
ing to the relevant social features that characterize a given
multidimensional hierarchy (or social network). “Multidimensional
scaling” consists of expressing social distance in terms of a physical
metric, and is a direct precursor of the force-directed visualizations
shown in the previous section. Laumann’s contribution was in using
an objective measure of social distance (derived from the network) to
discern association patterns in networks, rather than relying on sub-
jective measures (such as self-ranked “similarity”) which were preva-
lent at the time. 

A common modern technique to extract community structures from
networks is called hierarchical clustering [41], which groups nodes into
subsets so that all of the nodes within a given subset are maximally
similar to one another. The method consists of first assigning each of
the N(N-1)/2 possible links in an order N graph some social distance
measure, Sij, to represent the degree of structural equivalence
between i and j, along an assignment of a threshold value ST, such
that i and j are assumed to be structurally equivalent if . The
following four steps are then applied (Johnson [161]):44

1. Assign each node to its own cluster (i.e., start with N clusters). The dis-
tance between any two clusters is equal to the distance between the nodes
within them. 

2. Merge the two closest clusters into a single cluster. 

3. Calculate the distances between the new cluster and each of the old clus-
ters. 

43. See the discussion of Watts, et al.’s social-distance-based networks, page 61.

44. Many freely available social network analysis programs such as AGNA and Pajek
(see Appendix 3 for details) include a hierarchical clustering algorithm.

ij TS S≤
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4. Repeat the second and third steps until all nodes are clustered into a
single cluster of size N. 

At the end of step four, the process yields a hierarchical tree rooted at
the single cluster and branching off into as many levels as the number
of iterations of the four-step process that were required to finally
merge all the nodes into a single cluster. Each level in the hierarchy
represents the clusters that were created at a given iteration step; thus
a horizontal cut through the hierarchy just above step X, say, splits the
network into an associated set of communities (modulo the social dis-
tance and inter-cluster distance functions that were used to generate
the hierarchy). 

The distance calculations that must be performed during the first and
third steps can, of course, be done in a number of ways. For example,
the inter-cluster distance, D[Ci,Cj], can be set equal to either the short-
est or longest distance from any node in one cluster, Ci, to any node in
the other, Cj; or D[Ci,Cj] can be set to equal the average (or median) dis-
tance between the nodes in Ci and Cj; maximum flows [162] and
weighed path sums [46] between the nodes can also be used.

Girvan and Newman [163] have recently suggested combining a divi-
sive form of the above algorithm with variants of link betweenness.45

Rather than merging nodes into progressively larger clusters, Gir-
van’s and Newman’s approach is to systematically take away from a
network edges that serve as links between large numbers of nodes.
The network is thus broken down into smaller and smaller compo-
nents, where the clusters at each stage of the process contain only
those nodes that remain after the links with the highest value of
betweenness on the previous iteration step have been removed.
Among the many possible betweenness measures that can be used are 

1. Geodesic betweenness (in which one counts the number of short-
est paths between nodes in Ci and Cj), and

2. Random-walk betweenness (in which one also counts paths, but
does not assume that the “signals” traveling along links travel
only along the shortest-paths, but rather perform random walks
until they reach their target).

45. See discussion on page 90.
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Tyler, et al. [164] make several recommendations on how the compu-
tation time of Girvan’s and Newman’s algorithm can be improved.
Radicchi, et al. [165] generalize Girvan’s and Newman’s algorithm by
using loops of varying lengths to measure between-community edges.

One drawback to the method (that is ameliorated by using the modu-
larity index, discussed below), is that it does not provide any insight
into how many communities a given network naturally contains; i.e.,
while it yields clusters---by construction---the cluster that emerge are
based entirely on the form of the metric used to define the inter-clus-
ter distances, and not on the clusters that the network innately con-
tains, but are hidden.

An alternative algorithm, that takes as its starting point a slightly dif-
ferent form of the community-search problem---namely, “How can
one identify an existing community to which an arbitrarily selected
node belongs?”---is based on a maximum flow method, and is due to
Flake, et al. [166] (who address it in the context of searching the
World Wide Web).

Quantifying community structure

While algorithms for finding (or, more accurately, recovering) commu-
nity structures in networks work well (for both real and simulated net-
works [56,167,168]) when some information about the communities
exists prior to running an algorithm (even if that information consists
only of a loosely defined social distance metric), the more typical
problem is to find communities about which we know little, if any-
thing, beforehand. 

Lusseau and Newman [169] have recently introduced a modularity
index, Q, that quantifies the strength of a given community struc-
ture;46 it can therefore be used both to discriminate between alterna-
tive community finding algorithms and to objectively assess how well
a given algorithm performs. 

To define Q, suppose a network is divided into k communities. We
label the community to which node i belongs, C(i); and use the stan-
dard notation for adjacency matrix element: Aij = 1 if node i is linked
with j, otherwise Aij =0. 

46. Q is based on a related index, called assortative mixing; see M. E. J. Newman,
“Assortative Mixing in Networks,” Phys. Rev. Lett., Volume 89, 2002.
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The fraction of links that lie within the communities (that is, that con-
nect nodes that within the same community), is then given by [170]:

, (50)

where δ is the Kronecker delta function, δ(i,j) = 1 if i = j and d(i,j) = 0 oth-
erwise, and is the number of links in the network. The
modularity index is obtained from this quantity by subtracting the
fraction of links that lie within the communities that are expected to
arise in a random network of the same size. Since the probability of
having a link between i and j is , the modularity Q
is defined by:

, (51)

which, with a bit of simple algebra, can be written in the simpler form:

, (52)

where:

, and (53)

. (54)

If the fraction of links within a given network is the same as the
number expected to exist in a completely random network, Q=0.
Nonzero values of Q therefore represent deviations from random-
ness, and appear when community structure is present; Clauset, et al.
[171] suggest using the value Q = 0.3 as a threshold above which one
is assured of the network possessing significant community structure.
By thus providing an objective measure of modularity, Q can be used
to tune searches for communities. For example, rather than simply
merging the two “closest” clusters in the search algorithm outlined on
page 105, one can again start with each.node as sole member of a
community of one, but now iteratively link communities such that, at
each step, the value of Q is maximized.
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Zhou [172] has recently introduced an alternative modularity metric,
called the dissimilarity index, Λ(i,j), which measures the affinity
strength that any two nearest-neighbor nodes, i and j, have for the
same community:

, (55)

where DR(i,j) is the average number of steps a random walk requires
to get from node i to node j. If i and j, both belong to the same com-
munity, the distance DR(i,k) from i to any k (not equal to i or j) will,
on average, be equal to DR(i,k), and thus Λ(i,j) ~ 0. If i and j belong to
different communities, each is likely to have multiple paths within
their respective communities that a random walk must sample in a
search for a path to the other node, and Λ(i,j) will thus tend to be
large.

Vulnerability

This section has introduced a variety of both local and global network
metrics; the objective being to identify some of the salient features of
a network’s structure and function. Being now armed with (at least a
rudimentary) language with which such features may be described
mathematically, it is natural to ask:

“In what ways can a network’s structure be altered in order to
degrade and/or disable its function?” 

Answers to this question reveal ways both for a network to protect
itself, and for network’s adversary to destroy it. The question becomes
particularly poignant as our attention turns to exploring ways to use
SOTCAC’s counterterrorist agents to disable a terrorist network’s
ability to function. For example, figure 30 illustrates the effects of
removing two nodes (colored red) from an initially connected net-
work; the result is one isolated node and an increase in distance
between nodes A and B (from two steps to five). If the links are com-
munication ties, this increase represents a substantial rise in expected
delivery times of messages. The problem is to identity, as objectively
as possible, the set of nodes whose removal does the maximum dam-
age.
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Figure 30. Illustration of the effects of node deletion on an initially con-
nected network 

We conclude our discussion in this section by briefly surveying some
recent studies of the vulnerability of complex networks to some form
of attack.

Any serious assessment of the vulnerability of a network must begin
by positing a measure (or measures) of the network’s functionality, µF;
a network’s vulnerability to an attack A is then characterized as the
degree to which µF is degraded by A. For some networks, deciding
what measures are appropriate to use is straightforward. For example,
if the problem is to study the vulnerability of a communication net-
work, an obvious measure to use is the size of the largest connected com-
ponent---as an indicator of the efficiency with which information flows
within the network---that remains as nodes and/or links are removed
from the system; another obvious measure is Latora’s and Marchiori’s
efficiency (see page 94).

For other networks, such as terrorist networks, which perform multi-
ple functions simultaneously, and whose “functionality” is typically a
function of both context and time and is dispersed throughout its
myriad levels, the set of appropriate measures to use are not at all
obvious; and a combination of measures may prove more useful than
any single measure.



117

The two main reasons why this section has introduced so many differ-
ent network metrics is to (1) provide the reader with an appreciation
of the enormous spectrum of (both conceptual and mathematical)
measures that exists , and (2) to have a referenceable “palette” of
measures to use to “tune” the behaviors of SOTCAC’s counterterror-
ist agents. As we have seen throughout this section, measures such as
characteristic path length, average inverse geodesic length, the clus-
tering coefficient, betweenness and/or information centrality, effi-
ciency (along with other measures introduced in this section) are all
useful; each characterizes an important aspect of a network’s behav-
ior. Which measures are more, or less, appropriate to use to examine
a specific issue depends partly on the scenario being considered,
partly on the dynamic contexts that the agents of the simulation find
themselves in, and partly on the subjective judgement of the modeler
(or analyst). Indeed, a strong motivation for developing SOTCAC is
with an eye toward providing the intelligence community with an ana-
lytical tool to help explore the efficacies of, and tradeoffs among, the
variety if a priori equally viable “solutions” that exist to this difficult
problem.

Network Reliability

Assessing a network’s vulnerability to attack is, conceptually, similar
to determining a network’s reliability; which is a well-studied mathe-
matical problem [173,174]. Thinking, again, of a graph as a commu-
nication network---in which nodes represent communication centers
and links the communication channels between them, and in which
both nodes and links are fallible and subject to random failures---the
“reliability problem” consists of finding the probability that the net-
work will continue to function properly in the event that one or more
of its components fails; i.e., to find the network’s reliability.

An example of a typical problem is the k-terminal reliability problem
[175], for which one must determine the probability that a given
subset of k nodes is connected. Another common problem is the all-
node link reliability problem [176], in which one starts with a graph in
which all the nodes are perfectly reliable but whose links fail indepen-
dently with some probability p, and must then determine the proba-
bility that the surviving links constitute a spanning connected
subgraph of the original graph.
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Unfortunately, for all such problems, the task of finding exact solu-
tions is, in practice, generally difficult. For example, the k-terminal
and all-node link reliability problems are both known to be NP-hard to
solve [173].47 Nonetheless, much work has been done in finding effi-
cient solution algorithms for certain subclasses of graphs. For exam-
ple, polynomial-time algorithms for reliability exist for acyclic graphs,
complete graphs, and a few classes of threshold graphs [174,175]. 

The analogy between communication networks and terrorist net-
works is crude, at best. While meaningful estimates of the reliability
of communication nets may be obtained using little more than a
simple measure of information flow, the same cannot be said of ter-
rorist networks, whose ability to “function”---and whose ability to con-
tinue to function when their components malfunction, fail, or are
removed entirely from the network---depends on a vastly larger and
more complicated set of features and distributed activities. Nonethe-
less, because the fundamental problem is essentially the same in both
cases---namely, “How does one characterize a net’s ability to maintain a
threshold level of functioning when one or more of its components fails to func-
tion?”---network reliability theory provides a a rich source of ideas and
algorithms. General references include those by Ball [174], Buzacott
[177], Harms [178], Marlowe and Schoppmann [174], Shooman
[179], and Bodlaender and Wolle [180].

Error tolerance versus vulnerability to attack

We earlier touched upon the problem of assessing the vulnerability of
networks during our discussion of random graphs and scale-free net-
works (see pages 51-56). We commented that whereas randomly con-
nected nets tend to degrade steadily and predictably---slowly losing
their connectivity as nodes (or links) are either randomly or selec-
tively removed, and eventually breaking apart into multiple discon-
nected subgraphs---scale-free networks are much better at tolerating

47. NP (= Nondeterministic Polynomial) problems are those for which the solutions,
once found, are verifiable in polynomial time (using a nondeterministic Turing
machine), but which may require an exhaustive search over all possible solu-
tions (with solution times that grow exponentially with problem, or network,
size) to actually solve. NP-hard problems are those that are at least as hard as
any NP-problem, although they may even be harder to solve [101].
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random errors than they are at tolerating attacks. In particular, while
scale-free networks may not initially suffer any ill effects from random
node removal---since it is statistically unlikely that any key (i.e., highly
connected) nodes will be removed by a random attack---if the attack on
the network is intelligently focused on its most important hubs
(which are, typically, relatively few in number), the results may be cat-
astrophic. Only a few of vital hubs need to be removed to cripple the
entire system. Scale-free networks effectively trade vulnerability to
attack for strong error tolerance. 

For example, Albert, Jeong, and Barabasi [112] observe how the diam-
eter of a graph (as a basic measure of connectedness) changes in
response to random errors; where the errors are modeled by remov-
ing a fraction, f, of nodes from the network. Albert, et al., observe that
while the diameter increases monotonically with f for random graphs-
--a behavior that results directly from the homogeneity of random
graphs (since all nodes have roughly the same number of links, the
removal of any node is likely to be as detrimental to the network’s
connectivity as any other)---the diameter remains constant for scale-
free networks, even if up to 5% of the nodes are removed (or fail).
This result is attributable to the inhomogeneity of scale-free networks:
since only relatively few nodes are highly connected, the probability
that a node removed at random will significantly degrade connectivity
is low.

The flip-side of error-tolerance is vulnerability to attack. To simulate
targeted attacks, Albert, et al., systematically eliminate the most
highly connected remaining node in both random and scale-free net-
works. As expected for random graphs, since each node is, on aver-
age, equivalent to other nodes, there is little appreciable difference
between randomly removing nodes or targeting “selected” nodes. On
the other hand, selective targeting has profound consequences in
scale-free networks: Albert, et al. find that the diameter of scale-free
networks is doubled when only 5% of the selectively targeted nodes
are removed; a behavior that, as in the earlier example, stems directly
from the inhomogeneity of scale-free networks.

As a final comparison between random and scale-free networks,
Albert, et al., compare how the two types of networks are fragmented
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by either random failure or targeted attack. As some fraction, f, of the
nodes is removed, the degree of “fragmentation” is monitored via two
measures: (1) S(f) = the size of the largest connected cluster of nodes
that remains (normalized by the total network size), and (2) <s(f)> =
average size of all remaining clusters (except for the largest one). For
random networks, S(f) and <s(f)> exhibit a simple threshold behavior:
both remain fairly constant for all f < fc, at which point they abruptly
decrease (S(fc) ~ 0 and <s(fc)>~ 1). 

Scale-free networks, on the other hand, display no such thresholding:
S(f) slowly decreases and <s(f)>~ 1 for most f, indicating that the topol-
ogy of scale-free nets remains largely unaffected, even when a sizeable
fraction of nodes is removed.

Lai, Motter and Nishikawa [181]-[183] study the effects of attacking
links (rather than nodes), observing that scale-free networks are gen-
erally more sensitive to attacks on short-range rather than on long-
range links. Using “efficiency” (as defined by Latora and Marchiori
[149]48) as a measure of a network’s function, Lai, et al. find that short-
range attacks are much more destructive, on average, than long-
range ones; at least for scale-free networks whose scaling exponent, γ,
lies between about 3 and 5.49

Long-range attacks become more destructive only for small or large
scaling exponents. In the case of small γ (< 2), long-range attacks are
effective due to the appearance of densely connected subnetwork of
nodes with large connectivity. In the case of large γ ( ), long-
range attacks become more effective due to the increase in the net-
work’s homogeneity: as more and more nodes are likely to share the
same connectivity, it becomes increasingly likely that links with the
highest loads are those between distant nodes. (This is exactly the
behavior seen in both the Watts-Strogatz [83] and Erdos-Renyi [79]
random graph models; both of which generate homogeneous net-
works.)

48. Using this metric, a network is more “efficient” when it has small short-
est paths; see equation 35.

49. Recall that the scaling exponent, γ, defines the decay of the degree distri-
bution for scale-free networks: , where P(k) is the probability
that a node has degree k, and γ is the scaling exponent.

( )P k k γ−∼

→ ∞
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Attack Strategies

In the context of assessing a network’s vulnerability to attack, an
“attack strategy” is understood to mean a targeting procedure (or set
of selection “rules”) whereby the nodes and/or links to be removed
from the network are selected in some mathematically well-defined
manner. In other words, a strategy is an “answer” to the question,
“Which set of nodes and/or links must be removed from a network, and in
what order, to maximally degrade the network’s performance?”

One obvious strategy, which is common in studies of the vulnerability
of computer networks, is to target the most highly connected node;
systematically removing the nodes in descending degree order, as
they are removed one by one [88]. Alternatively, one can target nodes
that rank most highly in betweenness (see equation 31) or centrality (see
equation 23), or any of the individual metrics of local “value” or
“importance.” 

The drawback to all of these basic strategies, however, is that they
depend only on the initial degree distribution, and do not take into
account the likelihood that the targeted net will adapt to node remov-
als by rewiring itself.

Holme, et al. [136,137,184] consider strategies that likewise use
degree and betweenness metrics, but in which the targeted node at
time τ is the most highly ranked node that is identified in the net at
time τ− 1; that is, new targets are selected only after the net has had a
chance to react to prior attacks.

Cascade attacks

Motter and Lai [181] study cascade-based attacks on complex net-
works. Focusing on the physical “loads” on nodes (which represent,
say, the information processing requirements for communication
flows), the authors show that when networks are able to adapt to local
overloads, attacks often lead to a cascade of failures that may cripple
the entire system. There are three basic mechanisms responsible for
this: (1) load redistribution, in which the load of a disrupted (or failed)
node is redistributed to other nodes; (2) high-load node failure, in
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which redistributed flows are automatically channeled through lower-
load nodes to compensate for high-load failures, and thereby exceed
the network’s remaining capacity; and (3) heterogeneity, which effec-
tively guarantees that there will be few, if any, remaining high-load
nodes to redistribute the remaining load. Operating together, these
three mechanisms make it possible for even a single critical node dis-
ruption to trigger a system-wide cascade of failure. Watts [185] relates
cascade failures to percolation problems and the spread of epidem-
ics.

As a concrete example of cascade effects in networks, consider the
electric power grid blackout that occurred in North America on
August 14, 2003. On that date, an estimated 50 million people living
in the midwest and northeast portions of the United States and
Ontario, Canada, collectively lost roughly 61,800 megawatts of elec-
tric load. The unexpected severity of the event highlights the impor-
tance of understanding the relationship between local behavior and
global properties. 

In their analysis of the structural vulnerability of the power grid,
Albert and Nakarado [186] find that---consistent with the more theo-
retical observations made above---while the grid is robust to most per-
turbations, failures (or disruptions) that affect critical transmission
substations greatly reduce its ability to function. They conclude that
“...the transmission hubs ensuring the connectivity of the power grid
are also its largest liability in case of power breakdowns.”

Of course, what we know of cascading failures in electrical power
grids (as one real-world example) cannot immediately be transferred
to the behavior of terrorist networks. Terrorist networks are inher-
ently “social” systems, and, as such, are considerably more adept at
adapting to, and redistributing, any local (or global) load require-
ments. One expects the impact of high-load node failure, for exam-
ple, to be much less severe for terrorist networks than for “hard-
wired” (or programmed) physical systems. Nonetheless---from the
point of view of counter-terrorist organizations tasked with disrupting
the activities of the terrorist network--an understanding of the dynam-
ics of cascade failures in complex networks provides valuable insights
into how to attack terrorist organizations: 
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Using ordered set theory to break Al-Qaeda cells

Farley [187] begins his analysis of how to best “break” terrorist cells,
by following Woo’s [188,189] advice and first asking the simpler ques-
tion (than the more general one posed at the bottom of the last
page): “How many nodes must be removed from the terrorist net before it
becomes disconnected?” This obviously simplifies its more abstract prede-
cessor by (1) effectively equating “disabling” a TN with “disconnect-
ing”50 it, and (2) positing that what “can be done to” a TN is to
“remove its nodes.” This form of the question is thus both mathemat-
ically sound, and sufficiently well-defined to base a “break the net-
work” algorithm on.

How do we decide which nodes must be removed? Farley argues that the
information resident within the graph itself---i.e., only in its nodal and
link structure---is insufficient for constructing an algorithm that mean-
ingfully degrades the graph’s ability to function. What is needed,
according to Farley, is a way to break the chain of command that exists
within the graph, and not just the connectivity among independent,
equally valued, nodes.

Figure 31. Hypothetical terrorist cell, shown before an attack on its connectivity (a), after an 
attack removes nodes d and g (b); and after an attack removes nodes b and c (c)

To illustrate why this is important, consider a hypothetical TN that
consists of 15 members and has the hierarchical structure shown in
figure 31-a. If terrorists labeled d and g were captured and removed

50. A disconnected graph consists of two or more subgraphs, all of whose nodes
are isolated from all nodes in the other subgraphs [30].
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from the net, the TN would be disconnected; it would be broken into
four components (see figure 31-b). However, the chain of command---
stemming from leader a, down to “foot soldiers” m, n, and o---would
remain intact. Compare this strategy to the results of the strategy
shown in figure 31-c, in which the terrorists labeled b and c are
removed from the TN. Using this alternative strategy, the leader a
and foot-soldier o are isolated; and, while a single, large component
remains intact, its de facto leaders are only low-level operatives, two-
steps removed from the TN’s leader.

Farley [187] applies ordered set theory51 to graphs to define an objective
measure of effectiveness of removing k nodes from a TN. While
graphs alone, via their links, are able to show only that nodes are
somehow related---but not what the relationships are among the roles
the nodes play within the graph---ordered graphs explicitly order the
nodes, from top (highest ranking) to bottom (lowest ranking),
according to their relative importance within the graph.

Once again, consider the notional TN shown in figure 31-a. In order
theory, the maximal node represents the topmost node (or nodes; in
this case, we have the single leader a); and the minimal nodes represent
the lowest lying nodes (in this case, “foot soldiers” i, j,..., o). A maximal
chain is any path that starts from a maximal node, ends on a minimal
node, and is ordered from highest to lowest rank. The terrorists
labeled a, b, e, g, and l, for example---and in that order a > b > e > g > l-
--form one of the 13 possible maximal chains (note that each also rep-
resents a possible chain of command in the TN):

(1) a > b > d > f > i; (2) a > b > d > f > j; (3) a > b > d > g > k; (4) a > b > d > f > i; 
(5) a > b > e > g > k; (6) a > b > e > g > l (7) a > b > e > h > m; (8) a > b > e > h > n; 

(9) a > c > e > g > k; (10) a > c > e > g > l; (11) a > c > e > h > m;
(12) a > c > e > h > n; (13) a > c > o

If we wish to break the TN’s chain of command, we must remove at
least one node from each of the TN’s possible chains of command. A
set of nodes that intersects each maximal chain is called a cutset of the

51. An ordered set is defined as a pair (X,R), where X is an unordered set, and R
is a (partial) order relation of X; R must be reflexive (  for all ), anti-
symmetric (  and  imply that ), and transitive (  and 
imply that ) [90]. In the discussion above, we take .

a a≤ a X∈
a b≤ b a≤ a b= a b≤ b c≤
a c≤ R ≡ ≤
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ordered graph. For example, the nodes b and c form a cutset, because
each of the 13 maximal chains contain either b or c.

Using these definitions, Farley [187] calculates the probability that an
N-member TN will be disrupted by a random removal of k members,
Γ (N,k):

(56)

where Cut(TN,k) is the number of cutsets in the ordered set TN with

k members, and the binomial coefficient, , counts the number of

ways of selecting k subsets out of N members. Farley’s formula gener-

ally yields a significantly lower probability for disrupting TNs than

does its more conventional cousin, in which “disruption” is equated

with “disconnectedness” [190].

While Farley’s formula is straightforward and easy to calculate for
small networks, it is unfortunately of little practical utility in dealing
with real terrorist networks. Aside from the realities that intelligence
is rarely complete (or reliable) enough to adequately define the tar-
get, and that real TNs generally do not take the “clean” hierarchical
form assumed in equation 51, cutset calculations are NP-hard [174,
191]. The virtue behind Farley’s method, and the reason for present-
ing it here, is that it emphasizes the need to ascertain the relative value
that each terrorist represents (as a dynamic component) within the
organization, in the context of information flow within the network’s
self-organized command and control structure. 
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SOTCAC: conceptual design

“Actions and decisions...[are]... critically important. Actions must be taken over and
over again and in many different ways. Decisions must be rendered to monitor and
determine the precise nature of the actions needed that will be compatible with the goal.
To make these timely decisions implies that we must be able to form mental concepts of
observed reality, as we perceive it, and be able to change these concepts as reality itself
appears to change. The concepts can then be used as decision-models for improving our
capacity for independent action. Such a demand for decisions that literally impact our
survival causes one to wonder: How do we generate or create the mental concepts to
support this decision-making activity?”—John Boyd, Destruction and Creation

SOTCAC (Self-Organized Terrorist-Counterterrorist Adaptive Coevolutions)
is a conceptual model that uses autonomous, intelligent agents to
represent the components of coevolving terrorist and counterterrorist
networks, and includes interactions among notional terrorist and
counterterrorist intelligence agents, terrorist cells, training, logisti-
cal, and miscellaneous support networks, weapons and financial
resource networks, and physical terrorist targets. SOTCAC serves as
the core “logical engine” within which the terrorist network
(TN) counterterrorist network (CTN) coevolution takes place, adju-
dicates the communications between, and interactions among, all ter-
rorist and counterterrorist agents, and provides a visualization of the
emerging graphical structures. It is fervently hoped that SOTCAC, as
it is developed, will prove to be useful not just for studying the dynam-
ics of terrorist networks (for which it is being explicitly designed), but
for helping usher in an entirely new class of general-purpose multi-
agent-based dynamic graph models that can be used to explore the
fundamental properties of complex adaptive evolving networks.

It is anticipated that a genetic algorithm will be used (see chapter
seven in [11]) to search for agent-types and social networks that are
“optimally” suited for performing a given mission. For example, in
the case of TNs, the mission may be to destroy a set of assigned tar-
gets, and to do so as quickly and secretively as possible; the CTN’s mis-
sion is to prevent the TN from succeeding in its mission, and/or to
eliminate the potential of the TN’s ability to do conduct future mis-
sions. 

↔
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SOTCAC addresses, and is designed to allow analysts to interactively
explore, three broad classes of problems:

1. Dynamics. The self-organized emergence, growth, and develop-
ment of TNs, as driven by the general rules of social network
formation, the personalities, skills, and needs of agents, and
local and global mission constraints (such as balancing the
need to find and marshal the resources required for a mission
while maintaining stealth).

1. Relationships. The relationship between a TN’s structure and
internal dynamics (as characterized by, say, its topology and its
local and global information processing capability), and its abil-
ity to perform its mission; or, succinctly, the relationship
between a TN’s form and function.

2. Coevolution. The coevolutionary process that fuels the mutual
interdependency of actions by TNs and CTNs, as agents (and
cells) belonging to each structure affect, and adapt to the
actions of, agents belonging to the other. On the one hand,
components of a TN always act in ways that minimize infiltra-
tion by counterterrorist agents (and other assets; see discussion
in section Counterterrorist Network); on the other hand, the
CTN’s mission is to gather intelligence about the TN and its
activities, and to otherwise infiltrate, disrupt and/or destroy the
TN. From a CTN-analyst’s point of, view, the “problem” is to
identify those key features of the TN (such as its topology and
information processing capability) that can be used to pinpoint
exploitable weakness and/or critical vulnerabilities to disrup-
tion or attack.

Modeling ontology

Figure 32 shows a schematic of EINSTein’s modeling ontology. An
“ontology” (as the term is used in artificial intelligence research)
means a specification of a conceptualization, and is the set of fundamen-
tal concept definitions that describe the classes, structures and rela-
tionships that characterize a complex system of agents. (This
ontology is introduced at this stage of the discussion as a reference to
which SOTCAC’s own conceptual design is later compared.)
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Figure 32. Schematic of the decision-making process in EINSTein 
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Figure 32 shows that each agent “lives” on a battlefield (which thus
constitutes its environment, and can sense and react to five classes of
context-specific forms of information:

• Internal features, which represent both static and dynamic
aspects of an agent’s unique personality and experience. Some
of these features are visible to the outside world (i.e., by other
agents), some are not. Internal features include energy level,
fear of combat, health, morale, and personality “type” (inexpe-
rienced, timid, aggressive, obedient, leader, follower,...).

• Environmental features, which represent all local forms of infor-
mation, such as terrain, intensity of combat, the presence and
type of nearby paths and waypoints, and estimates of the tactical
utility of specific battlefield positions.

• Battlefield entities, which refers to any member of an object class
to which an agent can assign a motivation for either moving
toward or away from that member. This class includes, as a sub-
set, the class of (friendly and enemy) agents, battle specific field
positions, own and enemy flags, waypoints, and patrol areas.

• Object Features, which include both absolute and relative mea-
sures. For example, if the entity is a specific enemy agent, abso-
lute factors include firepower, health, position (near flag, in
open, near boundary, etc.), threat level, and vulnerability. In
the case of relative measures, examples include the distance
between the two agents, relative health states, relative fire-
power, and relative vulnerabilities.

• Communicated Information, which refers to information either
communicated to, or received by, an agent. While, in EIN-
STein, communication is modeled fairly crudely (and merely
extends the effective range over which agents are able to probe
their local environment), communication is a vital component
in SOTCAC, where it is used as the foundation of network for-
mation, dynamics and evolution.
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SOTCAC’s ontology

Figure 33 shows a schematic of the decision-making process in SOT-
CAC. It is deliberately drawn using the same component blocks used
in the schematic of EINSTein’s ontology (shown in figure 32), to
highlight some of the differences and similarities between the two
programs.

The fact that the same central diagram appears in both figures illus-
trates that, at their core, the ontologies for EINSTein and SOTCAC
are exactly the same, and consists of: (1) agents, that are defined by
both an internal personality and a set of rules by which they interact
with an external space; (2) an environment, which consists of various
objects and features that agents can sense and react to; and (3) agent
actions, that are local optimizations over the set of possible moves, and
which are predicated partly on an agent’s “understanding” of its local
space, and partly on an agent’s unique motivations, tasks and goals.
The system evolves by iteratively applying the same sequence of logi-
cal steps---i.e., Sense::Process::Act---for each agent. The basic template
used for designing both programs is thus essentially the same.

The two programs also obviously differ in several important respects:

1. Focus of central conflict---land combat versus terrorism. In EINSTein,
blue “fights” red in a conventional battle, while in SOTCAC,
counterterrorist agents hunt for information about, and
attempt to nullify the organizational and coordinating capabil-
ity of, terrorist agents.

2. Notional environment---a physical battlefield versus an abstract infor-
mation space. EINSTein’s agents move about on a notional rep-
resentation of a real battlefield, and are anchored to sites
located on a fixed grid of possible locations; while SOTCAC’s
agents are also free to roam over a notionally physical space (a
feature that is used both for mimicking “chance” meetings
between possible recruits and recruiters, and for modeling the
physical movement of active terrorist agents to reconnoiter
fixed target locations), most of the dynamics takes in within,
and is partly a function of, a mathematical space of graphs
(which is used to model the growing and evolving social net-
work ties among agents).
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Figure 33. Schematic of the decision-making process in SOTCAC; compare to figure 32 
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3. The details of the primitive properties and behavioral characteristics of
their respective classes of agents and their mutual interactions (each of
which is defined in a manner consistent with its associated focus
and environment). For example, in EINSTein, agents are
defined by such features as sensor range, movement range, and
health, all of which are appropriate for EINSTein’s “combat”
domain. In contrast, SOTCAC’s agents are defined by features
that, loosely speaking, are all attributes of social networking
forces. That is to say, features such as allegiance (to a cause, or
group of agents), grievance, influence, and trust (among others),
collectively describe some of the main forces responsible for
creating, growing, sustaining, and evolving social networks.

Design overview

SOTCAC uses agents to model the coevolution of terrorist and coun-
terterrorist networks. All activity in SOTCAC takes place within two,
tightly coupled---and dynamically reciprocal--domains:52

• A physical domain, which represents a notionally physical space
in which agents move and interact in a direct, face-to-face fash-
ion (and in which the physical “targets” of the TN are also situ-
ated); and

• An information domain, which represents the abstract space that
contains the TN’s dynamic social network at time t (as well as
the CTN’s “best guess” as to what the topology of this social net-
work is at time t). 

Figure 34 shows a schematic of these two domains.53 

52. These two domains are selected more for expediency and general modeling
constraints and requirements than for completeness. For example, the infor-
mation domain represents a simplified distillation of a much larger set of social
network domains that real terrorist networks inhabit; including cultural, famil-
ial, financial, legal, political, and religious spaces [196]. The purpose of any model,
multiagent-based or not, is to identify, and derive insights from, the subset of
critical features that drive the real system; it is not to provide an exhaustive taxonomy
of parts. See R. Smith, “Counter Terrorism Simulation: A New Breed of Feder-
ation,” Simulation Interoperability Workshop, Spring 2002.

53. Many details of SOTCAC’s design are missing from this “first pass” schematic,
but will be introduced during the ensuing discussion.
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Figure 34. Schematic of SOTCAC’s physical and information space representations of TN and 
CTN coevolutions; see text for details 
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The box at the top of the figure shows a configuration of T-agents
(labeled Tai, and colored red), CT-agents (labeled CTai, and colored
blue), support agents (and which represent sources of financial, logis-
tical and financial resources sought after by T-agents; these are
labeled Sai, and are colored yellow, with red border), and terrorist tar-
gets (labeled Ti, colored grey, with a black border). The left and right
boxes along the bottom contain, respectively, the social network ties
of TN and CTN’s best-guess of what those social ties look like.

Note the CTN’s knowledge/inference base is neither complete (since
several components of the TN’s actual structure are missing) nor
completely accurate; the black squares and grey dotted lines between
presumed terrorists represent incorrect information regarding the
TN that CTN believes to be true. A key role for the analyst is to
uncover “optimal” mixes of physical/virtual CTN-assets (along with
the ‘‘rules’’ according to which they move and collect data, and that
define how the CTN processes INTEL) for which the difference between
what the CTN believes to be the TN and the TN’s actual structure is mini-
mized.

TN and CT-agent activity in the physical and information domains is
“reciprocal” in the sense that the set of primitive behaviors of one side
is mirrored (to the extent possible), by the set of primitive behaviors
of the other. For every possibility of something being dynamically cre-
ated (an agent, link, information, wire-tap, etc.), there is a reciprocal
possibility of the same thing being deleted.

For example, just as CT-agents---while they maneuver in the physical
domain---base some of their actions on the T-agent activity they per-
ceive within their sensor range, so too do CT agents, as they maneuver
in the same physical space, tailor their own actions, in part, according
to whether they sense the presence of CT-agents. On a more abstract
level, for every Link rule that specifies the exact conditions under
which, say, two previously unlinked agents will forge a connection,
SOTCAC possesses a complementary Unlink rule that specifies the
conditions needed to disconnect linked agents.

Of course, reciprocal actions rarely occur simultaneously during any
given coevolution. It is only by recognizing and seizing the more
opportune possibilities, as they arise dynamically (and partly due to
chance), that one side is able to “defeat” the other.
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The most important interactions of the model take place in the infor-
mation domain. For it is in graph space that the terrorist organiza-
tion---viewed as a complex adaptive system ---first emerges (and
subsequently evolves) as a self-organized, dynamic network of
aggrieved, disenfranchised, and/or repressed individuals, recruited
to join the organization; of their cultural, religious, familial and/or
general social ties; and of the command, control, communication
and coordination links that naturally form, in a decentralized man-
ner, within the organization as it inexorably moves toward accom-
plishing its mission. 

Implicit in the figure is the fact (elaborated upon later in this section)
that each agent has an associated set of, typically changing, sensory
and behavioral properties that determine, among other things, how
far it is able to see, what properties of other agents it may know, with
whom it may communicate, the degree to which it trusts information
that is communicated to it, and what actions it may take. Initially,
before any social structures emerge, both terrorist and counterterror-
ist agents move about randomly. However, as agents begin making
contact---meaning that they come within a threshold “contact” dis-
tance of one another---the process of registering, and exchanging,
various kinds of information starts to take place as well.

For example, one terrorist agent, whose temporary role is that of
recruiter (see below), may choose to link with a possible recruit, and to
maintain an informal tie with that agent until the recruit has acquired
a threshold skill level from a trainer, at which time the recruiter may
“create a link” between the agent and a cell leader. A counterterrorist
agent may “see” two suspected agents together and infer that the two
agents are, in fact, operatives of the TN and that they have a strong
connection. The CTa’s new INTEL is used to update the CTN’s belief
matrix (using a method that is explained below), which defines the
structure of the TN that the CTN believes it has at that moment. A
counterterrorist that comes within an eavesdropping distance of two
known Ta’s, has an associated probability, Pe, of eavesdropping on
what one agent is communicating to the other.

SOTCAC’s design borrows several important elements from two exist-
ing multiagent-based models, both developed at CNA: (1) the EIN-
STein land combat model [16], and (2) an agent-based variant of an
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older human-based wargame, SCUDHunt [17] (which is designed to
explore information flow in command and control structures). 

From EINSTein, SOTCAC inherits the basic conceptual template for
administrating a heterogeneous set of agent “personalities” and per-
sonality-weight-based decision rules; according to which all actions
are locally motivated, goal-driven optimizations over an agent-specific
“action space.” While, in EINSTein, the action space is (at least
notionally) physical---in the sense that agents’ “action” consists of
choosing a battlefield position to move to, and engaging in combat
with enemy agents at other positions---SOTCAC’s agents’ action space
is both physical and abstract. SOTCAC’s agents are not only tasked with
performing abstract information processing chores (that are consid-
erably more involved than what EINSTein’s agents are capable of),
but must decide both where to move in a physical space, and how to
alter the topology of their local (social network) structure.

In SCUDHunt, agent personalities consist of parameters that define
how an agent obtains, interprets, and uses game-generated informa-
tion, and includes the interpretation of sensor reports, trust (of other
agents), strike-plan logic, and sensor-placement logic. The state of
the game is defined by a belief matrix, B(x,y), which is a measure of an
agent’s belief that a SCUD is at location (x,y). As a game progresses,
agents update the values of the components of their belief matrix.
The way in which partial beliefs, derived from snapshots views of an
agent’s immediate environment, are added to a SCUDHunt-agent’s
current belief, proceeds in exactly the same way as EINSTein-agents
combine the value of two or more environmental features to modify
a component of their current personality weight vector.

SOTCAC inherits SCUDHunt’s logical structure that describes how
INTEL data (that is extracted from a “ground-truth” battlefield view)
can be used, in a mathematically well-defined manner, to augment,
and refine, one’s beliefs (or concurrently updated “best guesses”)
about what the “ground-truth” picture really is. In SOTCAC, “ground
truth”---at each time, t---consists of the TN’s actual structure and set of
activities taking place at t; i.e., TN’s agent composition, link structure,
the sets of parcels of information being communicated among
agents, and its cells’ precise structure. No single agent, belonging to
either the TN or CTN, has complete access to ground truth.
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The CTN’s data-fusion activities (which it must coordinate among N
physical CT-agents and M virtual CT-assets) is not rendered directly
by SOTCAC; instead, it is monitored indirectly by snapshots of its
evolving belief matrix. The “belief matrix” represents the CTN’s “best
guess” as to what the TN looks like at time t. The set of action options
that the CTN selects from at time t+1---for example, the node or link to
“eavesdrop” on, the link to pump false information into, the link to jam, or
node to infiltrate (among other options; see discussion below)---is a
function of what the CTN “believes” it knows about the TN at time t.

What is, and is not, being simulated

Figure 35 shows a schematic timeline of the coevolution of terrorist
(TN) and counterterrorist (CTN) networks, as modeled in SOTCAC.
Apart from summarizing some of the basic components and dynam-
ics of the model (all of which are covered in detail in the following
sections), the figure highlights, in grey, two important aspects of
terror network analysis that SOTCAC does not attempt to model.
Namely: 

1. The early, nascent, stage, of the terrorist organization, in which
various social, cultural, economic, political and religious factors
conspire to spawn the first seeds of terrorism, but at which time
the terrorist network, as a self-organized, self-sustaining entity
able to conduct missions, does not yet exist, and 

2. A much “later” stage (in the TN’s evolution), at which point a
mature, resource-laden TN finally emerges, and harbors suffi-
cient manpower, skill and experience to conduct and success-
fully accomplish its mission.

SOTCAC focuses on the set of intermediate steps of this timeline, pro-
viding the analyst tunable parameters with which to explore various
“dynamic forces” that guide a TN’s self-organizing, emergent form; its
ability to react, and adapt to, attack; and the coevolutionary processes
that concomitantly shape both TNs and CTNs, as each tries to destroy
the other.
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Figure 35. Schematic timeline of terrorist network (TN) and counterterrorist network (CTN) 
coevolution in SOTCAC 
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While the patterns of behavior that appear at the periphery of figure
35---pre-formative dynamics on the left-hand-side, and the dynamics and
mechanisms of the terrorist attacks themselves, on the right---are obvi-
ously equally as important to understand, to simulate them in a mean-
ingful way requires a different set of social, dynamic, and military
components, and neither is modeled directly by SOTCAC. The
dynamical behaviors at the two end of this spectrum are, however, the
subject of other recent studies.

For example, at the pre-formative end of the spectrum, MacKerrow
[31] is using an agent-based program called the Threat Anticipation
Program (TAP)54 as the “engine” with which to explore the complex
dynamics of militant terrorist group formation.

MacKerrow’s model includes such factors as social grievance, per-
ceived oppression and corruption, various economic, cultural, social
and religious influences, and searches for indicators of “terrorist
instabilities” that occur when agents with high levels of social griev-
ance have access to terrorist organizations with similar grievances.
Casebeer and Thomas [32,33] apply a similar set of systems-level tools
to model the general formation of violent non-state actors.

SOTCAC models this part of the TN formation timeline only to the
extent that it includes an “ambient pool” of possible recruits to join
the TN, and considers a few general motivations such as grievance and
risk aversion (as factors in deciding whether to incorporate these con-
tacts as trainees; see discussion below). 

To help understand the “attack stage” of the TN timeline in figure 35,
Pate-Cornell and Guikema [34] use systems analysis (as well as ele-
ments of risk assessment, decision theory and mathematical game
theory) to model terrorist threat probabilities. Their work can also be
viewed as a terrorist-threat-specific prioritization of possible defensive
countermeasures. Their analysis carefully considers all of the relevant
factors at play during (and immediately prior to) the “attack stage”
appearing on the right-hand-side of the timeline in figure 35.

54. TAP is being developed at the Defense Threat Reduction Agency (DTRA):
http://www.dtra.mil/. 
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Two recent studies that address the same “middle ground” of the
timeline of TN evolution as does SOTCAC are those by Carley [35]
and Raczynski [36]. Carley is developing what she calls a meta-matrix
approach to conducting dynamic network analysis. The approach
consists of combining knowledge management, operations research
and social networks to represent a multidimensional view of the
dynamical relations among agents, resources and tasks. The idea is
explore ways in which changes to one component of the meta-matrix
cascade into changes in other components. SOTCAC’s design com-
plements Carley’s method by examining an analogous cascading of
effects between coevolving multidimensional representations of ter-
rorist and counterterrorist networks.

Raczynski uses agents to model the dynamic interaction between ter-
rorist and antiterrorist organizational structures that is, superficially,
similar to SOTCAC. However, Raczynski’s agents are rudimentary,
and interactions depend less on personality-weight-prescribed local
optimizations than on probabilities (or tunable “rates” at which cer-
tain scripted events occur). Due credit must be given to Raczynski’s
model as being one of the first agent-based simulations of terrorism
to recognize the fundamental importance of, and to focus its atten-
tion on, the evolution of the terrorist network structure, and the conse-
quences that evolution has on the terrorist net’s ability to conduct
attacks.

Terrorist network
“[Terrorism]...The calculated use of violence or threat of violence to
attain goals—political, religious or ideological in nature—by instill-
ing fear or using intimidation or coercion. Terrorism involves a crim-
inal act, often symbolic in nature, intended to influence an audience
beyond the immediate victims.”—US DoD Directive 2000.12H

T-agents

The basic dynamical component of SOTCAC, as in EINSTein, is the
agent, which embodies the properties, characteristics and behaviors of
notional members of a TN (and the TN’s support network).55 As do
EINSTein’s combat agents, SOTCAC’s terrorist agents (or T-agents, for
short) also represent a heterogeneous mix of personalities, motiva-
tions, and goals. However, unlike EINSTein’s agents’ relatively lim-
ited feature set---which was tasked only with describing local
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movement and simple combat engagements---T-agents ‘‘live’’ in both
physical and social domains, and process considerably more informa-
tion; thus, T-agents generally require a more complex mix of features
to tailor their unique behavior. 

Additional features (not used by EINSTein but important to SOT-
CAC) include allegiance, experience, knowledge, leadership, rank and skill.
Each of these will be introduced and discussed in the sections that fol-
low.

Consider the kinds of basic questions that an agent needs to answer:

• What are my properties? Which properties are fixed, and define my core
personality? Which properties change as I evolve during a scenario and
accrue experience?

• What do I know...about myself?...about my environment?...about my
local network...about the TN?

• What do I own?

• What do I need to do? 

• Where should I move to in the physical domain?

• What is my mission? What is my task? What are the requirements for
fullfilling my task and/or mission?

• What do I need...to find? What can I barter with?

• How do I get what I need? Where ought I to focus my search in physical
space? 

• Who am I connected to (i.e., who can I “talk” to right now?) Who do I
know?

• Who else exists that I can communicate with?

• Who do I establish (or break) a connection with?

• What reasons do I have for establishing (or breaking) links? What fac-
tors must I take into account? How do I assess those features (using my
personality)?

55. The notional counterterrorist organization also consists, in part, of agents
(called CT-agents) that are able to move around the same physical space as
T-agents. The properties and behaviors of CT-agents are discussed in the
section Counterterrorist network).
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T-agent types

SOTCAC has seven, partially overlapping, classes of terrorist agents
(see figure 36):

Figure 36. Schematic illustration of the basic components of a terrorist network, as represented 
in SOTCAC; see text for details 

Recruit

Recruits, , are members of an ambient “pool” of random
members of the population that come into contact with, or are selec-
tively targeted by, recruiters, , to join the terrorist organiza-
tion. Not having any a priori social network links, recruits initially
‘live’’ only in the physical domain, and move about randomly (their
movement being constrained only by a user-defined, and fixed, move-
ment range; see below). Recruits represent a heterogeneous mix of raw
personality traits (such as allegiance, risk aversion, social grievance, and a
miscellany of knowledge and skills). 

{ }1 2, , , Nr
r r r…

TNjR ∈
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Whether or not a given recruit, r, becomes a provisional member of
the TN (i.e., whether it is ‘‘recruited’’) depends on two conditions:
(1) r must first come in ‘‘contact’’ with a recruiter, R, (which is
achieved by wandering into R’s recruit range), and (2) the value of uni-
formly drawn random number, x, must exceed the recruitment probabil-
ity threshold, :

, (57)

where  is r’s risk aversion index (see below),  is
r’s allegiance index, and the last term, , is an
R-dependent preferential link attachment factor, that is included to
ensure scale-free growth ([88; also, see discussion on page 57). Thus,
recruits are (a) more (or less) likely to join the TN if they possess a
greater (or lesser) degree of innate allegiance, and if they are generally
less (or more) risk averse, and (b) favor joining the TN via recruiters
that have already successfully ‘‘recruited’’ other recruits.56 

Once recruited, new recruits have a direct, but tenuous, connection
to the TN through their recruiter and the trainer to whom they are
immediately sent for instruction. Recruits have no skills, experience,
rank or influence. Before they become active agents, or mission opera-
tives, recruits must first spend a TrainingTime period in the vicinity of
their assigned trainers, and successfully evade capture by CT-agents.

A small fraction, fTerroristPool, of this pool of possible recruits consists of
already trained professional terrorists that may be known to recruit-
ers or cell leaders (or even to active operatives, as “trusted” members
of their virtual ego-maps), and may be enticed to join a mission. Mem-
bers of this subpool of recruits generally possess unique skills and
experience; if they decide to join a cell they represent a “shortcut” to
a cell leader who wishes to marshall his required manpower and
resources as quickly as possible.

56. This same scale-free ‘‘rich get richer’’ growth and formation rule also applies
to TN cell formation; see discussion below.
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Infiltrator

A certain (user-defined) fraction of the ambient pool of possible
recruits consists of CT-agents that attempt to infiltrate the TN (by
posing as recruits). If a CT-agent successfully infiltrates the TN in this
manner, it can be subsequently used (by the CTN), within limits, to
eavesdrop and otherwise disrupt local activities of the terrorist orga-
nization. A double agent constantly faces the specter of being discov-
ered by the TN. as each of its actions (directed toward providing the
CTN information about the TN that it is motivated to find; see discus-
sion in the Counterterrorist network section) has an associated prob-
ability of being “discovered” by a T-agent.

Recruiter

Recruiters, , are members of the TN whose function is
to parse members of the population (that they come into contact with
either through chance or by identifying certain desirable traits) to
find individuals that may want to join the TN. Recruiters possess a het-
erogeneous mix of abilities and skills; and their degree of influence
depends, in part, on their social network of leaders (seeking their
assistance in meeting their own mission requirements) and trainers.

Trainer

Trainers, , provide recruits with a default set of knowl-
edge and skills; without which, recruits cannot be “promoted” to the
status of “operative” and become active members of existing cells. Not
all trainers are able to teach exactly the same set of skills, and each is
part of his own social network of cell leaders and operatives.

Mission Operative

Operatives, , under the “command” of a cell leader,
represent the basic unit of “manpower” of the TN; i.e., the foot soldier.
Members of this class represent the active terrorist agents that---upon
being assigned a mission role---are tasked with, first, acquiring the
requisite knowledge and skills for the mission; second, marshalling
whatever resources are necessary to perform the mission; and, finally,
with conducting the terrorist attack. 

{ }1 2, , , NR
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Operatives are characterized by a heterogeneous mix of abilities,
skills and personality (such as allegiance, experience, influence, rank,
and risk aversion).

Leader

Leaders, , are responsible for creating, organizing and
sustaining (the growth and adaptability of) cells, which are composed
of operatives under their command. Leaders orchestrate and coordi-
nate all cell activities necessary for the mission that is assigned to
them, and may act as liaisons among operatives, support agents, train-
ers and the mastermind (i.e., the highest ranking member of the
leader class). The probability that a given leader successfully accom-
plishes his set of mission-specific tasks, depends on his experience
and influence; it also depends, implicitly, on the social networks he
has already formed with other agents.

Note that cells, as modeled in SOTCAC, only notionally represent
their real-world counterparts; referring only to the set of all agents
that have at least one link (at any time) to a leader agent. In particu-
lar, differences and interactions among, say, command and control
cells, logistics cells, intelligence and/or reconnaissance cells, and
sleeper cells, are not explicitly modeled in any way.

SOTCAC, by default, includes one senior leader, who assigns missions
to cells, and to whom cell leaders occasionally report back to. Senior
leaders are virtual, and do not occupy any position in the physical
space; they represent, notionally, the “spiritual” leaders of a terrorist
organization, such as Osama bin Laden (Al-Qaeda), Abdullah
Ocalam (PKK), or Yasser Arafat (PLO).

Support Agents

Support agents, , are either active TN operatives, or are
entities outside the organization that have links to an active TN oper-
ative. Support agents do not directly participate in conducting terror
attacks; rather, they provide arms and weapons to operatives and/or
leaders, as well as various levels of financial, logistical, and miscella-
neous resource support. Support agents provide different levels of
support, depending on their influence and experience.

{ }1 2, , , NL
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They are motivated to “find” members of the TN who they believe
have a need for the resources they possess. They do so both in the
physical domain, by favoring positive movement weight values for
operatives in need of resources, and in the information domain, by
demonstrating an increased propensity for creating “need” and
“query” links in their local social nets.

There are four basic types of support agents:

• Financier
• Weapons specialist
• Logistics specialist
• General support

T-agent characteristics

Agents are equipped with sensors (with which they observe and extract
information from their immediate environment), an ego-space (which
is their local map of social network ties; it also represents information
about the TN’s overall structure that may be compromised in the
event of a targeted attack by the CTN; see below), a memory (), tasks,
and actions that it may select from at each time step.

Primitive

• Ability: measures an agent’s innate ability to perform its
assigned tasks. Agents of lesser ability are more rapidly over-
loaded by activity (and thereby cease functioning for a time)
than agents of higher ability.

• Allegiance: measures the degree to which an agent is loyal to the
TN. The smaller the value of allegiance, the greater the proba-
bility that an agent will refuse to follow an order issued by a
higher ranking agent (which has the additional effect of
decreasing that agent’s own rank and value in the organiza-
tion). In recruits, lower values of allegiance effectively lower the
probability that a recruiter will select them to join the TN. 

• Independence: measures the degree to which agents are able to
operate on their own, without guidance from, or coordination
with, agents of superior rank. Independence provides a local
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glimpse of the degree to which the TN’s command and control
structure, as a whole, is organized as a hierarchy. Examples at
both extremes exist in the real world. For example, while Al
Qaeda is known to be strongly decentralized, local cells of the
Jemaah Islamiyah tend not to operate on their own without spe-
cific orders from leaders.57 

Leadership is typically used to discriminate among recruits and
operatives; cell leaders naturally possess a high value of leader-
ship (see below), and are thus already prone to be indepen-
dent.

• Leadership (charisma), : measures the degree to which a
leader is able to recruit new agents into his cell, as well as his
ability to maintain unity and cohesion in his cell. Leaders with
higher values of leadership require less overt coordination (via
intermittent links with cell-subordinates that are subject to dis-
covery) than do leaders with less charisma.

• P-S inclination index: the physical-social inclination index,
, measures the degree to which the agent focuses its

actions on the physical (P) or social (S) space. 

• Risk aversion, : measures the degree to which agents tol-
erate the risk of incurring the cost of failing to achieve the
desired beneficial outcome of a possible action. Maximally risk
averse agents (i.e., those with ) take only those actions
whose cost is zero (or minimal), without regard for expected
return; minimally risk averse agents (with ) take only those
actions that maximize benefit, regardless of the cost involved.
The propensities of agents with other values of risk aversion are
interpolated between these two extremes.

• Movement range, RMove: defines the maximum distance an agent
can “move” from its current location (at time t) to its new posi-
tion (at time t+1).

57. Jemaah Islamiyah is a militant Islamic group active in several Southeast
Asian countries that’s seeking to establish a Muslim fundamentalist state in
the region. Because of this particular group is strongly hierarchical, the
arrests of several of the Jemaah Islamiyah’s leaders (in 2002 and 2003) may
presage the death of the entire organization [25].
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• Sensor range, RSensor: defines the range of an agent’s vision in the
physical space. Agents sit at the center of an RSensor-by-RSensor
box, and “see” everything that occupies any of the (2*RSensor+1)2

sites within this box. Note that this does not imply that an agent
correctly identifies what is present at a given site, only that an
agent has the potential of registering another agent within its
sensor range.

Composite

• Anti-capture index: measures the degree to which a T-agent is
able to resist or negate an “attack” (i.e., capture) by a countert-
errorist agent. A T-agent’s ability to resist attacks increases (i.e.,
the index value increases to a maximum value of one) as the T-
agent successfully evades capture, acquires experience and
skill.

• CTa-detection probability, : probability with which a T-
agent is able to correctly “recognize” an otherwise unidentified
agent, within its CTa-detection range, as a CT-agent. This prob-
ability increases as the T-agent acquires experience and skill.

• CTa-detection range, : range (in the physical domain), at
which a T-agent is able to “see” a CT-agent. Whether, or not,
the T-agent correctly identifies this agent as a CT-agent (and
thereby adapts its personality weight vector values to “avoid
moving toward” that agent), depend on the Ta’s CTa-detection
probability. The CTa-detection range increases as the T-agent
acquires experience and skill.

• Value: measures the total, dynamic, value that agent represents
to the terrorist organization. It is a weighed sum of ability, alle-
giance, experience, leadership, rank, resource marshalling and
skill.

Dynamic

• Degree: a topological index of the number of active links an
agent has with other agents at time t (i.e., a measure of current
communications activity and workload).

Ta CTaP ←

Ta CTaR ←
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• Position, : defines an agent’s (x,y) position in
the physical space at time t.

• Rank: measures the relative authority the agent has, and can
exert over other agents of lesser rank, within the organization. 

• Resources: which is an interim catalog of acquired resources
required by an agent’s assigned mission; specific classes of
resources include skills, weapons, and money.

• Skill: which measures the cumulative information acquired by
an agent via direct training or indirect learning through its
social network ties

• Visibility: measures the degree to which a T-agent is “visible” to
a CT-agent; and naturally scales accordingly with an agent’s
ability, skill and experience.

• Work load: which measures an agent's ‘‘tasking burden,’’ and is
a function of the number of current and past social ties, and
number of unfulfilled mission requirements.

Social network maps

LoTo-map

With every T-agent, σ, there is an associated LoTo-map (short for local
topology map), Lt(σ), that represents an instantaneous snapshot of σ’s
local neighborhood of direct and indirect contacts at time t; i.e., Lt(σ)
encodes a σ-centric view of the local topology of the TN. Since Lt(σ)
contains no information regarding how σ interprets (or organizes) the
elements in its neighborhood (this processed form of information is
instead stored in σ’s ego-map; see below), the LoTo-map does not nec-
essarily reflect what σ knows about its neighborhood.

Figure 37 shows a schematic of Lt(σ), centered on σ and containing
all agents out to a distance D = 3 removed from σ: (1) the set {α i(σ)}
represents all of σ’s nearest neighbors (i.e., agents with whom σ is
currently linked with); (2) the set {β ij(σ)} represents all of σ’s next-
nearest neighbors (i.e., all agents X that are a distance Dist(σ, X) = 2
away from σ), indexed according to which nearest-neighbor a given
next-nearest neighbor is connected to (for example, β31(σ) is the

( ) ( ) ( )( ),x t x t y t=
r
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“first” nearest-neighbor of σ’s “third” nearest-neighbor, α3(σ)); and
(3) the set {γ ijk(σ)} represents all of σ’s second-nearest neighbors (i.e.,
all agents X that are a distance Dist(σ, X) = 3 away from σ), indexed
according to which next-nearest-neighbor a given second-nearest
neighbor is connected to. Note that certain subsets of the indexed
sets {βij(σ)} and {γ ijk(σ)} may overlap; although, from σ’s point of view,
the actual node that is being referenced is always unambiguous.58

Figure 37. Schematic illustration of σ’s local topology map at time t (=Lt(σ)); see text for details 

For example (as illustrated in figure 37), β14(σ) and β21(σ)---indexed
according to two different nearest-neighbors of σ---represent the
same agent that is a distance D=2 away from σ.

Note that two components of Lt(σ) comprise part of σ's knowledge state
(which may be “discovered” by CT-agents, and hence the CTN, in the
event that σ is captured): (1) the set of direct contacts (i.e., σ’s imme-
diate neighbors at time t); and (2) the set of degrees of σ’s neighbors,
{deg(α i(σ))} (i.e., it is assumed that the maximum information σ has,

58. SOTCAC always keeps a “ground truth” list of the nodes and links of the
TN; in the form of a master adjacency matrix, Mij(t), indexed by arbitrary, but
persistent, labels for all nodes (the number of nodes, of course, is a func-
tion of time). Thus, while indexed arrays---such as the sets {α i(σ)}, {βij(σ)},
and {γ ijk(σ)}---are convenient because they simplify formal discussions of
how agents process information and adjudicate moves, it is important to
keep in mind that they do not represent the actual form of information as it
is processed by SOTCAC on the source code level. If SOTCAC’s master
node-label list is {n1,...nN} (at time t), for example, SOTCAC “knows” that
σ’s neighbor (=α3(σ)), say, is really just node nj.
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and may reveal, about any of its neighbors is the number of contacts
that a given neighbor has; but not the identity of those contacts).

Active social space 

The LoTo-map defines the active social space that is available to σ at
time t, in which σ may “search” for information and required
resources. For example, σ may send any of the following queries to
any of its immediate neighbors: (1) “Do you have X?” (where “X” is a
particular resource); (2) “What do you possess?” (which requests an
explicit inventory of possessions); (3) “Who do you know?”; (4) “Send me
X”; and (5) “Have β send me X through you.”

For example, if σ queries α3 with “Who do you know?” (which takes one
time step in the simulation), α3 responds (on the next time step; if it
chooses to) by sending σ the list {β31(σ), β32σ),β33(σ)}, and σ, in turn,
may elect (on the following time step) to communicate directly with
any of α’s neighbors; i.e. to make its prior β’s (whose identities were
unknown by σ,), σ,’s new α’s. On the other hand, depending on σ’s
personality, σ may instead elect to have a resource X (possessed by
some β) passed from β to σ, indirectly via α (who acts as “broker”).
The tradeoff is one between efficiency (or speed of transmission) versus
vulnerability: if a resource is transferred directly from β to σ, the trans-
fer is fast (requiring a minimum of one time step and a maximum
that is determined by the type of resource being transferred to com-
plete) but creates a temporary new link between β and σ that may be
visible to surrounding CT-agents; if the resource is, instead, trans-
ferred indirectly, first from β to α , followed by a transfer from α  to σ,
no new links are introduced, thereby reducing the probability of
being discovered by a physical CT-agent, but the transfer takes at least
twice the time (possibly more, if during the transfer, α ’s “attention” is
temporarily diverted to other matters).

Ego-map

An agent σ’s ego-map, Et(σ), is a dynamic, local map of σ’s existing and
prior social contacts at time t; and is both an extension, and refine-
ment, of Lt(σ). Et(σ) is also, implicitly, a pointer to where other known
agents are located (see below), a reference for potential future con-
tacts, and a general aid for finding information and/or other mission-
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critical resources. Et(σ) represents what σ “knows” about the TN from
its local (i.e., ego-centered) vantage point, categorized according to
time (past, present and potential future). To appreciate the differ-
ence between σ’s Loto and ego maps, note that while Lt(σ) contains
only the raw σ-centric view of TN’s local topology (or, information
about “who is connected to whom”), Et(σ) contains σ’s accrued local
interpretations of its evolving local neighborhood (or, information
regarding “who σ knows about either from prior direct contacts or
indirectly via other channels). For example, σ’s ego-map contains a
list of agents with whom σ may choose to establish a direct link (and
can do so immediately, at any time, without going though intermedi-
ate contacts to gain the identity of the other agents); σ’s LoTo-map
does not.

Figure 38. Schematic illustration of the four basic categories of contacts in a T-agent σ’s ego-
map, Et(σ), at time t; see text for details 

Figure 38 shows a schematic of the four basic sets of contacts to which
any of the T-agents in Et(σ) may belong at time t:

• Trusted Prior (TP) contacts,
• Current Contacts (CCs), 
• Terminated Contacts (TCs), and
• Potential Contacts (PCs).
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The color-coding of the sets and links in the figure do not intention-
ally convey any meaning (beyond that of graphically distinguishing
among the different contact sets), save for the solid black links
between σ and the set of CCs: these are the only links---at time t---that
are vulnerable to detection (and possible compromise) by CT-agents.
As long as σ itself is invisible to the CTN, all of the links in Et(σ) other
than those between σ and its CCs are also invisible to the CTN and its CT-
agents.

Trusted Prior (TP) Contacts 

TPs represent the network of family, friends, acquaintances, and/or
other past associates that an agent knows and trusts (and has possibly
had numerous contacts with). It is a virtual network because it’s mem-
bers and structure are both a priori unknown to the CTN. CT-agents
cannot “see” the links between any T-agents and their networks of
TPs. Such links may only become “visible” to the CTN in two ways: (1)
if a T-agent chooses to activate virtual links to one or more TPs, and
a CT-agent is in a position (and has the requisite ability, skills and
experience) to detect the activation; and (2) the agent σ is either cap-
tured or converted into a double-agent (in which case the informa-
tion content of σ’s ego-map, including σ’s virtual network of TPs, is
subsumed by the CTN and incorporated into its belief matrix; see
Counterterrorist network: beliefs).

Ericson [85] discusses the importance of the role that trusted priors
generally play in secret societies. More recently, in the context of the
9/11 terrorist attacks, Krebs [193] shows that the 19 hijackers all
came from a network that had high closeness and degree centrality;
Voss and Joslyn [194] reveal that the “Hamburg Cell”---which was the
coordinating center of the entire operation---was also largely based on
trusted prior relationships. An invisible network of trusted prior rela-
tionships is what renders terrorist networks both hard to detect and
resilient [195].

An important research issue to explore is the degree to which the effi-
cacy of the TN depends on the size and topology of the “seed” TP con-
tact network. The two extreme cases occur when (1) no recruit that
subsequently joins the TN has any TPs (so that the emerging TN is rel-
egated to using only those assets that its components are able to “dis-
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cover” on their own, “out in the open”; i.e., there are no “invisible”
components for the TN to exploit), and (2) all recruits effectively
“know” all other recruits before joining (so that all members of the
TN have virtual access to all other members). Just as a starting spatial
disposition of combat-agents is critical to consider in designing a sce-
nario in EINSTein, the seed TP network is a critical factor in SOTCAC
for exploring the coevolution of TN and CTN systems.

Current Contacts (CCs)

CCs constitute the set of agents with whom a given agent, σ, is cur-
rently linked (i.e., the set defined as α i(σ) in σ’s loto-map; see above).
While a particular link between σ and some other agent CCi, ,
may assume a variety of forms---for example, it could represent a face-
to-face meeting, an email or telephone exchange, or a correspon-
dence via conventional mail (see Communication below)---its rele-
vance to Et(σ) is embodied entirely in the fact that  exists at
all: links between σ and a CC are always vulnerable to discovery, intru-
sion and/or destruction by the CTN. 

Having open communication links with CCs offers both (short- and
long-term) benefits and drawbacks to σ. Benefits include the trade
for, or acquisition of, the information, skills, and other miscellaneous
resources that σ needs to accomplish its assigned mission; as well as
simply augmenting σ’s evolving social contacts and establishing a
growing network of trusted contacts that σ may later choose to coop-
erate with. Drawbacks include exposing σ (as well as σ’s linked CC
partners) to detection or abduction by a CT-agent, and adding to σ’s
overall workload.59

Terminated Contacts (TCs)

TCs are T-agents that σ has had prior contact with (during the cur-
rent run) but to which it is not linked with at the current time t.
Depending on how those prior contacts were established (and their

59. Each link represents one unit of “work” that is assigned to an agent; the
effective rate at which an agent is able to “assimilate” communicated infor-
mation (and/or channeled resources) diminishes with increasing work-
load, and depends on the agent’s innate ability and experience. 

( ), il CCσ

( ), il CCσ
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type and duration), the CTN may or may not be aware of their exist-
ence. However, once an agent becomes a member of σ’s set of TCs, it
effectively becomes part of σ’s extended virtual network that TPs are
also part of: i.e., σ is “aware” of a TC’s existence, and may choose to
reactivate a link to it if σ perceives a need to do so; but, as long as a
link between σ and one of σ’s TCs remains virtual, it is hidden from
CT-agent sensors. As for TPs, σ’s virtual net of TCs may only become
“visible” to the CTN if a CT-agent is in a position to detect the activa-
tion of one or more of those links, or if σ is either captured or con-
verted into a double-agent.

Potential Contacts (PCs)

PCs constitute the set of agents that σ is neither currently linked to
nor has been linked to in the past, and about which σ knows---via
intermediary agents belonging to σ’s TP, CC, or TC sets---only the fact
that they “exist.” For example, in figure 38, σ knows that PC4 exists,
via PC4’s link to CC1, one of σ’s current contacts.

Agents belonging to σ’s PC class represent potential sources of infor-
mation, resources and other contacts (currently unknown to σ) that
σ may choose to establish communications with. For example, σ may
query CC1 about what CC1 “knows” about PC4 (for example, “What
skills does PC4 possess?” or “Who does PC4 know?”), and thus establish the
parameters necessary for deciding whether or not to link (and barter,
negotiate, or cooperate) with PC4.

T-agent personality

As in both EINSTein and SCUDHunt, SOTCAC’s agents all possess a
unique, dynamic, vector-valued personality, the components of which
define the relative value an agent assigns individual tasks and/or
motivations; and thereby regulates how agents behave. However,
unlike EINSTein’s agents, all of whose decisions, and therefore per-
sonality weights, are confined solely to one battlefield, SOTCAC’s
agents live in two spaces and thus require two personality vectors: (1)

, that determines how they act in the physical domain, and (2)
, that defines how they act in the information domain.

PhysW
r

InforW
r
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Figure 39. Schematic illustration of the different distance functions used 
in SOTCAC’s information and physical domains 

Figure 39 illustrates, schematically, these two coupled spaces, and
highlights the different metrics that are associated with each.60 In the
physical domain---shown on the bottom---distances are measured
using the conventional Euclidean distance function:

, (58)

where A and B are any two points in the space, and xA, xB, yA, and yB
are their x and y coordinates, respectively. The farther two agents are
from each other---on the two dimensional grid---the less likely they are
either to “see” one another or interact in any way.

60. The information domain in figure 39 depicts only a “collapsed” view of a much
larger multidimensional space that encompasses the possible kinds of
agent agent links (such as face-to-face meetings, phone, email, and internet
chat rooms); not too mention the even larger set of social network domains that
real terrorist networks inhabit, including cultural, familial, financial, legal, politi-
cal, and religious spaces [196]. 

↔

( ) ( )2 2Distance ( , ) A B A BPhysical x x y yA B − + −=
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In SOTCAC’s information domain (or social network space)---
appearing on the top half of figure 39---distances are measured using
the graph metric function:

, (59)

where the Minimum{...} is taken over all paths ( ) between A and B.
For example, figure 39 shows that while the physical distance between
the agents labeled A and B spans essentially the entire space, and is
therefore quite large (DistancePhysical(A,B)~28), the distance between
the same two points in the information domain measures five units,
because the shortest path between them contains five links. The
figure also shows that despite also being relatively far apart physically,
the points C and D are direct neighbors in information space.

Just as SOTCAC’s global dynamics is driven by the interplay between
two spaces (namely, the coevolution between what the TN does and
what the CTN perceives the TN is doing), the TN’s local actions result
from a tight coupling between the physical and information spaces.
While some actions might require close physical proximity, other
actions may preclude close contact, and be conducted covertly over
long-distance communication lines (for example, when cell leaders
want to coordinate the activities of their cell members, but do not
wish to compromise their identity or location).

Physical domain

T-agents use the physical domain primarily for three purposes: (1)
training, which requires that unskilled recruits be present at a “train-
ing camp” for a threshold period of time, (2) face-to-face meetings with
other T-agents or supporting agents (that maximizes the reliability of
information flow, but also renders the participating agents vulnerable
to CT-agents, and (3)reconnaissance of assigned targets (which can
motivate T-agents to either approach or stay-away-from certain areas
of the physical space, depending on the dynamic context and other
components of the T-agent’s personality).

T-agents generally try to avoid being “seen” by other agents they have
either recognized as belonging to the CTN or suspect of being CT-

{ } { }Paths # links between  &  on 

Distance ( , )Information

Minimum A B

A B =

P P
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agents. T-agents are especially fearful of being physically surrounded
by (what they believe to be) the quorum number of CT-agents needed
to capture them ( ). Thus, the “do not get caught”
rule acts as a trigger event:

If the number of CT-agents you are surrounded by exceeds the quorum number,
give 100% weight to moving away from CT-agents at maximum speed, and
temporarily set all other physical movement weight vector components to zero. 

Information domain

Minimize I-visibility 

Analogous to a T-agent’s desire to “not be seen” by CT-agents in the
physical domain is an innate tendency to minimize its visibility inn the
information domain. In practice, this means that an agent must
weigh its need to communicate with other T-agents (in order to
acquire resources, coordinate activities, etc.) with the requirement
that all communications must be kept to a minimum. The dynamic
effect may be regulated using an agent’s risk aversion parameter.

Maximize information gain 

During any transaction with other agents, an agent is motivated to
maximize expected information (and/or material resource) gain.

Maximize compartmentalization 

Defines the degree to which a T-agent wishes to constrain all of his
actions (physical and social) to members of his own cell. At one
extreme (weight value = one), a T-agent never associates (or forms any
links) with another T-agent that does not belong to his own cell; i.e.,
only cell members are visible (in both the physical and social
domains). At the other extreme (weight value = zero), a T-agent does
not discriminate between cell type, treating all T-agents belonging to
different cells equally.

Social network metric propensities 

T-agents may use many of the social network metrics introduced ear-
lier in this paper (see section Complex networks: metrics, page 83) to
tune their behavior in the information space. Leaving the details of
how this is done to a later section, the basic idea is to endow T-agents

( )TN
CaptureN Ta Cta= a
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with a “social sense” that depends on what communicative properties
they would like to see in their local neighborhood. 

For example, some agents, who may lack the requisite skills for forg-
ing links or simply be inexperienced, may seek to form ties only with
other a few other agents who are physically close by and whom they
already know well. Other, more experienced, agents, with entrepre-
neurial skills, may seek to establish a local link structure that creates
structural holes (see discussion beginning on page 102) that they can
exploit. Still others may have personalities that render them strongly
motivated to play the “central” role in cell-to-cell bargaining among
operatives and support agents. In all of these cases, a given CT-agent’s
information-space personality is defined by an appropriate set of
values of basic social metrics such as degree, betweenness, and centrality.

T-agent actions

T-agents (and, as we shall see later, especially CT-agents) always
behave according to what they perceive to be true about their local
environment; not necessarily what their local environment’s true
state is. For example, a T-agent may fail to “see” a nearby CT-agent
and/or erroneously tag another agent as belonging to the CTN.

Movement

T-agents move about the physical space in exactly the same way as
agents in EINSTein move about the battlefield (albeit driven by a dif-
ferent set of primitive motivations): weighing expected utility versus
risk, agents adapt their personality to their state and context. For
example, new recruits may want to stay close to trainers. Mission oper-
atives may also need to temporarily cluster for face-to-face meetings.
On the other hand---environmental conditions permitting---all cell
members may generally elect to be as far apart from one another as
possible so as to elude detection. 

Acquiring manpower: recruiting

Recruiters and cell leaders are always motivated to find new recruits.
However, the degree to which a leader focuses attention on recruit-
ing, relative to his other tasks, is inversely proportional to how close
the number of his subordinates are to his CellMaxNum value. A
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leader’s primary task to ensure that the requisite manpower (for the
mission assigned to its cell) is always available. 

Acquiring skills: training

Both recruits and mission operatives must receive training before their
rank and/or skill index are upgraded: recruits need basic training
prior to being “activated” to T-agent status (which they receive from
a physical collocated trainer during a training interval ∆τTraining); mis-
sion operatives may need to acquire a set of specialized skills that are
required for their cell’s assigned mission.

Basic training, notionally, represents the acquisition of such skills as
familiarization with basic weapons, grenades, laying and fusing land-
mines, cover and concealment, use of false documents, and training
in foreign culture survival. Specialized skills include training in mor-
tars and rockets, grenade launchers, urban battle tactics, sniper fire,
bomb making, creating improvised explosives, and camouflaged/
stealth operations (see [197]).

Acquiring resources

Most of the activity of mission operatives, once they have been
assigned a role in the mission for which their cell leader is responsi-
ble, is to acquire the required resources to conduct the mission;
resources include weapons, money and skills. This is done by using their
LoTo-maps (local topology map; see page 150) to locate resources (and/
or members of the TN who know where a given resource is located),
and, if necessary, bargaining with other agents to acquire what they
need.

Communications

Communications are an integral component of SOTCAC (and the basis
of the TN’s social-networking functions), and are defined as the com-
bined set of rules and actions by which two agents establish, maintain,
and mutually transfer information and/or material resources via a
“communication link” that connects them. SOTCAC includes a vari-
ety of communication types, characterized by content, directionality,
strength, duration and visibility.
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Briefly, communications are predicated on three basic motivations
(from a T-agent’s point of view): (1) Coordination (i.e., “Who do I
need to be linked with in order to coordinate and/or complete my
mission tasks?”); (2) Acquisition (i.e., “Who do I need to link with in
order to get X?”, where “X” represents a skill, resource or weapon), and
(3) Stealth (Who must I break off communications with to reduce the
risk of discovery or intrusion?). 

Of course, each of these motivations entails additional considerations
(as well as finer contextual distinctions) that must be taken into
account. For example, acquisition may be either direct or indirect: if
direct -- meaning a direct transfer or exchange of resources between
two agents -- the exchange may be quick but is vulnerable to detection
by CT-agents; if indirect, the exchange may be effectively cloaked from
outside discovery (albeit not completely, since the intermediate steps
of the exchange may still be detected), but will require additional
time to complete (a channeling of resources or information through
one agent-to-agent link takes one step to complete). How a given
acquisition proceeds -- between two specific agents -- depends, in part,
on the two agents’ personalities (for example, how risk averse are
they?), and, in part, on the general dynamic context. For additional
details, see discussion in section Communications.

Defection

Agents have a probability of defecting to a CT agent (which is
inversely proportional to allegiance, experience, rank and value).
Since the social cost of forsaking one’s commitment to the TN is, in
the real world, very high, the probability of detecting is generally low.
They must be within a “defection range” of an active CT agent. In the
event that a T-agent erroneously attempts to defect to another T-
agent, he is removed from the TN (along with his social net, knowl-
edge, skills and whatever resources he possessed at the time of defec-
tion). 

If a CT-agent is close enough to the defecting T-agent at the time that
agent erroneously defects to another T-agent (i.e., the defecting agent
is acting under the mistaken belief that the agent he has defected to
is a CT-agent), the observing CTN’s belief-map is updated with the
INTEL regarding the TN’s removal of the node (an act that is auto-
matic upon one of its agents observing another defect).
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Promotion

If an “attack” on the TN by the CTN results in the destruction of a cell
leader (along with that cell leader’s ego-map), one of that leader’s
prior subordinates (nominally, the one with highest rank) may be ele-
vated in rank to assume the leader role in his cell. A promotion also
leaves a “hole” in the cell; namely, the node previously occupied by
the new leader. The new leader’s first task, therefore is to restore the
value of the hole. For example, if the new leader was previously a mis-
sion operative, he must now find a new mission operative to replace
his role in the cell’s mission, and provide him with whatever addi-
tional skills and resources are required to complete the mission.

Cells

Cells are groups of T-agents, all of whom are subordinate to a single
cell leader (which is a type of T- agent; see above). SOTCAC’s cells
loosely represent their real-world counterparts, but make no opera-
tional distinction between ostensibly different kinds of cells (such as
between command and control cells, reconnaissance, INTEL or logis-
tics cells). Likewise, “sleeper” cells are not currently modeled. Thus
all cells in SOTCAC are notional tactical operations cells that perform a
variety of overlapping functions.61

While the members of a cell may have latent (or virtual) links to mem-
bers of the terrorist organization that are not part of the same cell
(for example, prior existing friendship and/or kinship bonds)---in
fact, some T-agents may actively exploit such contacts while pursuing
desired skills and resources--cell members are, be default, motivated
to confine their social networking to other cell members.

The strength of a cell, which determines its ability to channel its man-
power to acquire resources, is defined, in part, by the leadership and
influence exerted by the cell leader, and, in part, by its adhesion and
cohesion indexes (see below).

61. The absence of an explicit model of the dynamics of specialized terrorist cells
does not necessarily incur a loss in generality. Al-Qaeda, for example, often uses
combined calls to maximize the utility of existing manpower [197].
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Size

A cell’s maximum size, CellSizeMax, is a user-tunable parameter value,
and defines the maximal number of subordinates that may be
assigned to a cell leader. Of course, the size of real terrorist cells varies
greatly, and ranges from a single terrorist (for example, a suicide
bomber), to small cells consisting of less than five members (which
are useful for abductions and hijackings), to larger cells that consist
of up to 20 members or more (which appear to be preferred by Al-
Qaeda) [198]).

The actual cell size that forms during a run in SOTCAC depends on
the manpower requirements of the cell’s assigned mission; the cell
size must be less than CellSizeMax. The cell leader remains motivated
to “search” for, or find (through recruiters or other T-agents on his
ego-map), agents to join his cell as long as he perceives that his mis-
sion manpower requirement is not satisfied. Once the manpower
requirement is met, the cell leader is no longer motivated to achieve
that mission goal. However, if one or more agents are subsequently
captured by the CTN, the cell leader resumes his search for new mem-
bers.

Adhesion

White and Harary [199]---in a paper discussing the general structural
cohesion within social groups---consider the relationship between
connectivity and density. In particular, they introduce a concept
called adhesion, which is a function of edge-connectivity, and is mea-
sured by the minimum number of edges that must be removed in a
connected group to result in its disconnection. White and Harary
show that a graph (possessing any degree of edge-connectivity) may
be disconnected by a removal of a single node. This means that “the
unilateral power of actors can be high even when there are many relations con-
necting people.” 

Colloquially speaking, there are two related social “forces” that tend
to keep groups together:62 

• Cohesive forces, that depend on the number and strength of
many-to-many links within a group (see Cohesion below), and 
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• Adhesive forces, that measure the number and relative strengths
of many-to-one links that exist within a group. Adhesion
depends most strongly on the cell leader’s leadership (or cha-
risma). 

White and Harary [199] state that...

“...what holds the group together where this is the major factor in
group solidarity is the strength of adhesion of members to the leader,
not the cohesiveness of group members in terms of social ties amongst
themselves...The key to structural cohesion thus rests in how the pat-
tern of relations makes unilateral action impossible.”

Generally speaking, a cell is adhesive to the extent that the social links
among its members are pairwise resistant to be being disconnected.

Coordination Strength

Recall that a cell’s leaders’s chief task is to ensure that the manpower,
finances, skills, weapons, and other resources (such as logistical sup-
port) needed to conduct the cell’s assigned mission are all mar-
shalled as covertly and quickly as possible. 

Since these two requirements---stealth (to prevent accidental “discov-
ery”) and speed (to be the first cell to conduct its assigned mission and
to boost the cell leader’s experience, rank and influence)---are gener-
ally antithetical, the cell leader must weigh the benefit versus cost of
each approach. SOTCAC provides a tunable parameter called coordi-
nation strength, , that defines the degree to which a cell
leader is willing to sacrifice stealth for efficiency.

γCoor=0 means that the cell leader does nothing to directly coordinate
the marshalling of resources among his subordinates. γCoor=1 means
that the cell leader plays the central role in coordinating the search
for resources for all cell members.

62. As pointed out by Fellman and Wright [18], the difference between these
two forces is far from academic; particularly in the context of marshalling
available counterintelligence resources, when it is important to appreciate
the operative qualitative difference: it would be equally ill-advised to
remove the strongest member(s) of a strongly adhesive cell as to target the
leader of a strongly cohesive one.

0 1Coorγ≤ ≤
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Cohesion

The degree to which a cell is able to maintain its integrity that is a
function of the sense of unity and collective identity that gradually
builds-up among its members. This depends on the existence of
many, strong many-to-many ties within the group; and are estab-
lished, for example, by face-to-face meetings.

Recall Farley’s [187] use of ordered set theory to break apart terrorist
cells (see discussion starting on page 123). The key observation is that
a terrorist network’s vulnerability to being disconnected---i.e., its cohe-
sive strength---may be monitored by measuring the net’s cutset resis-
tance. Recall that an (i,j)-cutset defines a subset of nodes such that
every path that connects nodes i and j passes through at least one
node of the cutset.

A cell’s adhesive and cohesive strengths are---somewhat counterintu-
itively at first---global weaknesses, if assessed from the point of view of
an overall vulnerability to some counterterrorist attack. On the one
hand, in terms of a cell’s ability simply to function as a group, being
strongly adhesive and/or cohesive implies that the cell contains a
highly redundant---and, hence, robust---network of communication
pathways. On the other hand, that same robust redundancy increases
the likelihood that parts (if not the entire structure) of the cell may
be inadvertently revealed to counterterrorist agents.

Social network links

Just as physical movement lies at the core of EINSTein’s dynamics,
communication and social network relationships play central roles in
SOTCAC (though movement also plays an important auxiliary role).

A link in SOTCAC is any kind of relationship between two agents. It
can therefore take on a variety of forms and have many different
properties, some of which depend also on context. For example,
some links, such as kinship and/or friendship bonds, exist solely
within the ego-maps of agents, and are not directly accessible to (nor
can they be infiltrated by) CT-agents. 
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Other links, such as email exchanges, telephone calls or face-to-face
meetings, take place in the open, and may be “observed” either by a
physical CT-agent (that is close enough to “eavesdrop” on a conversa-
tion, or surreptitiously using one of several virtual INTEL assets
under the CTN’s control).

Before deciding whether to establish a link---of whatever type---with
another agent, each agent must first weigh the relative benefits and
costs of doing so; each agent does so according to its own unique, and
dynamic, personality. Benefits include factors such as expected informa-
tion gain, monetary transfer, and weapons acquisition; costs typically
include estimated probability of detection, intrusion, and/or discovery and
compromise of identity.

Invisible links

There is an “invisible” web of latent bonds in the TN, that represents
the set of agents that are all mutually linked to one another by the fact
that each member “knows” one or more of the others from some past
affiliation, but chooses---at the current time t---not to communicate with
them. By constituting secret pathways for information to flow, these
invisible webs provide a vital source of hidden strength to a TN.63 The
web remains virtual until an agent “activates” one or more latent
bonds to achieve his local goals.

One of the tunable parameters that SOTCAC provides the analyst
with is the density of virtual links that lies at the core of the TN; with
it, the analyst may explore questions such as, “To what extent does a TN’s
mission success depend on a prescribed degree of virtual kinship connections?”

Communication

Communication links are links between T-agents that involve an
exchange of information.

63. In the context of the 9/11 terror attacks, Krebs [193] emphasizes the fun-
damental role the terrorists’ hidden web of trusted prior contacts played in
their mission planning; see discussion in Appendix 2: mapping Al-Qaeda.
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Each form of communication is characterized by a set of features that
determine how the link is used by CT and CT-agents:

• Type
• Content
• Directionality
• Strength
• Duration
• Visibility
• Vulnerability

Type

• Face-to-face. Face-to-face meetings entail a high degree of risk
(and therefore may not be agreed to by an agent that is espe-
cially risk averse), and assumes that a threshold level of trust
exists between the agents that agree to meet. Face-to-face meet-
ings provide a high degree of certainty of correctly communi-
cating “intended” information, with a relatively low risk of
compromise (by the CTN’s virtual INTEL sensors). 

The only way in which face-to-face meetings may be “discov-
ered” by the counterterrorist organization is by direct visual
contact: one or more CT-agents, possessing a threshold level of
experience and ability, must be within a FaceToFaceDetection-
Range of at least one of the T-agents participating in the face-
to-face meeting, and must correctly recognize at least one of
the T-agents as belonging to the TN.

• Indirect. Indirect communications use an intermediary agent---
who acts as courier---to transfer information (or resources)
from one agent (typically the leader of the organization or cell
leader) to another (typically an operative or support agent).
Such so-called cutout communications [197] generally involve at
least one break in an otherwise direct line of communications,
and maximize security and protection from discovery, but at
the expense of an increased likelihood of error. Moreover, in
the event that a T-agent is “captured” by the CTN and his local
topology map is compromised, the identity of senior operatives
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(and cell leaders) with whom the T-agent had only indirect
lines of communications with, will remain unknown.

• Email/Chat room. Essentially another form of indirect contact,
email and chat rooms provide the terrorist an electronic
medium in which to establish communication links, with the
added security benefit of encryption.

• Phone. Linking via a conventional (or satellite) telephone is a
moderately secure way of communicating. The level of security
afforded a terrorist by a particular channel in the real world
varies greatly, of course (compare, for example, throwaway
global phone cards with cellular systems and long-term residen-
tial numbers). SOTCAC makes no effort to explicitly model the
level of security (or reliability); the analyst is free to define
whatever notional communication channels are desired using
primitives such as strength, visibility and vulnerability.

• Regular mail. Mail can be used to send messages that minimize
the probability that the identity of either sender or recipient
will be compromised. In the real-world, regular mail may be
used to deliver text, computer disks, memory chips, and SIM
cards, all of which may also be encrypted. As for all of the above
forms of “communication” it is up to the analyst to decide how
best to use SOTCAC’s available primitive features to define an
appropriate notional link.

Content

• Query

— Targeted to a specific agent (that the sending agent
“knows”):

– What CT-agents do you see?

– Who do you know? (i.e. send me your entire ego-space)

– Do you have X={mission requirement class, amount}?

– Send I={communication ID} to X={agent ID}

— Untargeted message (communicated to all agents in the
sending agent’s ego-space):
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– I have X={mission requirement class, amount}

– I need X={mission requirement class, amount}

• Information

— I know X={agent ID}

— I know X={ego-map}

— I am X={agent ID}: identify self, but do not provide addi-
tional information

— I have X={source ID, amount}: = without identifying self, pro-
vide information regarding resource ID.

— I have X={agent ID, resource ID, amount}: = identify self, and
provide additional information regarding resource ID.

Vulnerability

Each communication link is vulnerable to various modes of “attack”
by the CTN: 

How vulnerable a given link is depends on its type, information con-
tent, the context of the exchange, and (user-defined probabilities of)
the particular kind of CTN-directed attack.

For example, an email exchange between two terrorist agents has
associated probabilities of “intercept” (=PINT) and “location ID”
(=PLOC-ID): PINT is the probability that the CTN intercepts the email
and extracts the information being exchanged; PLOC-ID is the proba-
bility that the CTN establishes the physical location of the two agents
(and thereby also, implicitly, the probability that the CTN issues an
order to send the nearest CT-agents to move toward the terrorist
agents in the hope of gaining further intelligence). A face-to-face
meeting between two terrorist agents likewise has an associated prob-
ability of intecept, but depends on the CTN having at least one CTa
positioned within an “eavesdropping” distance of one of the terrorist
agents.
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Adaptive topology

The TN’s dynamic topology, at a given instant in time, consists of the
set of (1) active agents, (2) the set of all covert (i.e., invisible, “expired,”
or virtual) links to other agents, and (3) all extant (and overtly visible)
links. The composition of these sets of objects---agents and links---obvi-
ously changes over time as the TN coevolves with the CTN; or, more
precisely, as the TN coevolves with the CTN’s beliefs regarding the TN.
We have already discussed some of the rules by which agents may be
added to the topology (for example, by being recruited by a T-agent)
and deleted (say, by being “captured” by a CT-agent) from the TN;64

in this section, we discuss the agent-directed dynamics of topological
change and adaptation. 

SOTCAC’s adaptive topology is loosely based on three sets of heuris-
tic guidelines: 

1. The general form of link-creation and link-deletion rules intro-
duced in the SDCA model (discussed on pages 76-81); 

2. The penalty-function-based movement adjudication rules and
meta-rules used by EINSTein; and 

3. The “lessons learned” from social network theory regarding the
general dynamics governing human communication and infor-
mation sharing. 

SDCA

Recall, from our earlier discussion of the SDCA model, that the essen-
tial ingredient of that model is its CA-inspired link-creation and link-
deletion rules. Although they are applied to the topology of a system
rather than to the set of values residing at the nodes of a fixed topol-
ogy (as done by conventional CA rules), the SDCA link rules are man-
ifestly CA-like in that they are local within the changing topology; i.e.,
a given node has access only to information in its local neighborhood
and is allowed to change only its local topology.

64. A few more agent-addition and agent-deletion rules are introduced in the
Counterterrorist network section below.
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The basic mechanism behind SOTCAC’s adaptive topology (which is
explicitly defined in a later section; see SOTCAC’s link rules) is also
manifestly CA-like and borrows heavily from the SDCA model. Links
between agents---which are abstract representations of different kinds
of “flows” (for example, information, money, and other material
resources)---may be created and deleted only locally; and agents are
only allowed to alter the topology of their local neighborhood, using
only local information.

The chief difference between SDCA’s and SOTCAC’s link rules is that
while the SDCA model treats links as independent objects that turn
themselves on or off, in SOTCAC, links are treated as passive conduits
that must be turned on or off by agents. Moreover, in SOTCAC, links
may be directional and require that two agents (i.e., the “sender” and
the “receiver”) simultaneously agree to an exchange (subject to their
own, typically differing, personalities and motivations) before a link
between them is established.

EINSTein’s rules

Brief review of EINSTein’s action selection logic65 

In EINSTein, the global state of the combat model at (discrete) time
t, , is a formal “snapshot” of the system at t that records the iden-
tity and locations of all objects, agents, and their internal states. Of
course, individual agents typically have access only to some subset of
the information contained in .

Define the local state, as perceived by an agent A, , to be the
set of all features of A’s local environment that are filtered by A; i.e., it
is the set of features that are either sensed directly by, or communi-
cated to, A. The two fundamental axioms of EINSTein’s action selec-
tion logic are then: 

1. All agent actions derive from time varying assessments of the relative
value among features . 

2. The local state is defined by the matrix of A’s penalty function values:
(ZA)ij, evaluated for all sites within a movement range, rM, of A
(where i = xA - rM, ..., xA + rM, j = yA - rM, ..., yA + rM, and A is at
the site ; see figure 40).

65. The material in this section is extractedand distilled from [11] and [16].
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Figure 40. Schematic illustration of EINSTein’s action selection

Assessments are functions of personality, and consist, in part, of
making distinctions between what available features are, and are not,
relevant to A for selecting an appropriate set of actions in a given con-
text. While one set of features might be important to consider in one
context, a different set of features might be important for another.
No agent can credibly mimic being “intelligent” unless it is able to
tailor its actions to specific needs, and adapt to changing contexts.
Agents must therefore have some way of identifying which features
are most important in a given context, and to deduce which actions
are appropriate for the given features. 

In EINSTein, the user specifies the features that are visible to each
agent, and agents select their action, via the penalty function, ZA, by
mapping a given context (i.e., a given vector of feature values visible
to it) to motivations for moving toward (or away from) nearby sites.
As the value of ZA, at a given site, , increases, A’s desire to move to
decreases, relative to other sites. As the value of ZA decreases, A’s
desire to move increases. The site at which ZA attains its minimum
value ( ) is the site at which A expects to best satisfy its (personality-
weight specified) objectives.66

General classes of motivations in EINSTein include:

66. The fact that A seeks to minimize, rather than maximize, the value of its pen-
alty function is an artifact of the author’s training as a physicist. In physics,
one typically solves for the minimal energy states of a system. 

xr xr

x′
r
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• Moving toward, or away from, other agents.

• Moving toward, or away from, specific sites or areas on the battlefield.

• Minimizing, or maximizing, various local battlefield characteristics
(i.e., static indices of the cost of moving over terrain), vulnera-
bility (to possible enemy fire), and visibility. Static indices repre-
sent default, and unchanging, measures that are calculated
once prior to the start of a run and in the absence of agents.

• Minimizing, or maximizing, various local, dynamic combat character-
istics (such as the projected vulnerability and visibility if moving
to site (x,y) as a function of the actual disposition of local forces,
relative local firepower concentration, combat intensity, terri-
torial possession,...).

Fundamentally, ZA’s form implicitly embodies the filters by which A
“sees” the world, and the matrix of ZA’s values, evaluated over the
space of all possible moves, explicitly determines how A “reacts” to its
world. 

From A’s point of view, all behavior ultimately reduces to a calculus of
feature values: A’s contexts are defined by features (i.e., by A’s percep-
tion of the local state), A identifies the features that are important in
its current context (which vary according to an agent’s “personality”),
and A selects an action that essentially represents A’s “best guess” (as
defined by ZA) as to which move leads to a local state in which the
values of the perceived features come closest to what A “wants” them
to be. 

If A were the only agent occupying the battlefield, and the environ-
ment was unchanging, A would quickly find the one site (or sites) that
best satisfies its needs and stop there. What makes the model interest-
ing, of course, is the presence of multiple agents, all mutually inter-
acting within a changing environment. Each agent’s landscape of
penalty function values is thus continuously deformed by the actions
of other agents. Just as one agent moves closer to “solving” its local
problem, other agents move farther away from solving theirs, and all
agents face the specter of needing to tune their solutions to con-
stantly shifting problems. 

Although the number of terms in ZA(x,y) is, in practice, quite large,
ZA(x,y)  always has the same general form:67
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(60)

where:

•  is a numerical weight value that represents A’s motiva-
tion for maximizing (if w > 0) or minimizing (if w < 0) its expected gain
from performing the action A. The label “A” appears as a subscript
on the motivation w to remind the reader that motivations,
which are an integral part of an agent’s personality, may be
uniquely assigned to individual agents.

• represents a measure of how well A expects it will perform
action A in the event that it chooses to move to site (x,y). The lower
and upper bounds of both depend on A. In simple
cases, such as when A = “move toward squad-mate,” µ is equal to
the distance between a squad mate and a candidate site to
which A may move. For other actions, such as A = “maximize cov-
erage of assigned patrol area,” µ is a more complicated function of
two or more features.

Because much of EINSTein’s behavior, both local and global,
depends on how the user defines the penalty function, it is important
to understand the subtle conceptual difference between weights, w,
and measures, µ, to which the weights are assigned. Weights represent
an agent’s motivation to perform a given action, and generally
depend on one or more dynamic features of the environment accord-
ing to functions defined by the user. Only their relative values are
meaningful. Informally, we may say that w specifies how strongly A
either wants, or does not want, to do something (relative to the set of
actions it can perform in a given context).

Measures are also user-defined functions of environmental features
(though the features do not have to be exactly the same set as used to
define weights), but define how well an agent expects to perform the
action associated with its corresponding weight. Informally, µ measures

67. Note that the underlying action-selection methodology that is encoded in the
expression for ZA(x,y) is formally equivalent to the von Neumann-Morgenstern util-
ity function (with risk aversion) used in economic decision theory; see [200].
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how well A expects to do, assuming that A has chosen its course of
action (consistent with its weights). 

Positive weight values are interpreted to mean that an agent is moti-
vated to perform the associated action. Negative values are inter-
preted to mean that an agent is motivated to not perform the
associated action (or, more precisely, to perform whatever set of
actions are necessary so that the measure associated with performing
action A, , is minimized). If the value of a weight is equal to
zero, then the agent effectively ignores the action (or actions) that are
associated with that weight (and is thus also “blind” to the features
that the weight is a function of, for the range on which the weight is
zero).

EINSTein’s rules adapted to SOTCAC 

In the spatial domain, EINSTein’s movement rules translate almost
directly into a form appropriate for SOTCAC’s T-agents and CT-
agents. Although SOTCAC’s agents are obviously motivated by fea-
tures that are either irrelevant or entirely absent in EINSTein---for
example, although an agent’s “health” is a critical parameter in EIN-
STein, neither T-agents nor CT-agents “care” about this particular
feature; on the other hand, SOTCAC’s agents respond to perceived
“peer pressure” and “social rank,” neither of which appears as a fea-
ture in EINSTein---the way in which SOTCAC’s agents use local envi-
ronmental features to determine their moves is identical to how
EINSTein’s agents process their moves.

As a simple example, suppose we have a single action,

A = minimize distance between A and agents friendly to A 

Then, means that A wants to “get closer to” all friendly
agents; means that A wants to “get farther away from” all
friendly agents. In this case, the measure = distance between A
and agents friendly to A. A point worth emphasizing here, as it becomes
an important focus of discussion in the next section, is that w(A) is
generally not a fixed value (as it was in earlier versions of EINSTein);
instead, w(A) takes on a range of values (which is now a higher-level

(A; , )x yµ

(A) 0w >
(A) 0w <

(A; , )x yµ
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“signature” of an agent’s overall personality), and is a function of one
or more environmental features, as sensed locally by A.

In general, while always represents the motivation to perform a
single action (and is usually associated with a single feature), the
value of usually depends on several features.

The battlefield site to which A moves, , is given by

(61)

where the search for the minimum value of ZA(x,y) is conducted over
all positions (x,y) whose distance from , , is less
than or equal to A’s movement range, rm.

Social network interaction rules

A variety of mechanisms of social bond formation and interaction
have been proposed in the literature; for example [201]-[203]:

• Homophily: agents tend to communicate more (or less) with
other agents who are more (or less) “like” them.

Homophily refers to using similarity (between prospective communi-
cation partners) as an underlying mechanism that determines the
likelihood of two people establishing, maintaining, altering, destroy-
ing, and reconstituting social networks [42]. Homophily has been
studied by Byrne [204] and Turner [205]. 

Byrne was an early proponent of the similarity-attraction hypothesis,
that asserts that homophily reduces the psychological stress that oth-
erwise would build up as a result of social differences or inconsisten-
cies. Turner introduced the idea of “self categorization,” which
asserts that communication links arise as individuals attempt to
define (and refine) their social identity by examining various catego-
ries (such as age, gender, and race) within which they can compare
their own standing to that of others; in this context, homophily is a
mechanism by which an agent legitimizes its own social identity by
choosing to associate with others it perceives as falling within the
same social categories.68
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Letting  represent the strength of the communication link
between agents i and j, and fk(x) the value of the kth feature of agent x,
the homophily link mechanism can be expressed, formally, as [203]:

, (62)

where wk is the weight for the kth feature, |x| is the absolute value of
x, and Ψ is some appropriate function. In words, the strength of a
bond between i and j is a function of the weighed differences between
their attributes.

• Proximity: agents tend to communicate with other agents that
are “close” to them.

In SOTCAC, the proximity coupling mechanism is followed trivially
in social space, since all links are forged and deleted only locally. On
the other hand, in the physical space, T-agents typically wish to mini-
mize the risk of discovery, and thus tend behave antithetically to this
premise: i.e., T-agents are motivated to not directly communicate with
other nearby T-agents.

For example, if the physical distance between i and j is Dij, then one
obvious form is given by (up to a maximum distance ):

, (63)

where n > 0. Thus the strength of a communication link (in SOT-
CAC) decreases with decreasing physical distance between agents.

68. An additional argument in favor of using homophily as a TN link-cre-
ation mechanism in SOTCAC is that it automatically provides one of the
two ingredients necessary for generating scale-free random graph mod-
els: namely, preferential link attachment [206] (the other ingredient being
growth, which is also trivially satisfied by explicitly adding new recruits
into the TN).
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The general role that proximity mechanisms play in social network
formation is discussed by Ibarra, et al. [207], Monge, et al. [208], and
Rice and Aydin [209].

• Social exchange: agents tend to communicate with other agents
that have previously communicated with them.

• Resource dependency: agents are likely to communicate with other
agents that possess resources that they need and/or that need
resources that they can provide.

For example, if ra,k(i) is the kth resource that agent i has available, and
rn,k(j) is the kth resource that agent j needs, we can write, formally:

, (64)

where  is the weight for the kth resource,  is some appropriate
function, and  is the betweenness centrality of agent i.69 In words,
the strength of a bond between i and j is a function of the cumulative,
weighed potential for an exchange of resources between them; 
is added to account for the possibility that there exist multiple agents
(j1, j2,...,jn), all of whom provide i the same resource: in this case,
agent i tends to forge only those links that minimizes it dependence
on other agents, or, equivalently, maximizes its local “importance”
within the network, and hence its centrality. (Specific resources in
SOTCAC include raw information, money, skills, and weapons.)

The role that resource dependency plays in network formation and
social systems is discussed by Bienenstock and Bonacich [210] and
Cook and Yamagishi [211].

• Reciprocity: a given agent X tends to interact with another agent
Y (by either forming or severing bond with Y) according to how
X perceives being treated by Y in the past. 

69. Recall that the betweenness centrality of a node is a metric that measures
how “important” a role that node plays in the information flow through-
out the entire graph; it is defined in equation 31.
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That is, agents tend to interact with other agents in a tit-for-tat fash-
ion; they reciprocate positive exchanges with positive exchanges, and
negative exchanges (for example, a doublecross) with negative
exchanges.70 

• Self-interest: agents tend to simultaneously minimize the total
“cost” of communication and maximize individual reward.

• Evolutionary: agents tend to locally and/or globally optimize
their (own ego-centered) assessment of network “fitness”.

• Valuation: agents tend to maximize the collective “value” (or
resources) gained from communicating with other agents
(value mechanism; see below).

As manifest assertions of “bounded rationality,” all three of the pre-
ceding mechanisms---self-interest, evolutionary and valuation---underlie
most, of not all, multiagent-based simulations. Self-interest, as used
here, is essentially a strong form of the rationality principle, the appli-
cation of which to the study of human systems was pioneered by
Homans [215]: Homans likened an individual’s action selection to a
local cost-benefit analyses in which various options are weighed, and
the one that yields the greatest (or optimal) payoff is selected. 

Simon [216] later modified this principle by introducing what he
called bounded rationality: “Boundedly rational agents experience limits in
formulating and solving complex problems and in processing (receiving, stor-
ing, retrieving, transmitting) information.” Simon’s weaker form of ratio-

70. The often counterintuitive ubiquity of tit-for-tat strategies in social net-
work settings has been well studied by Axelrod in the context of the pris-
oner’s dilemma [212]-[214]. The prisoner’s dilemma is a game between
two people who must choose whether to cooperate with one another.
The payoff is such that the best choice for each player, individually, is
noncooperation; however, if both players choose to not cooperate the
reward is less than if they choose to both cooperate. Thus, while nonco-
operation is the optimal individual choice, the best mutual decision is
to cooperate. After analyzing the efficacy of alternative strategies for
repeated rounds of the prisoner’s dilemma game (in both real and sim-
ulated settings), Axelrod found that the best strategy is to always coop-
erate on the first move and then do whatever the other player did on the
preceding move.
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nality thus posits that agents seek to merely satisfy, rather than exactly
solve, their needs.

EINSTein’s weight-based agent-action selection logic (see equation
55) is already patently bounded rational; as are all of SOTCAC’s
agent’s decisions in the physical space. However, one heretofore miss-
ing ingredient necessary to describe agent action selection in the
social domain is the relationship between an agent’s (social network-
ing) properties and the character of communication links that the
agent tends to form. 

The theory of social capital [217] suggest that an agent i’s features
(=fk(i)), such as its ability to find information, skill, ability to adapt to
increased workload, etc.), are influenced by the “social capital” that i
is able to accrue from the network in which they are embedded.
Social capital represents any attribute, derived from the communica-
tion flows and relationships in the network, that is of (either indirect
or direct) benefit to a given agent. For example, i’s “value” to a net-
work (v = fk(i)) is, formally, some function of the sum of the strength
of links that i has with other agents: 

, (65)

where  is some appropriate function, and Lik measures the
strength of the link between agents i and k. Of course, this is only the
simplest such formal relationship. In general, each of an agent’s
many features depends on multiple network characteristics and mea-
sures of accessible social capital. The exact form of the functional
relationship between features and social capital determines the scope
and details of a particular model. 

For example, Monge and Contractor [203] suggest three theoretical
mechanisms of generalizing the social-capital-based self-interest rela-
tion embodied in equation 60: diversity, embeddedness and holes.

Diversity. An agent’s features may be influenced not just by the
strength of ties an agent has with other agents, but also by the diver-
sity of features that an agent’s linked partners possess, as a group. For-
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mally, i’s kth feature, fk(i), is a function of the product of i’s link
strengths, Lik, and the variances of selected features (=σs(j)) of agents
to which i is linked [203]:

. (66)

Embeddedness. An agent’s behaviors can be influenced (positively or
negatively, depending a given agent’s personality) by the degree to
which an agent’s local ties are reciprocal; that is, according to how
strongly an agent feels it is embedded within a local network of
mutual links. In the case where network links are directional (that is,
Lik is not necessarily equal to Lki; for example, if information or
resources flow from i to k, but not vice versa), we can express this for-
mally, by writing:

. (67)

Monge and Contractor [203] suggest that the form of  may
assume both linear-positive forms (increasing embeddedness yield-
ing enhanced features) and nonlinear-negative (increasing embed-
dedness yielding diminishing returns and/or, after some threshold
level is reached, resulting in decreasing influence).

Structural holes. Recall that structural holes71 are the implicit bound-
aries that separate groups of nonredundant (i.e., disconnected)
nodes; they are a network’s local buffers between nonredundancy,
waiting to be “discovered” and exploited by observant agents. In the
current context, structural holes thus represent a potentially rich
source of social capital for agents. Agents can strengthen their value
to a network by exploiting existing holes and/or actively forging links
that spawn new ones (with them at the center). Formally:

71. The “structural hole” concept was introduced by Burt [134]; see discussion
in section Complex networks: metrics, page 102.
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, (68)

where  is some appropriate function (that typically assumes larger
values for smaller values of its argument: smaller values of the triadic
relationship expressed by the summand are expected to yield a stron-
ger brokerage potential), and the double summation is over all nodes
j that are linked to i and nodes s that are linked to both i and j. Lik
measures the strength of the link between agents i and k. 

From the standpoint of self-interest---as a core motivation underlying
agent action---it is assumed that agents always seek to maximize access
to exploitable social capital. For example, in addition to being influ-
enced by the strength of existing holes, agents can also catalyze the
formation of new holes by simultaneously forging links with uncon-
nected agents and finding ways to minimize the interaction among
those (otherwise loosely connected) groups. 

• Altruism: agents tend to maximize the collective value of the
communication to the group to which they belong.

• Group cohesion: agents tend to interact with other agents that
belong to the same social group.

Group cohesion manifests itself as a dynamic element not just as a
propensity for agents to link with group-mates (such as, say, with
other members of a terrorist cell in SOTCAC), but also as the basis
for strengthening (or weakening) links. For example, equating group
cohesion with group density (=ρG), defined as the average link strength
in G (= ), we can write, formally [202]:

, (69)

where  is the density of the group to which i and j both belong,
and  is the average density of the groups in the network.

The study of group cohesion, and its role in social network dynamics,
arguably lies at the core of social network analysis, and dates back to
the work of Back [218], Homans [219] and Seashore [220] in the
1950s. More recent studies are by Evans and Dion [221] and Moody
and White [156]; Friedkin [222] provides a short review.
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SOTCAC’s link rules

SOTCAC’s link-creation and link-deletion rules are, essentially, the set
of social network theoretic communication heuristics applied to EIN-
STein’s personality-weight-prescribed movement rules. The main dif-
ference between SOTCAC’s rules and EINSTein’s rules, is that while
EINSTein’s agents are confined exclusively to the physical domain,
SOTCAC’s agents maneuver in both the physical and information
domains. However, although SOTCAC’s link rules apply directly only
to the abstract graph space that contains the TN’s evolving topology,
the physical space remains an indirect participant by providing a
backdrop of physical features that T-agents can use for adapting their
default link rule characteristics.72 

Figure 41 shows a schematic illustration of a portion of the TN, as
seen from a T-agent σ’s point of view. The red nodes (that appear
within the region shaded in red) represent the T-agents that are
within a distance D = 2 of σ. 

In general (at the user’s discretion), σ’s local r-neighborhood, Sr(σ),
consists of all agents that are within a distance D = r of σ:

. (70)

Just as EINSTein’s agents can “see” (and react to environmental fea-
tures located) only as far as their (user defined) sensor range permits,
SOTCAC’s agents “know” (and react to agents and other information
located in graph space) within their local r-neighborhood.73 It is within
Sr(σ) that all of the adaptive “rewiring” of the TN’s topology takes
place. Agents can choose to sever existing links, create new links between
themselves and other agents with whom they are not currently linked,
or to “do nothing” at the current time.

72. For example, the “discovery risk aversion” rule (discussed below) is activated, partly,
as a function of the relative physical positioning of nearby T-agents and CT-agents.

73. Conceptually speaking, there is little difference between EINSTein’s physi-
cal space and SOTCAC’s graph space. While the physical space is notionally
a battlefield (and is obviously not a social network), it is represented math-
ematically, within EINSTein, as a fixed N-by-N lattice of sites; i.e., it is a
graph. Thus, SOTCAC’s general local r-neighborhood is a direct analog of
EINSTein’s local (range = r) sensor field.

( ) { }σ σ= ≤( , )rS i Dist i r
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Figure 41. Schematic illustration of an agent σ’s local neighborhood in 
social network (i.e., graph) space

Motivations

T-agents base all of their actions (in graph space) on three general
classes of motivations: (1) mission-centric, which derive from the
requirements that must be met by each cell (and, hence, each cell
member) before a terrorist mission can be launched (for example, an
agent may be motivated to find and acquire a specific quantity of a
certain resource); (2) topological, which are those that derive from
measures of local structure (for example, an agent may desire to
maintain a minimum level of connectivity with his cell leader); and
(3) functional, which includes social network metrics for communica-
tion flow (for example, an agent may be motivated to trade one kind
of link for another to maximize the efficiency of exchange).

Examples of specific motivations for creating (and/or maintaining)
links include:

• Acquiring mission-required resources. Recall that all active T-agents
are members of a TN cell (under the command of a cell
leader), and that each cell is assigned a physical “target” that
requires a specific set of mission requirements be met before a
strike against it can be launched. These requirements take the
form of acquiring sufficient manpower, financing, weapons
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and skills. While it is a leader’s responsibility to maintain a
threshold number of mission operatives (which requires that
links be established with recruiters, recruits, and/or trainers),
mission operatives must find and acquire necessary resources.

• Discovery risk aversion. Agents are generally averse to being “dis-
covered” by nearby CT-agents. Prospective link partners (in
graph space) are therefore afforded lesser (or greater) weight
depending on an agent’s estimate of the likelihood that a link
may be “seen” by one or more counterterrorist agents. 

• Cell-cell mix proclivity. Regulates the degree to which an agent
does (or does not) want to associate with agents from other
cells. Depending on the type of link (for example, information
versus exchange and/or transfer of material resources), agents
may be more (or less) inclined to maintain strict compartmen-
talization.

• Coordination. Cell leaders must periodically communicate with
cell members, ostensibly to coordinate activity, but also to main-
tain cell cohesion. The user controls the coordination fre-
quency; which can also be a function of the rank and skill of
operatives (less skilled and lower ranking operatives requiring
more frequent “pinging”).

• Maximize structural autonomy. As an example of a functional
motivation, agents may wish to maximize their “structural
autonomy” by actively seeking to establish ties with other uncon-
nected agents; i.e., to create links indirect ties between other-
wise unlinked agents, with themselves are mediators. Recall that
structural “holes” (Burt [134]; see page 102) represent a rich
source of social capital that agents can exploit both directly (by
using their central position to maximize access to information
not accessible by others, and thus streamlining their acquisition
of resources), and indirectly (by forging links that create holes
that may be exploited in the future). Agents can maximize their
entrepreneurial networking opportunities by fashioning their
local neighborhoods to provide multiple structural holes
around their neighbors, but none around themselves.

• Maximize familiarity. Agents tend to forge links with agents with
whom they are already familiar. This set consists of not just
those agents that belong to the same cell (some of whom a
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given agent may actually mistrust), but other agents that a given
agent has had prior contact with (see trusted priors, page 154).

• Other topologically endogenous motivations. Many more topologi-
cally endogenous motivations are possible: degree, diversity,
betweenness, closeness, centrality, efficiency, etc.

Motivations for deleting existing links include:

• Lifetime of particular link-type has been reached (ex: duration for finan-
cial transfer) and/or required resources have been acquired

• Perceived risk of discovery exceeds either receiving or transmitting
agents’ risk tolerance.

• An agent’s maximal processing workload has been exceeded.

• Linked agent is no longer perceived as sufficiently trust-worthy.

Figure 42. Schematic of link-creation and link-deletion in SOTCAC; see text for details 

Constraints

The analog to EINSTein’s meta-rules, which act as local constraints on
agent behaviors, are topological constraints that can likewise be used
to regulate SOTCAC’s social network rewiring:

• Maximum number of extant links. Specifies the maximum number
of currently “open” communication channels that a given
agent is allowed to have. (Can be used a rough measure of
“information overload” and correlated with an agent’s skill and
experience.)

• Maximum resource flow. Limits the total amount, r(R), of resource
R that an agent can transfer at one time.
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• Minimum distance from agent X. Specifies the minimum distance
that a given agents wants to be from another agent of type X;
for example, “X” may be cell X, in which case, the given agents
desires to be a minimum distance from all agents belonging to
cell X. (The relative importance of this particular constraint is
obviously commensurate with the size of an agent’s local r-
neighborhood.)

• Disconnect Intolerance. Defines the degree to which an agent
does not want to be disconnected from other T-agents or cell
mates; i.e., the minimum number of extant links that an agent
seeks to possess at all times. If less than a threshold number of
links are active, an agent will unilaterally create one or more
links with (randomly selected) members of his own cell.

Counterterrorist network

“Counterterrorism... Action or strategy intended to counteract or sup-
press terrorism.”—American Heritage Dictionary, 4th Edition

The counterterrorist network (CTN) is the dynamical, coevolutionary
complement of the TN. Its central mission is to attack, disrupt and/
or destroy as many of the TN’s self-organized activities as possible, in
order to prevent the TN from accomplishing its terrorist goals; and to
minimize (or eliminate entirely) the TN’s ability to do conduct future
missions. For accomplishing these tasks, the CTN is equipped with
two kinds of agents: (1) field agents, that interact directly with one
another and suspected T-agents, and members of the terrorist sup-
port organizations; and (2) virtual agents, that act as covert INTEL-
gathering resources, and do not interact with T-agents in the physical
domain. 

Functions

The CTN performs three basic functions:

1. Collects INTEL about the TN’s activity,

2. Generates a “real time” map of the TN’s composition and structure,
and



189

3. Performs strike missions (along with other actions) against selected
“high value” components of the TN.

Just as the terrorist network “lives” in two coupled domains---physical
space and information space---so too does the CTN. The physical
domain constitutes the dynamical arena in which terrorist and coun-
terterrorist agents move and interact. The CT-agents are also
equipped with a special set of INTEL-processing rules, that specify the
conditions under which certain kinds of information may be col-
lected about neighboring T-agents.

The information space harbors the results of CTN’s inference engine,
which collates, fuses and updates all INTEL regarding TN activity.
The inference engine generates a visualization of what the TN “looks
like” at time t, from the CTN’s point of view; the visualization represents
an imperfect, “best-guess” snapshot of the TN’s agents, structure, and
activity.

Thus, the CTN’s dynamic role in the TN CTN coevolution con-
sists of these basic steps: direct the actions of, and collect INTEL
regarding the location and actions of nearby terrorist agents from,
CT-agents distributed in the physical domain; specify the data-collec-
tion requirements for, and direct the actions of, the set of covert
assets (or virtual agents/sensors); collect and interpret all informa-
tion reported by physical and virtual agents; fuse all new INTEL with
existing knowledge to infer the current state of the TN; make deci-
sions about where to send physical agents, what part of the TN the vir-
tual sensors ought to focus their attention on, and make strike
recommendations based on what the CTN’s inference engine decides
are the most “important” components of the TN.

Implicit in these steps, is the fact that essentially all of the CTN’s
dynamical functions---such as “deciding” where to send its agents,
“interpreting” information, and “recommending” strike plans---are
subjective. Thus, it is important to provide the analyst with some
degree of objective control over how the CTN makes decisions; i.e., the
analyst must be able to define, and tune, the CTN’s personality for
making decisions. The mechanism for this is described below, and
follows closely how agent personalities are defined in EINSTein [16],
and the agent-based variant of SCUDHunt [17]. 

↔
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INTEL Assets

Physical Agents

The CTN’s physical agents, , occupy the same
physical space as (and interact with) TN agents. Although they share
the same basic class of properties that govern the behavior of their TN
counterparts (see CT-agent characteristics, below), CT-agents base their
actions on a different set of motivations.

For example, while T-agents are typically motivated to stay clear of
CT-agents (as well as other T-agents that they recognize as members
of their own cell), CT-agents are generally impelled to find and/or
track T-agents; and of enlisting the aid of other nearby CT-agents
when the context warrants.

CT-agent characteristics 

Typical CT-agent characteristics include:

• Movement range, CTMoveRange: as for T-agents, CTMoveRange
defines the maximum distance that a CT-agent can move from
its current location (at time t) to its new position (at time t+1).

• Sensor range, CTSensorRange: defines the range of a CT-agent’s
vision in the physical space. Agents sit at the center of an CTSen-
sorRange-by-CTSensorRange box, and “see” everything that occu-
pies any of the (2*CTSensorRange + 1)2 sites within this box. (Just
as for T-agents, this does not imply that a CT-agent correctly
identifies what is present at a given site, only that the agent has
the potential of registering another agent within its sensor
range.)

• Ta-detection probability, : probability with which a CT-
agent is able to correctly “recognize” an otherwise unidentified
agent, within its Ta-detection range, as a T-agent. 

• Ta-detection range, : range (in the physical domain), at
which a CT-agent is able to “see” a T-agent. (Whether, or not,
the T-agent correctly identifies this agent as a CT-agent
depends on the CTa’s Ta-detection probability.) 

{ }1 2, , , NCTa CTa CTa…

CTa TaP ←

CTa TaR ←
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• Ta-follow range, : minimum range that a CT-agent---who
is “following” a suspected (or previously “tagged”) T-agent---
wants to maintain between himself and the T-agent. 

Virtual Resources

The CTN’s virtual resources represent all of the counterterrorist
organizations’ non-HUMINT data collection and countermeasures
assets: reconnaissance satellites and/or reconnaissance-equipped
unmanned air vehicles (UAVs), communications intelligence
resources (COMINT), signals intelligence resources (SIGINT), and
general electronic intelligence resources (ELINT; which includes
jamming and electronic deception). All of these resources are
notional, in that their presence is implicit; only their dynamical effect
on the dynamics is modeled explicitly. 

For example, while the CTN’s virtual SIGINT capability ostensibly
includes the ability to eavesdrop on the TN’s radio conversations (as
well as an attendant code-breaking capability or other cryptological
expertise), there are no physical agents that are explicitly tasked with
this function. Only the SIGINT’s data-gathering and processing capa-
bility is modeled, such as the probability of intercept and probability
of deciphering the message. 

Similarly, although the CTN’s inference engine is an overarching
information agent that “lives” within the CTN’s belief matrix
(described below), it is entirely virtual: the i -- j grid of belief values
(that represent the CTN’s confidence in the existence of a link
between terrorist-agent/suspect i and terrorist-agent/suspect j), is
the abstract, information-space, analogue of the physical x-- y lattice
of possible T-agent positions. The actions that the CTN decides to
take at any time t, using either its physical and/or virtual CT-agents,
depend on how the virtual inference-engine-agent processes its
matrix of beliefs; and this processing takes place entirely in an
abstract space. 

Other virtual assets are handled in the same way. 

Ta-followR
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CTN Actions

At any given time t, the CTN takes one or more of the following
actions (not all of which are necessarily viable at a given time, and in
a given context): 

• Assimilate CT-agent-filtered data. A basic function performed by
all CT-agents is to provide the CTN a “filtered” view of their
local environment. How the CTN processes this CT-agent-cen-
tric view, and how it fuses it with its own beliefs, is discussed in
the sections CTN beliefs and CTN inference personality; here
we outline two alternative (user selectable) methods by which
an individual CT-agent processes raw data.

Figures 43 and 44 show, schematically, how a CT-agent---labeled
CTa, and positioned at the center of the gray circle (that repre-
sents the extent of its CTSensorRange)---interprets the presence
of eight T-agents, Ta1,...,Ta8; some of whom (i.e., those that are
joined by a red link) are engaged in face-to-face meetings. CTa
interprets this situation using one of two methods:

Figure 43. Schematic illustration of how the CTN “infers” latent TN-structure using raw data fil-
tered by a CT-agent, using method 1; see text for details 

— Method #1. The first method is probabilistic; it uses the Ta-
detection probability, , and a user-defined probability
of detecting an existing face-to-face link (= CTProbFaceTo-
FaceLink) to determine how CTa interprets “ground truth.”

CTa TaP ←
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In a three-pass approach, the CTa (1) “probes” each agent
within its CTSensorRange by rolling a virtual “die” to obtain a
random number, . If , CTa correctly
identifies the given agent as a T-agent (thus tagging it, and
incorporating it into its ego-map), otherwise the given
agent remains unidentified; (2) for each existing face-to-face
link (between those T-agents that have been correctly iden-
tified in step 1),74 CTa throws another virtual die to obtain
a random number, . If ,
CTa correctly identifies the given link, otherwise the link
remains invisible; and, (3) for all pairs of T-agents (that
have been correctly identified as such in step 1, but who are
not actually linked), CTa throws a third virtual die to obtain
a random number, . If , where  is
the probability of misidentifying a nonexisting link as open,
CTa correctly identifies the given link, otherwise the link
remains invisible.

Figure 44. Schematic illustration of how the CTN “infers” latent TN-structure using raw data fil-
tered by a CT-agent, using method 2; see text for details 

— Method #2. The second method is decision-based; that is, it
depends less on probabilistic adjudication and more on a
context-driven intelligence (see figure 44).75 

74. This “ground truth” being known only to SOTCAC, and not either the
CTa or the CTN.

0 1x≤ ≤ CTa Tax P ←≤

0 1y≤ ≤ y CTProbFaceToFaceLink≤

0 1z≤ ≤ linkz ε≤ 0 1linkε≤ ≤
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First assuming that CTa has correctly identified each of the
eight T-agents as belonging to the TN (there may be other
T-agents within CTa’s CTSensorRange that---just as for
method 1---because of CTa’s Ta-detection probability, have not
been detected), the CTN is apprised of these agents’ (x,y)
positions. Second, whenever the distance between any two
T-agents---Tai and Taj---is less than a threshold (= CTFaceTo-
FaceMtgRange, which may be different for different CT-
agents), CTa infers that they are having a “face-to-face”
meeting and reports the existence of a link lij=1 between Tai
and Taj. 

The two “face-to-face” renditions appearing on the right-
hand-side of figure 44---the first showing what CTa reports
using a CTFaceToFaceMtgRange value of one (as marked in
red on the left-side of the figure), the second showing what
CTa reports using a CTFaceToFaceMtgRange value of two---
illustrates that different values of CTFaceToFaceMtgRange can
significantly alter CTa’s inferences based on what it “sees.”

The main difference between these two CT-agent filtering
methods is that while method #1 allows the user freedom to
effectively control how close to (or far from) “reality” a CT-
agent’s inference is, on average (but without regard to the
logic by which the inference is reached), method #2 allows
the user to experiment with alternative inference-logic algo-
rithms. Moreover, while method #1 filters raw data using

75. The method described here is marginally “intelligent,” at best; its impor-
tance, at this early juncture, derives less from its ability to drive outcomes of
runs, and more from serving as a conceptual placeholder for future deci-
sion-based algorithms that will allow analysts to explore tradeoffs among
different ways of interpreting raw data. Method #2 is anticipated to play an
analogous role, in SOTCAC, to EINSTein’s evolving targeting logic (by which
combat-agents decide which enemy agents to fight). While early forms of
this logic amounted to little more than directing agents to shoot blindly
and randomly at their targets, in time, the algorithm evolved to a sophisti-
cated multi-parameter-dependent intelligent targeting logic by which users
can finely tailor an agent’s “combat personality.” While this targeting logic
has become a bona-fide feature of EINSTein only in its most recent incar-
nations, it nonetheless played a vital role in earlier versions of the simula-
tion during which time it served as a conceptual placeholder for the need
to “intelligently” evolve an adaptive targeting logic. 
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ground truth data, method #2 entails no guarantee that any
value of CTFaceToFaceMtgRange generates ground truth.
Since the two methods obviously take fundamentally differ-
ent approaches to filtering raw data, the user must decide
issues of suitability in the context of the specific set of ques-
tions being addressed by the model.

• Issue an order to CTai to move toward (or away from) either a specified
site in the physical space, a specific T-agent or set of T-agents. (The via-
bility of this action depends on whether the CTN has a requisite
number of CT-agents with an IssueMoveOrderRadius of its
desired target.) This action may also be taken by individual CT-
agents, and takes on a particular relevance in the context of
capturing a terrorist agent (see below). A CT-agent may also be
directed to “follow” a particular T-agent (at a discreet distance;
see Ta-follow range above).

• Capture a terrorist agent (Tai). Depending on Tai’s personality
(allegiance, experience, etc.), the CTN may extract a greater or
lesser amount of information about the TN (as represented by
Tai’s ego-map of TN) possessed by Tai.

At the user’s discretion, a threshold number of nearby support-
ing CT-agents may be required (to simultaneously surround a
T-agent “tagged” for imminent capture) before a T-agent is
captured. Nominally, the CTAgentCaptureNumber = 1; if a
greater number is required, the first CT-agent (= CTi) to move
within the CTMinCaptureRange of the tagged T-agent commu-
nicates the sighting to all CT-agents within a CTCaptureCom-
mRange of CTi position, who, assuming they are not in the
process of capturing another T-agent somewhere in their own
vicinity, create a new T-agent-specific movement weight com-
ponent and assign that component the maximum possible pos-
itive value (= +1); i.e., upon receiving a call for assistance from
CTi. all agents within range move as quickly as possible to sur-
round the tagged T-agent.
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Figure 45. Schematic of a typical scenario in which three T-agents 
(Ta1,Ta2,Ta3) are captured by CTa1; see text for details 

In general, if a CT-agent “sees” a total of NT T-agents within his
CTMaxCaptureRange, those T-agents may all be captured---as a
group---if the total number of CT-agents outnumber the T-
agents by an amount ∆CΤCapture (= Number of CT-agents - NT).76

Figure 45 shows a schematic of a typical scenario in which there
are five T-agents (Ta1,...,Ta5) within a counterterrorist agent’s
(=CTa1) sensor range (= CTSensorRange); three of these T-
agents (Ta1,Ta2,Ta3) are also within CTa1’s CTMaxCaptur-
eRange. 

Assuming that ∆CΤCapture = +1, CTa1 communicates its need for
support to the four CT-agents (CTa1,...,CTa4) within its CTCap-
tureCommRange; each of these counterterrorist agents adjusts its
movement vector to allow for maneuver toward CTa1. (Notice
that while CTa1 “sees” Ta4 and Ta5, because these two T-agents
lie outside CTa1’s CTMaxCaptureRange, they cannot be cap-

76. This is an analogue of EINSTein’s combat meta-rule, which defines the
local conditions under which agents choose to engage in combat: if
(Number of nearby Friends) - (Number of nearby Enemies) then fight,
otherwise temporarily disengage [16].

≥ ∆Combat
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tured.) The T-agents Ta1,Ta2, and Ta3 are captured as soon as
CTa2,CTa3,CTa4, and CTa5 move to within range (i.e., within a
distance CTMaxCaptureRange of CTa1.

• Insert a counterterrorist agent (CTai) into the “slot” occupied by terrorist
agent (Taj); in effect, convert an existing Taj agent into a CTai
(i.e., make him a double-agent). The probability for this hap-
pening is obviously a function of Tai’s allegiance to the TN, as
well as on its experience, rank, and value. However, if the “con-
version” is successful, the CTN’s belief-map has access to an
“insider’s view” of all the information TN normally provides Taj
up until such time as the TN discovers the insertion and
destroys the agent-node.

Recall that there is also a chance of infiltrating the TN (as it
forms) with a double agent who poses as a possible recruit. If
such an agent is successfully absorbed into the TN, its dynamics
are from that point onward identical to those regulating the
behavior of inserted agents.

Once inserted, a double agent faces the specter of discovery:
there is a probability, ProbInsertionDiscovery, that he will be
uncovered as a CTN spy. If discovered, the agent is effectively
“killed” and removed from the TN.

• Eavesdrop on (or wire-tap) a link (that the CTN believes exists) between
Tai and Taj (=CTLij), and thereby extract the information being
passed along that link. (The ramifications of doing so, includ-
ing the scenario in which the CTN’s belief that CTLij exists is
incorrect, are discussed below.)

• Intrude on a link CTLij, and either jam the signal that is being
passed (decreasing the probability that the information being
sent will be received), or embed a false signal (which maintains
the integrity of the communication, so that the message is still
received, but the components of that message---such as agent
ID, location, and orders---are deliberately falsified).

• Probe a node or link: essentially a weaker form of "capturing" an
agent, the CTN may elect to "probe" a node (for a duration
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δtProbe; provided certain user-defined trigger-conditions are
met) to obtain information about incoming/outgoing links
from Tai (i.e., a subset of Tai's ego-map).

• Destroy a TN node or link, the probability of the CTN succeeding
at which is partly a function of the vulnerability of the targeted
node or link, and partly a function of the strength of the cell
(or cells) to which they belong. The destruction of a node also
entails the destruction of the overall value that node provided
to the TN; i.e., its role and rank within the terrorist organiza-
tion, its knowledge, skills and resources, and all social network
links that it served as a hub to.

While the act of destroying a node also destroys the nodes ego-
map (which is thus not subsumed into the CTN’s belief map; in
effect, the information previously possessed by the T-agent is
destroyed along with the T-agent), in the event that the CTN
has targeted a nonexistent target (i.e. one that it has mistakenly
believed to exist), the appropriate components of the CTN’s
belief map are updated accordingly (see discussion below). 

The actions that the CTN chooses to take at time t depend on what
the CTN believes to be the “state of the TN” at that time. 

CTN Beliefs

SOTCAC represents the counterterrorist network’s activity in infor-
mation space by visually rendering what the CTN’s believes the TN
composition, structure, and activities are at time t (see figure 46).

These beliefs---not all of which are necessarily correct, as they may be
based on outdated, incomplete, and/or false INTEL (see below)---are
functions of time, INTEL-source, and the CTN’s data-fusion person-
ality; they are embodied in four dynamic objects: 

1. OperativeID-belief vector, βO(t): this represents the number, and
identification tag (ID), of agents in the physical domain that
the CTN believes are members of the TN possesses, at time t.

2. Composition-belief matrix, βC(t): this represents the CTN’s “best
guess” about what role each of agents it believes are members
of the TN plays in the terrorist organization, at time t. 
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Figure 46. A schematic view of what the counterterrorist network believes the TN’s structure is 
at a given moment in time; this view represents the CTN’s activity in the information 
domain; see text for details 

3. Structure-belief matrix, βS(t): this represents the CTN’s beliefs,
at time t, regarding the TN’s network topology.

4. Activity-belief vector, βA(t): this represents what the CTN
believes the TN is doing.

Collectively, these four quantities---which, henceforth will be generi-
cally referred to as the CTN’s belief map---describe the “state” of the
TN, as understood by CTN, consistent with its INTEL-gathering,
information-interpretative and decision-making personality (see
CTN inference personality below).

OperativeID-belief vector

The OperativeID-belief vector represents the number, and identifica-
tion tag (ID), of agents in the physical domain that the CTN believes
are members of the TN, at time t. Until the CTN positively identifies
an agent X as a terrorist (modulo the threshold degree of certainty
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required by the CTN’s inference engine; see below), X is tagged a
“suspect” and may be reconnoitered to update the belief map.

The number of positively IDed agents, N(t), is not constant, but fluc-
tuates as the CTN continuously adjudicates the inflow of CT-agent
sightings of TN activity in SOTCAC’s physical domain.

Composition-belief matrix

The CTN’s composition-belief matrix at time t, βC(t), summarizes what
the CTN believes is the TN’s composition at time t. The components
of βC(t)---βC(i,j;t)---take on values between -1 and +1, and represent the
CTN’s confidence that agent Tai plays role Xj within the terrorist
organization, where  {recruit, recruiter, trainer, operative, leader or
support agent}. If βS(i,j) = -1, that means that the CTN believes that Tai
definitely does not play the role of Xj; βS(i,j) = +1 means that the CTN
believes that Tai definitely plays the role of Xj; βS(i,j) = 0 means that the
CTN either currently has no reliable INTEL about agent Tai and/or
is neutral in its assessment as to what role Tai plays. Values of βC,
between these two extremes, represent various confidence levels.

Figure 47. Graphical view of the CTN’s composition-belief matrix; dif-
ferent shades of grey at a site (i,X) represent varying degrees 
of confidence that the CTN has in its belief that agent Tai is 
either a member of the TN and/or is of type X 

Figure 47 shows a schematic view of βC(t), in which shades of grey are
used to represent varying degrees of the CTN’s confidence that

jX ∈
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CTN’s confidence that a given agent plays one of the six generic roles
of terrorist agents. As noted above, the number of agents that the
CTN believes the TN to possess, at time t (= N(t)) is not constant, but
varies depending on the dynamics of the CTN’s INTEL-collection
and data-fusion processes.

Structure-belief matrix

The CTN’s structure-belief matrix at time t, βS(t), summarizes what the
CTN believes is the TN’s social network structure at time t. βS(t) is
partly a function of the information the CTN’s agents gather while
interacting with T-agents in SOTCAC’s physical domain, partly a
function of other INTEL that the CTN’s COMINT (and other virtual)
assets collect, and partly a function of the CTN’s INTEL-fusion per-
sonality.

The components of βS(t)---βS(i,j;t)---take on values between -1 and +1,
and are interpreted to mean the CTN’s confidence that a link exists
between terrorist agent Tai and terrorist agent Taj. If βS(i,j) = -1, that
means that there is definitely no link between Tai and Taj; βS(i,j) = +1
means that the CTN is certain that a link exists between Tai and Taj;
βS(i,j) = 0 means that the CTN has no belief (and therefore no reli-
able INTEL) regarding the existence of a link between Tai and Taj.
Other values of βS(i,j), between these two extremes, represent various
confidence levels.

Figure 48 shows a schematic view of βS(t), in which shades of grey are
used to represent varying degrees of the CTN’s confidence that a link
(i,j) exists between T-agents i and j; because links are symmetric, only
the top half of the matrix is shown. The rows and columns label each
of the T-agents, , that the CTN believes to exist at
time t. 

The belief matrix is the critical component of SOTCAC’s representa-
tion of the CTN, as the decisions regarding CTa placement and move-
ment (within the physical domain), wire-tapping, Ta capture, and TN
node/link disruption, intrusion and/or destruction, are all functions
of βCTN(t).

{ }1 2 ( ), , , N tTa Ta Ta…
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Figure 48. Graphical view of the CTN’s structure-belief matrix; different 
shades of grey at a site (i,j) represent varying degrees of confi-
dence that the CTN has in its belief that a link really exists 
between T-agents Tai and Taj; see text for details 

Activity-belief vector

The CTN’s activity-belief vector represents what the CTN believes the
TN is doing; i.e., what mission it has assigned to itself (and to what
cells), what the mission requirements are, and how close the TN to
completing acquiring the manpower and resources necessary to ini-
tiate terrorist strikes. 

CTN inference personality

How the CTN's inference engine actually parses the raw intelligence
data (regarding the identity and properties of specific TN nodes and
links), and the way in which the CTN updates its belief map, is a func-
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tion of the CTN's inference personality (IP). The IP---which is defined,
and fixed throughout a run, by the analyst---consists of various param-
eters that define how the IE obtains, interprets and uses SOTCAC-
generated information:77 

• Interpretation of INTEL data
• Valuation of INTEL data (as gathered by specific physical CT-agents

and virtual collection assets)
• Fusion of INTEL reports (belief-map refinement)
• Tactical action plan logic

Interpretation of INTEL data

The first part of the CTN's IP consists of parameters that define how
the CTN interprets sensor reports. The basic idea is that each of the
TN's nodes and links, for which the CTN either has no prior belief
value (such as at the start of a run) or some nonzero value βS(i,j;t) that
has been accrued over several turns, is updated using information
supplied by either CT-agents (acquired in the physical domain) or
the CTN's virtual assets (via targeted captures, insertions, intrusions,
or probes). For example, before the CTN's beliefs about a specific
node Tai are updated (=βC(t)), the CTN must (1) interpret the data
that each of its assets has gathered regarding Tai (which depends, in
part, on how well CT-agents are able to collect the data, and, in part,
on how the CTN "values" the collected data), and (2) fuse the com-
bined intelligence data.

CT-agents provide reports of the following types: (1) nothing signifi-
cant to report (about suspected T-node ‘X’), (2) unidentified (as to type
of) agent ‘X’ present, (3) T-agent ‘X’ of type ‘T’ present, (4) unidentified
link ‘X’ present (sender or receiver identified as T-agent), and (5) link
of type ‘X’ exists between T-agents Tai and Taj.

The CTN's ReportIntepretation vector, , defines the CTN's belief that
object ‘X’ exists for which an agent (or sensor) has reported R (where
R is any of the five possible CT-agent reports defined above); i.e., 
represents the CTN’s interpretation of the data collected by its CT-
agents. The components of  range between the values -1 and +1.

77. The methodology described here is based on a prototype inference algorithm
developed by the author for the agent-based SCUDHunt wargame [17].

RI
r

RI
r
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r
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For example, the component  means that the
CTN interprets a report from CT-agent A as follows: (i) ‘‘nothing sig-
nificant to report’’ is treated as a negative 0.5 partial-belief that node ‘X’
is a T-agent; (ii) ‘‘unidentified (as to type of) agent ‘X’ present’’ is treated
as a positive 0.5 partial-belief that ‘X’ is a T-agent; (iii) ‘‘T-agent ‘X’ of
type ‘T’ present’’ is treated as a positive 0.9 partial-belief that ‘X’ is a T-
agent of type ‘T’; and (iv) the last two entries (= ‘‘--’’) indicate that
CT-agent A is unable to gather link-related intelligence.

The utility of using the ReportIntepretation vector to filter the raw data
before it is assimilated by the CTN, is that it provides the analyst the
flexibility to explore the dynamical (i.e., coevolutionary) conse-
quences of relying on different interpretations of the same data. By
effectively decoupling the CT-agent INTEL-collection dynamics from
the CTN INTEL-data fusion, SOTCAC allows the analyst to focus
attention, separately, either on how well CT-agents are collecting rele-
vant data (which is a function of CT-agents’ innate properties) or on
how well the CTN is assimilating and fusing the data that is collected
(which is a function of the CTN’s INTEL-processing personality).

Valuation of INTEL data

The second component of the CTN’s IP is the set of partial-belief
assessments of INTEL-data that is reported by specific CT-agents
(CTai). While the ReportIntepretation vector defines the CTN’s generic
interpretation of INTEL reports, the AgentValuation vector, ,
refines that interpretation, by tailoring it to specific agents; indexed
by CTai, the value of its components range from zero to one, and rep-
resent how strongly the CTN “values” CT-agent CTai. 
means that the CTN mistrusts all data reported by agent CTai (and
therefore neither adds to nor subtracts from its marginal belief
regarding any component of the TN structure and function that is
due to information supplied by CTai);  means that the
CTN trusts, implicitly, all CTai reports (and therefore does not alter its
generic interpretation of the specific content of CTai’s reports).

Fusion of INTEL reports

Before deciding on a course of action to take at time t, the CTN must
first process and fuse N sensor reports (meaning their interpretations
and valuations) to determine its ‘‘best guess’’ as to which agents are

( )0.5, 0.5, 0.9, ,RI = − + + − −
r

AV
r

( ) 0A iV CTa =
r

( ) 1A iV CTa =
r
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T-agents (along with their ‘‘type’’ and the topology of observed com-
munication links); i.e., the CTN must update its belief map. One math-
ematically consistent way to do this, is to first weigh individual bits of
information (of the form, ‘‘How much do I trust what?’’ and ‘‘What have
I learned from what?’’) and then combine all the prior partial beliefs
using the Durkin-summation function that is commonly used in fuzzy
logic applications.

Durkin summation 

Durkin summation is a heuristic technique of combining certainty
factors (i.e. beliefs) according to evidential reasoning in fuzzy logic
[223]. Certainty factors are arbitrary (but self-consistent) measures of
an expert's ‘‘belief’’ regarding some hypothesis. The maximum value
of a certainty factor is +1 (meaning definitely true) and the minimum
value is -1 (meaning definitely false). Positive values < 1 represent rela-
tive degrees of belief, and negative values > -1 represent relative
degrees of disbelief. For example, suppose the CTN has a set, B, of N
partial-beliefs (originating from N CT-agents and/or virtual assets)
regarding the hypothesis that agent ‘X; belongs to the TN:
B={B1,B2,…,BN}. Now use the Durkin fuzzy-summation function, 
(where |x| is the absolute value of x, and Minimum(x,y) is the mini-
mum of x and y):

(71)

to compute the fused update to the CTN's belief at time t:

, (72)

where B has been partitioned into a union of two sets: one containing
only positive valued components ( ), and the other con-
taining only negative valued components ( ). While this
function may, at first, appear somewhat strange, it possesses several
intuitively desirable properties. For example, apart from its simplicity,
we immediately note that all partial beliefs are bounded between -1
and +1: as long as  and , . Adding a zero belief to a

⊕
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nonzero certainty leaves the existing certainty unchanged: .
Equal certainties that differ in sign combine, as expected, to yield
zero effective certainty: . Figure 49 provides a few illustra-
tive plots of the behavior of .

Figure 49. Behavior of Durkin-summation function ; see equation 71

All three subexpressions of the Durkin-sum have very natural inter-
pretations. For example, the Durkin-sum of two positive certainties
(defined by the top-most expression), can be expressed in words as,
‘‘Reduce the influence of one certainty by the remaining uncertainty of the
other, and add the result to the certainty of the first.’’ Likewise, the Durkin-
sum of two negative certainties (given in the middle row), is equiva-
lent to taking the Durkin-sum of two positive certainties and negating
the result. Finally, combining a positive and negative certainty is
equal to multiplying the difference by the reciprocal of the smallest
remaining uncertainty.78

78. Equation 66 represents a purely heuristic method of combining weights.
Since single-feature weight components are nothing more than, essentially
arbitrary, functions, they cannot justifiably be interpreted as, say, probabil-
ities, for which a more rigorous inference engine based on Bayesian reason-
ing could be used. However, despite the lack of mathematical correctness,
the performance of expert systems based on certainty factors has, on occa-
sion, outperformed Bayesian reasoning (at least in systems designed to mimic
human diagnostic judgment [223]). 

0x x⊕ =

( ) 0x x⊕ − =
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Tactical action plan logic

The last element of the CTN's IP consists of personality weights that
determine the set of actions that the CTN takes at time t (using its CT-
agents and other assets), based on its updated belief map, calculated
using INTEL data gathered at time t-1. An important design criterion
for SOTCAC is for the program to be both flexible enough to encom-
pass a variety of decision ‘‘types’’ (so that the user has some paramet-
ric variability to experiment with) and simple enough to not overwhelm
the user (by the number and/or complexity of the parameters).79 

Recall (from our earlier discussion of CTN Actions; see page 192)
that the CTN can choose to take a variety of actions, ranging from
issuing orders to CT-agents to ‘‘move towards’’ specific ‘‘targets,’’ to
eavesdropping on open communication channels, to capturing sus-
pected T-agents, and/or destroying selected links.

The CTN’s Tactical Action Plan Logic (TAPL) is based on what it
believes to be the TN’s current state, and consists of taking whatever
actions it decides are necessary to reduce the TN’s projected ability to
function. There are two general classes of possible actions:

• CT-agent movement/reconnaissance, and

• Targeted TN attacks.

Both classes include actions that are based on INTEL-based assess-
ments of the “value” of specific nodes, groups of nodes, and/or links.
Since there is no objectively “best” measure of relative importance, all
of the different network metrics introduced earlier in the section
Complex networks: behavioral and structural metrics (including char-
acteristic path lengths, clustering coefficient, centrality measures, betweenness
metrics, efficiency, etc.) are---a priori, at least---useful for discriminating
among potential targets. It is up to the user to determine which spe-
cific metrics are the most useful for specific scenarios, terrorist/coun-
terterrorist characteristics and mission objectives and parameters.

79. This same criterion has successfully guided the development of both the
EINSTein combat model [16] and the multiagent-based variant of the war-
game SCUDHunt [17].



208

An important goal of developing SOTCAC, is to provide analysts with
a logical inference engine to explore alternative measures of TN effi-
ciency. Are the TN’s goals best thwarted by eliminating its most highly “con-
nected” T-agents? Or is it better to target its cell leaders? Or perhaps to
eliminate the links that operatives have with support agents? Different con-
texts obviously require different counterterrorist options and dis-
criminatory metrics. While generic metrics are useful for tuning the
actions of the CTN during a given run, their real purpose is in provid-
ing the analyst with a “basis set” of primitive measures with which an
extended series of SOTCAC-determined TN:CTN coevolutions can
be used to reveal an important class of composite network metrics that
more tightly correlate local CTN action with global TN efficiency.

Any strategy to defeat the TN that is based solely on optimizing prim-
itive efficiency metrics, without regard for either the properties that
characterize the specific TN the CTN is trying to defeat or the conse-
quences that specific CTN actions have on the TN’s own adaptive
behavior, is doomed to fail; at the very least, such a strategy is likely to
be neither robust nor optimal. The fundamental problem is not to
determine which components need to be eliminated at what time---
the answer to this problem is provided by a straightforward applica-
tion of the same value-calculus used by EINSTein’s agents in deciding
what enemy agents to “shoot” at time t [16]---but to better understand
the deeper relationship between the entire scope of actions that the
CTN can take (in all possible contexts) and the consequent ability of
the TN to perform its assigned mission. Stated even more succinctly,
the fundamental question that SOTCAC is being designed to help
intelligence analysts answer is, 

“Given that the TN’s ability to perform its mission is measured by
some well-defined function, FTN, what INTEL about the TN must
the CTN acquire, and what actions based on that information must
the CTN perform under what (local and/or global circumstances),
such that the value of FTN is minimized?”

Using its “belief matrix” database of fused intelligence, the CTN may
choose to either target certain nodes for disruption or deletion---with
the intention of crippling one or more components of the TN---or
reconnoiter a set of T-agents that, because of their local ego-maps,
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the CTN has identified as being the most likely future sources of intel-
ligence data. 

CT-agent movement/reconnaissance 

The CTN issues CT-agent movement and/or reconnaissance orders
as a function of its current belief matrix and its (user-defined) asset
allocation personality. Although the CTN has control over both phys-
ical CTN-agents that collect HUMINT data and virtual (COMINT,
ELINT, and SIGINT) resources, the logic by which members of either
set are targeted at components of the TN is formally the same, and is
derived from a user-defined weighed fitness function.80

Initially, of course, all beliefs (regarding all T-agents, i and links lij)
are set equal to zero: β(i; t=0) = β(i,j; t=0) = 0. To simplify some calcu-
lations, let us introduce the dogma threshold, , which is the
threshold belief strength at which the CTN believes (‘‘dogmatically”)
that either a physical agent suspected of being a terrorist is definitely
a T-agent, or, in regard to social network links, that a link between T-
agents i and j definitely exists. The consequence of having any belief
value exceed βDogma is that the CTN is not compelled to use any of its
resources to obtain information about the T-agent (or link); thus no
movement orders will be issued.

In general, of course, the CTN will harbor indefinite belief values,
which must all be properly (i.e. objectively) weighed before issuing
CT-agent movement and/or reconnaissance orders. Consider some
basic motivations that the CTN may weigh before deciding how to
direct its assets:

• Maximize coverage (on given turn, wMCov): In the absence of
other kinds of information (such as when starting out in a zero
information state at time 0), the CTN wants to maximize the

80. The design borrows heavily from SCUDHunt’s sensor placement logic [17].
SOTCAC’s belief matrix is the analogue of SCUDHunt’s battlefield. Thus,
where in SCUDHunt, the human user (or agent) allocates resources on a
physical playing board to gather raw data (in the hopes of deducing where
the actual SCUD missiles are located), in SOTCAC the CTN allocates
resources on both a physical space and abstract (link) space, in the hopes
of deducing where the T-agents are, what they are doing and what links
exist among them.

0 1β≤ ≤Dogma
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number of suspected (but not yet confirmed) terrorists that are
covered by available HUMINT assets (on a given turn). At later
times, this motivation will be combined with other motivations
listed below. 

• Maximize total (cumulative) coverage (wMCov): the CTN wants to
minimize the number of suspected (but not yet confirmed) ter-
rorists that have not yet been searched.

• Maximize future coverage (wFCov): Taking into account CT-agent
stationing and vulnerability, the CTN wants to maximize cover-
age for future turns. 

• Maximize global belief (wGBel): the CTN generally wants to maxi-
mize the value of his belief matrix for as many suspected terror-
ist (and/or links) as possible. This is to be weighed against, for
example, simple coverage, which does not take the CTN's esti-
mate of an agent’s reliability of returning valid information that
would tend to maximize belief. (“Is it better to have relatively unre-
liable HUMINT that covers a lot of territory or very reliable HUMINT
that returns data from a smaller physical area?” The answer, of
course, is “let's see” by exploring alternative options.)

• Maximize local belief (wLBel): As a complement to the CTN’s gen-
eral desire to maximize belief over the entire playing field, is its
motivation to “home in on” terrorists (and links) that already
entail high belief. In particular, the CTN wants to exceed its
threshold belief strength (βthreshold) value and come as close as pos-
sible to his dogma threshold (βDogma), for as many terrorists and
links as possible, so that (consistent with the CTN’s personality)
it has a sound informational basis on which to identify a suspect
as T-agent (or suspected link as definitely existing). By weigh-
ing this motivation greater than, say, coverage alone, the CTN
would tend to associate HUMINT resources with suspects that
have already been (or are currently being) observed, but whose
cumulative belief value is less than βthreshold; rather than indis-
criminately ordering CT-agents to collect data about other sus-
pects (that, while also yielding an expected information gain,
would likely still not push any site beyond the threshold belief).

• Minimize redundancy (wRed): a terrorist suspect or link that has
developed a belief that exceeds βDogma, is deemphasized in the
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CTN’s movement/reconnaissance fitness function. This
reflects the human behavior of minimizing the needless expen-
diture of resources to obtain information that already exists.

If a CT-agent is assigned to move toward (or reconnoiter) a suspected
T-agent or link, the CTN will not issue new move orders unless either
(1) the required threshold of belief regarding the suspected T-agent
or link has been achieved (either through the given CT-agent’s prior
efforts or via the HUMINT reports of other CT-agents); (2) a higher-
valued TN component (that requires immediate attention) is nearby;
(3) or a component of the TN has been targeted for attack (see
below).

Motivations can be either fixed, applied in succession at each turn but
otherwise remaining unchanged throughout a game, or, more gener-
ally, updated, turn-by-turn. In the latter case, it is possible to model a
CTN that starts a run with one personality and completes it using a
different set of weights. Dynamic, state-dependent weights are also
possible to design. In any case, on a given turn t, the CTN considers
all possible options of allocating each of the HUMINT and COMINT
resources under its control, and calculates the appropriate allocation
fitness function. 

For example, in the case of using virtual assets to identify and/or
reconnoiter communication and social links, the CTN uses the
COMINT sensor allocation fitness function, FCOMINT(i,j; t), for each pos-
sible link (i,j):

. (73)

Suppose the CTN controls virtual assets CTa1,...CTSN, and that CTai
covers a patch Pi of the TN’s social network space. One asset may only
be able to cover a single link; others may cover a small swath, albeit
less reliably. The CTN sums the fitness function over all sites of a
given assets patch to determine which of his assets maximize overall
fitness:
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. (74)

Of course, the form of F(i,j; t) is very flexible, and other terms can
easily be imagined. For example, we could add a “randomizer” term,
wRan, which when coupled with a (1-wRan) term multiplying the
expression above, adjudicates between the likelihood that the CTN
makes effectively random (i.e. mostly “dumb”) assignments and the
likelihood that the CTN makes more intelligent decisions (consistent
with its personality).

It is also simple (in theory) to include another form of information
sharing among either the CTN’s HUMINT assets or components of
the CTN itself, as an overarching “intelligence agency.” For example
a trust matrix can be used to define how different components of the
CTN (charged with analyzing information from different sets of
HUMINT and COMINT resources) filter each other’s communicated
fitness function evaluations, before combining that information with
their own updated belief matrix. In other words, a given component
of the CTN---say, ---decides where to place its sensors
partly as a function of its own fitness function, Fx, (and therefore as a
function of its own “personality”) and partly as a function of what
other components, {CTNy}, with whom it shares its analysis, are telling
CTNx about their own asset allocation plans (as defined by their fit-
ness functions, {Fy}; filtered by the degree to which one component
trusts the information and analysis that other components are com-
municating to it, as defined by the trust matrix, Tx,y): 

, (75)

where CTax and CTay are assets that belong to CTNx and CTNy,
respectively.

Targeted TN attacks 

The second set of TAPL weights focuses on various social network cri-
teria that the CTN uses to assess the ‘‘value’’ that a given T-agent rep-
resents to the TN (and thereby to determine what component of the
TN to ‘‘target’’ for attack). 
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Suppose the “attack” consists of removing a T-agent from the TN.
There are two basic criteria that the CTN may use for targeting (and,
indirectly, for judging whether one T-agent, X, merits a greater or
lesser assigned “value,” from the point of view of its elimination from
the terrorist network, than some other T-agent, Y): 

• Expected fragmentation, and 

• Expected link-time increase.

The first criterion consists of assigning greater (or lesser) value to
those T-agents whose removal from the TN the CTN expects will
cause greater (or lesser) fragmentation to the TN. Although the basic
idea behind this criterion is intuitive---i.e., “fragmentation” refers to
the degree to which the TN is expected to become disconnected, rel-
ative to its state of connectedness prior to the deletion of one or more
of its T-agents---its precise definition, which we also want to include a
set of tunable parameters so that it may be adjusted by the analyst, is
subtle and will thus be defined only loosely here. 

One simple approach is to define a fragmentation index, F, that
simultaneously accounts for both the number of connected components
that remain after the deletion and their size [113]:

, (76)

were N is the number of agents, rij = 1 if agent i can reach agent j, and
is equal to zero otherwise, and nk is the number of agents in the kth

connected component; F thus effectively counts the number of pairs
that are disconnected from one another. If the network is completely
connected, F=0; at the other extreme, when there are no connected
components, F=1. 

The second criterion consists of measuring the degree to which exist-
ing lines of communication are lengthened. If the existing network is
sparse enough, of course, then removing even a single T-agent can
sever all connections and thereby immediately fragment the network;
however, it will more often be the case that the “best” the CTN can do
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by removing a T-agent is to make it more difficult for the TN to trans-
mit messages by lengthening the time it takes for them, on average,
to reach their intended receiver. The supposition is that networks
with longer “shortest paths” transmit information less efficiently, and
are therefore also more prone to discovery.

A simple metric---call it Lt, for “link time”---that accomplishes this is
based on Latora’s and Marchiori’s [149,150] global “efficiency” met-
ric, Eglobal, introduced in an earlier section:81 

, (77)

where Dist(i,j) is the graph distance between agents i and j. As does F,
Lt achieves its maximum value when the network is completely dis-
connected (i.e., all agents are completely isolated). Likewise, Lt’s
value matches the value of F when each of the k components of a net-
work are cliques (i.e., complete k-graphs); since, in this case,
Dist(i,j)=1 for all pairs. However, for all other cases, in which pairwise
distances vary from agent to agent, and from component to compo-
nent, Lt is able to resolve the internal inhomogeneities (whereas F is
not). 

For example, (1) degree (which simply counts the number of links a
given node has with other nodes); (2) betweenness (which measures
the extent to which a given node mediates, or plays the role of ‘‘infor-
mation broker" between, any two other nodes); (3) closeness (which
measures the extent to which a given node is "close to" other nodes
in the network); and (3) centrality (which measures the degree to
which a node plays an important role in the TN). 

81. See Complex networks: metrics; page 83.
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Conclusion

“The new terrorist networks are not like those of the past, which had a loose but iden-
tifiable hierarchy and structure...there are many autonomous cells we do not know
about. They do not need orders from Osama bin Laden to carry out the jihad...The
threat, even with Osama bin Laden gone, is very high. These groups are protean; they
change their shape like the AIDS virus.”—Jean-Louis Bruguière82 

This paper proposes three major theses:

1. That terrorist networks are, fundamentally, self-organized, emer-
gent “virtual multicellular organisms” that live as much in the phys-
ical domain as they do in an abstract information space;

2. That the topology, function and behavior of terrorist networks
coevolve with their enemy (which, for purposes of the discussion, is
generically called the “counterterrorist organization”); and

3. That the best approach to understanding how terrorist net-
works operate---how they form, how they grow and evolve, and
how they adapt to both internal and external changes to their
environment----is one that combines the precepts and method-
ologies of several heretofore related, but disparate, disciplines:
complex systems theory, network science, social network analysis, math-
ematical graph theory, and multiagent-based modeling.

After reviewing the general theory behind existing mathematical
modeling tools applicable to the study of dynamic networks, the
paper introduces the conceptual design of a multiagent-based simu-
lation called SOTCAC---that is currently in development---to facilitate
a generative, exploratory study of the self-organized emergent
dynamics of terrorist networks. SOTCAC’s novelty, as an analytical
exploratory tool, rests on how it generalizes the conventional inter-
pretation of “agents” to leverage the strengths of several interrelated
disciplines that have not heretofore been combined in one model.

82. French Magistrate Jean-Louis Bruguière, quoted in “A Powerful Combatant
in France's War on Terror,” C. Hedges, New York Times, November 24, 2001.
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While agent simulations of complex adaptive systems commonly use
notionally physical agents to represent the local dynamical compo-
nents of the systems being modeled, simulations built directly upon
nonphysical components are less common. Rarer still, are simulations
that combine physical and nonphysical agents into a broader class of
semiotic agents, that both “live” in coupled physical and information
spaces, and actively and adaptively “transform” their local topology. 

SOTCAC’s agents live, and act, as much in the physical domain, as
they do in an abstract realm of communication ties and invisible
bonds of friendship, common grievance and trust. However, it is the
terrorist’s dynamic, adaptive “social network” that lies at the heart of
the model. The social network represents the space in which agents
create and sever connections (and relationships) with other agents;
the space in which material and nonmaterial resources are sought,
fought over, acquired, and exchanged; and the space in which the
agents’ physical activity is coordinated.

As the analysis of Al Qaeda’s pre-9/11 “social network” illustrates,83

its patterns of communication links, and the meta patterns of evolv-
ing link patterns, provide important insights into the terrorist net-
work’s operations. Real-world analysis, of course, is complicated by
the fact that intelligence data is typically incomplete, uncertain, and
inaccurate. Furthermore, since it takes time to extract meaningful
information from raw data, and to derive defensible inferences from
processed information, the intelligence analyst is often chasing an
amorphous moving shadow; even as the analysis of existing data
steadily proceeds, the data source itself---i.e., the properties of the ter-
rorist network---is constantly changing. 

Obviously, nothing can substitute for reliable intelligence data that
describes a real network; and SOTCAC is in no way intended to
replace the human analyst in drawing inferences from such data.
Nonetheless, much can be learned about the structure and behavior
of real networks by using mathematical graph theory and social net-
work analysis to study the properties of notional structures that
emerge in a multiagent-based dynamic graph model of terrorist net-
works.

83. See Appendix 2: Mapping Al Qaeda; page 221.
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Just as artificial life, in complex systems theory, is predicated on the
basic supposition that life “as it is” may be better understood by exam-
ining the dynamical possibilities of life “as it could be” [51], so too the
agent-based approach advocated in this paper is predicated on the
supposition that insights into the behavior of real terrorist networks
may be gained by exploring the dynamical possibilities of terrorist
networks “as they could be.” In particular, SOTCAC is designed to
provide a conceptual scaffolding on which the multidimensional space
of possible terrorist network topologies may be mapped and the relation-
ship between agent dynamics on the micro-level and network behav-
iors on the macro-level may be systematically explored.

The structure and function of terrorist networks emerge, in SOT-
CAC, on three interrelated levels: (1)dynamics on networks, in which
notional terrorist agents are assigned missions to strike physical tar-
gets and process/interpret information, search and acquire
resources, and adapt to other agents’ actions;(2) dynamics of networks,
in which topology of the evolving network itself is a fully dynamic,
adaptive entity; and whose agents---i.e., nodes---build, maintain, and
modify the network’s local (and therefore, collectively, its global)
structure; and (3) dynamics between networks, in which the terrorist net-
work and complementary counterterrorist network mutually coevolve:
the terrorist network’s “goal” is to achieve the critical infrastructure
(of manpower, weapons, financial resources, and logistics) required
to strike, while the counterterrorist network’s mission is to prevent
the terrorist network from achieving its goal.

As an example of the kinds of insights that the model offers the coun-
terterrorist analyst, in principle, consider the role that “structural
holes”84 play in the information flow and social dynamics of a net-
work. Since structural holes sit on the boundaries between flows
(among otherwise separate cliques of knowledge structures), agents
spanning these holes may be expected to wield enormous influence
over the network’s local and global functioning and performance;
they represent locations within the network from which other areas
of the network can be reached with a minimal number of direct ties. 

84. Structural holes represent only one byproduct of applying network theory to
the operational characteristics of arbitrary social networks. See discussion in
section Complex networks: metrics; page 96.
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Analytical observations of this kind can assist intelligence analysts,
operationally, in at least two ways: (1)by strengthening vulnerability
assessments---by pinpointing the nodes and cliques of a network that
are vital to information flow, “key” agents can be identified, whose
removal can be expected to significantly degrade the network’s ability
to “command” and/or to “control” its agent/cell-infrastructure; and
(2)by helping optimize data collection and resource allocation---since the
existence of structural holes may be inferred, indirectly, from the
effect that as yet unobserved agents have on other parts of the net-
work, the analysis can help focus the attention of HUMINT, COMINT
or other INTEL data collection assets onto the most promising com-
ponents of the network for further reconnaissance, investigation,
and/or attack.

Using known (but typically incomplete and imprecise) data about a
terrorist network, generative models like SOTCAC can be used to
predict the properties and locations of critical components of the net-
work that are likely to exist, but have not yet been detected. Structural holes
are but one example of a “critical” network property, that is both
objectively defined and measurable; however, it is by no means the
only such measure, nor even, perhaps, the most relevant. 

An important goal of developing SOTCAC is to provide analysts with
a logical inference engine to interactively explore the efficacy of alter-
native measures of network “criticality.” A priori, any of the primitive
network metrics introduced in this paper---characteristic path length,
clustering coefficient, centrality, betweenness, density, efficiency, etc.---may be
used to gauge the relative importance of selected components to a
network’s overall ability to function. The deeper question is, “Which
of these metrics---or, better---which combination of metrics, and in what dynam-
ical context, provides the counterterrorist organization the optimal basis on
which to base its actions?”

Is a terrorist network’s mission best thwarted by eliminating its most
highly “connected” terrorists? Or is it better to target its cell leaders?
Or perhaps to leave its most highly connected terrorists untouched
(albeit with continued covert surveillance), but eliminate the links
between mid-level operatives and supporting agents? 
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Figure 50. Schematic depiction of SOTCAC’s superspace of TN-CTN 
coevolutions 
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Any strategy to “defeat” a terrorist network that is based solely on opti-
mizing primitive efficiency metrics, without regard either for the
properties that characterize the specific terrorist network being
attacked, or for the dynamical consequences of how a given terrorist
network adapts to the actions taken against it, is doomed to fail. At
best, such strategies will merely be shortsighted and suboptimal; at
worst, they may inadvertently inject a dynamics into the system that
does far more harm than good. For example, although a simple-
minded, albeit intuitive, strategy predicated on the assumption that
removing a strong, charismatic leader will result in a systemic collapse
of a network, may succeed; it is also at least as likely to not just fail, but
fail catastrophically, by providing the remaining components of the
“decapitated” network an “energy” that both stimulates and strength-
ens it. 

A successful strategy can only emerge by understanding---on a funda-
mental level---how the set of all possible actions that a counterterrorist orga-
nization can take (in all possible contexts) is dynamically related to the
set of all possible measures of how well a terrorist network functions. Such an
understanding can only come about by systematically exploring the
multidimensional space that contains all possible outcomes of terror-
ist counterterrorist coevolutions (figure 50 shows a schematic
depiction of this multidimensional “superspace”). SOTCAC is being
developed precisely for this reason.

In general, a complex adaptive network cannot easily be “defeated”
by removing a few (or even many) of its pieces; rather, one must find
ways to disrupt the autopoietic web of interactions that sustain and nur-
ture it. Paraphrasing the quote that appears at the top of the pream-
ble (see page i):

Therein lies Al Qaeda’s strength and weakness; but it is a weakness
only if Al Qaeda is understood, and dealt with, as a complex adaptive
network, and not as a set of simple, conventional “targets.”

↔

Osama bin Laden is a phenomena, not a person.
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Appendix 1: Social network analysis

“Social structure becomes actually visible in...the movements and con-
tacts one sees...We should also be able to see structure in the life of an
American community if we had a sufficiently remote vantage point, a
point from which persons would appear to be small moving dots...We
should see that these dots do not randomly approach one another, that
some are usually together, some meet often, some never...If one could get
far enough away from it human life would become pure pattern.” 

—R. Brown, Social Psychology (1986)

Social Network Analysis (SNA) studies the properties of relationships
among social entities. More precisely, SNA applies a broad set of
mathematical methods (most notably those derived from mathemat-
ical graph theory) to study the---often latent or even invisible---pat-
terns of interactions among individuals (which we will from now on
refer to generically as agents).

Consider a typical business company and its ubiquitous hierarchical
organization chart consisting of the President at the top, who sits on
top of a group of Vice Presidents on the second tier, who are followed
on down the chain by Division heads and their group managers,
senior and junior analysts, and so on. Does this chart reflect how the
organization really conducts its business? Or does the organization
depend more on hidden, behind-the-scenes, communication links
and self-organized groups of people whose ties are not formally rec-
ognized by the organizational chart, but through which the organiza-
tion’s vital important flows? SNA addresses these questions by
probing for, and examining the properties of, these hidden networks
within networks. Of course, the analysis extends to a much broader
set of real-world networks and phenomena than simply networks that
represent business organizations.

Dating back to the 1930s---and Jacob Levi Moreno’s pioneering work
using hand-drawn “sociograms” to trace communication lines among
acquaintances [170]---SNA is today widely used in economic, socio-
logical, ethological, and anthropological contexts. Its fundamental
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assumption is that in order to understand how a network functions,
as a whole, one must first understand how the network’s constituent
elements are all interrelated. While SNA has traditionally focused
almost exclusively on static properties of the systems it studies---and
thus has not (until very recently) examined self-organized emergent
properties of dynamic nets---there is obvious and considerable overlap
between SNA’s basic philosophy and that of complex adaptive sys-
tems theory; certainly, both disciplines recognize the importance of
understanding how the parts of a system are mutually dynamically
coupled. Moreover, as the complexity, size, and diversity of the social
networks that SNA studies all increase, the broader class of method-
ological tools of complex network science becomes increasingly
important (see, for example, the discussion in the next section of net-
work metrics, many of which are derived from the more general anal-
ysis of complex networks).

A critical goal of this paper is to demonstrate how conventional SNA
may be generalized and enhanced---specifically, via the application of
multiagent-based simulation techniques---to enable researchers to
explore the self-organized, emergent behaviors in adaptive, coevolv-
ing dynamic networks. A prime example of why it is vital to begin
developing analytical and modeling tools to study dynamic graphs is
the emergence of global terror networks, such as Al Qaeda, about
whose structure we know little; and even less about how it reacts,
adapts and evolves over time.

SNA’s central concept is that of applying a set of relations (and identi-
fying information flows) to the agents making up a network; while de-
emphasizing, often eliminating, a focus on the set of attributes of
agents (a focus which is dealt with by other branches of social sci-
ence). Some common relations are: agent X “communicates with”
agent Y; X “meets face-to-face with” Y; X “gets information from” Y; X
“coordinates with” Y; X “knows about but has never met” Y; X “pro-
vides resources for” Y; and so on. A given relation may also be
assigned a set of associated properties, such as directionality,
strength, reciprocity, frequency and duration. All of these properties
are used in the design of SOTCAC.



223

Appendix 

SNA studies typically make the following additional assumptions
[41]:

• Agents and their actions are interdependent and autonomous.

• Relational links between agents are channels that transfer (or allow the
transfer) of resources and information.

• The connectivity along a network’s constituent agents is, by itself, an
essential dynamical ingredient underpinning the network’s function
and behavior, and both provides opportunities for, and imposes con-
straints on, individual action. 

• Network models conceptualize abstract topology (social, economic, polit-
ical, etc.) as self-organized, emergent patterns of relations among its
agents.

While agents may be the focus of attention for a given problem
(node-centric measures such as centrality, prestige, betweenness, for
example, are integral metrics in many studies; see discussion below),
SNA is usually concerned with understanding the properties and
behaviors of larger topological entities consisting of a collection of
agents and the links among them: Dyads (two agents and their links,
at which level distance and reachability, structural and other notions
of equivalence, and tendencies toward reciprocity are prevalent),
Triads (three agents and their links, at which level balance and tran-
sitivity become important), or larger systems (subgroups of individu-
als, or entire networks, and networks of networks; at this level
concepts such as cliques, centralization, connectedness, cohesion,
diameter and density come into play). 

The kinds of questions and issues that SNA typically addresses are, not
unexpectedly, similar to the basic questions one asks of complex net-
works in general, although SNA-related questions more strongly
emphasize processes and relationships:

• Who are the most important “players” in a network, and what are the
important structures?

• Who is the “star” of the network (i.e., most highly connected individ-
ual)? Who plays the role of mediator, or liaison? Which members of a
network act as “bridges” between otherwise disconnected subgroups?
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• How does information flow throughout a network? Are there bottle-
necks? What kinds of topological changes can be made to enhance the
information flow locally? What about globally?

• What kinds of endogenous and exogenous dynamics are responsible for
the networks evolution and sustainability? 

• How does the network adapt to local structural failures?

• What is the feedback mechanism between the network’s dynamics and
underlying topology?

Example

Both as an example of the kinds of insights SNA can provide into how
a social networks functions, and as a motivation for the more techni-
cal discussion of general network metrics in the next section, con-
sider an imaginary company that consists of ten workers: Andy, Bill,
Claire, Drew, Eliot, Frank, Gary, Heather, Ilya, and Jane.

Figure 51. Sample SNA “deconstruction” of an imaginary business that consists of ten workers; 
the columns show extracted relationships, graph structure, and graph visualization 
of the company

Figure 51 shows a schematic of the kind of raw information that SNA
uses to evaluate the internal relation patterns of this system.85 Two

85. The graph image shown in this figure is called a “Kite Network” and was
introduced by David Krackhardt, a leading social network analyst and devel-
oper of a widely used social network visualization package called KrackPlot:
http://www.andrew.cmu.edu/user/krack/. 
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nodes are connected in the graph image (shown on the right-hand-
side of figure 51) if the people they represent “work with” each other.
For example, Andy (n1) works with Bill, Claire, Drew and Frank, but not
with any of the other workers. Thus, n1 is connected only to the nodes
n1, n3, n4 and n6.

This example illustrates the meaning of three basic measures of cen-
trality in a network: degrees, betweenness, and closeness. 

Consider the dynamic role that some of these individuals play, in the
context of their position in the social network of the company, as
depicted in the graph image. Drew is clearly the worker with the most
links (6) to others in the organization; i.e. Drew is the best connected
(sometimes also referred to as most active).

Note that this does not imply that Drew is the most “important”
worker, for two reasons: first, because we cannot draw this conclusion
without first learning more about what this company does and what
kind of information is more or less vital to its function; and second,
because it is generally true in social networks that what is of signifi-
cance---topologically---is not so much how many links are attached to
given node, but where the links anchored on that node lead, and how
they connect parts of the network that would otherwise be discon-
nected [134].

Observe that all of Drew’s links are with individuals in the same clique;
links that are to some degree also obviously redundant, since many of
those he is connected to are already connected to each other. 

As an example of how a node with fewer connections can be viewed
as serving a more important “role” within the network, consider
Heather (n8). Heather has fewer links to others than Drew (she actually
has fewer links than is the average for the entire company)---but---she
is positioned prominently between two groups of the network: the
clique on one side, and Ilya and Jane on the other. In the context of
communications, Heather plays the role of “information broker,” and
is the de facto go-between during exchanges between the two groups.
In general, nodes that have a high Betweenness measure (see below),
potentially can exert a strong influence over the information flow in
the network. On the other hand, nodes with high Betweenness, such as
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Heather, also represent some of the vulnerable components of a sys-
tem. Without Heather’s presence in the network in figure 51, for exam-
ple, Ilya and Jane would effectively be cut off from the rest of the
company.

Now consider Frank and Gary. Like Heather, each of them has fewer
links than Drew, and so do not score high in Closeness; but these two
individuals are closer, on average, to all other workers than is any
other node in the network. From a SNA perspective, Frank and Gary
therefore lie at the heart of the network, for they are in a position to
“hear about” what might be happening elsewhere in the network first.

What of Ilya and Jane? Given their relative isolation at the tail end of
the social network, one might, at first, be tempted to call these indi-
viduals only peripheral---even unimportant---players in the company.
Neither of these workers has a high degree, neither is particularly
close to anyone else, and both are too far from the others to act as “go-
betweens.”. However, Ilya’s and Jane’s solitude may only be apparent,
and not indicative of the true role they play. They may appear to be
separated from others simply because the data used in generated the
graph in figure 51 was incomplete and/or erroneous (which is a
problem that plagues all SNA deconstructions of terrorist networks;
see discussion in next section); or they may play more important roles
in other, overlapping, social networks that map relations other than
the single “works with” relation shown here. This simple example
reminds us that---while deconstructing social networks---we must
always be mindful of the fuzziness, incompleteness and/or erroneous
nature of the data used in generating social maps.

So far in this example, we have examined the differences among the
dynamic roles that individual workers (seem to) play in the imaginary
company depicted in figure 51; i.e., we have looked at some basic local
properties. Equally important, of course, is a network’s global struc-
ture; or, more precisely, the relationship among a network’s local
centralities. A highly centralized network, that has one or only a few
central nodes---such as the one in this example---is highly vulnerable
to attack [136]. If any of these highly central nodes are damaged or
destroyed, the network may break apart into disconnected subnets, or
become completely disconnected. A single highly connected node
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represents a critical vulnerability of the system. On the other hand,
less centralized networks are generally more resilient to attack. As the
a network becomes less and less centralized, as a whole, it takes more
and more targeted attacks on individual nodes to disconnect the sys-
tem.
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Appendix 2: Mapping Al-Qaeda

“Terrorist networks are not armies...today the world's most danger-
ous aggressors are not military organizations with divisions but self-
organized networks of terror.” 

—Albert-Laszlo Barabasi, University of Notre Dame

One obvious way to understand the structure (if not dynamics) of real
terrorist networks, is to map them using existing data, and study the
resulting structures as mathematical graphs. Valdis Krebs, a manage-
ment consultant and developer of a social network analysis program
called InFlow,86 set out to do precisely this shortly after the tragic
events of September 11, 2001 [193,195]. 

Krebs applied exactly the same SNA methodology his company suc-
cessfully uses for mapping organizational structures for business firms
(such as IBM, TRW, and Raytheon, among many others) to map the
terrorist networks responsible for the attacks. Using public informa-
tion gleaned from major newspapers such the New York Times, the
Wall Street Journal, the Washington Post and the Los Angeles Times, Krebs
began to “connect the dots.” Figure 52 shows a screenshot of an early
information table containing known facts about the hijackers, pub-
lished by the Sydney Morning Herald in Australia, on September 24,
2001.

Using the names of the 19 individuals identified as the attackers,
Krebs used the WWW search engine Google to obtain links to other
public information associated with them, including their back-
grounds, possible associates and connections to others, financial ties,
and further details regarding their flight training and other events
they may have been associated with.

86. InFlow is a network analysis toolkit that maps and provides metrics for
knowledge exchange, information flow, communities of practice, networks
of alliances and other kinds of networks within and between organizations;
see http://www.orgnet.com/inflow3.html.



By the middle of October 2001, Krebs (being careful to disentangle
confirmed facts from those that were obviously false, such as errone-
ous stories that appeared about a cell in Detroit) had obtained
enough information to begin mapping the links among the terrorists.

Figure 52. Screenshot of an early information-matrix of hijacker data

Trusted Prior Contacts

Figure 53 shows an early map produced by Krebs that shows only
those connections that he found to exist among trusted prior contacts;
or those forged between terrorists that have lived and trained
together. Note that the terrorist nodes are color coded according to
the flight they hijacked. 

While the relationships shown in figure 53 may not all be correct, and
are certainly incomplete at this early juncture (a deficiency that
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would quickly be remedied as more reliable information was
obtained; see below), this preliminary structure nonetheless already
displays interesting structural properties. 

For example, Krebs was immediately impressed by its intelligent sparse-
ness; by how distant many of the hijackers on the same team were
from each other [193]. This sparseness is arguably less an unfortu-
nate artifact of incomplete information, and more a consequence of
intelligent administration by the terrorist cell itself.

Figure 53. Social network of trusted prior contacts of 9/11 hijackers; 
taken from “Mapping Networks of Terrorist Cells” (Krebs 
[195])

The 19 agent network shown in figure 53 has an average path length
of 4.75 steps; and a few hijackers are separated by more than six steps.
The network clearly trades efficiency of information flow for secrecy.
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By keeping cell members as distant from each other (and from mem-
bers of other cells) as possible, damage to the network as a whole if
one of its members is captured or otherwise compromised is mini-
mized. 

Krebs notes that this tradeoff is consistent with observations made by
Osama bin Laden (as transcribed from a video released by the US
Department of Defense on December 2001; [195]):

Those who were trained to fly didn’t know the others.
One group of people did not know the other group.

While figure 53 provides a snapshot of Al Qaeda’s cell compartmen-
talization, it cannot be telling the entire story. However great may be
the need for secrecy, at some point terrorists must coordinate their
resources and actions.

Meeting Ties

Figure 54 shows Krebs’ update of the social network map of 9/11
hijackers, using both trusted prior contacts links (as in figure 53) and
additional links indicating short-lived meeting ties (shown in yellow). 

Superficially, there appears to be little obvious difference between
the two networks shown in figures 53 and 54. Although Krebs’ graph-
layout program has obviously rendered the two networks differently
from a purely visual standpoint, the only objective difference between
the two graphs consists of the six yellow links representing transitory
communication lines. However, the effect that these additional links
have on the dynamics of the network is substantial.

Specifically, the six additional links provide temporary, but valuable,
“shortcuts” to information flow and thus serve as transient aids for
both collaboration and coordination [224]. For example, one can show
(using Kreb’s Inflow program or any other freely available SNA tool-
kit; see Appendix 3), that the six yellow links in figure 54 reduce the
mean path length of the network shown in figure 53 by 40%. While
the assertion that a relatively small number of links can make a dra-
matic difference in a network’s topology has been made before in the
context of small worlds graphs [74], Krebs’ example illustrates that
these ideas, and phenomena, are far from being “merely” academic.
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Figure 54. Social network of 9/11 hijackers showing both trusted prior 
contacts (as in figure 53) and short-lived meeting ties (indi-
cated in yellow); taken from “Uncloaking Terrorist Net-
works,” by Krebs [3]

While a terrorist network must constantly weigh its need to use its
links to accomplish its objectives against maintaining secrecy, if it is to
ultimately succeed in its mission it must periodically risk exposure to
actively coordinate its assets. It is at these critical moments, of course,
that the terrorist network (or at least a component of it) becomes
especially vulnerable to eavesdropping by counterterrorist forces, dis-
ruption and/or destruction. An important component of the concep-
tual model SOTCAC, introduced in the next section, is to explore the
dynamical consequences of obeying a local optimization rule (to be
executed by a notional terrorist cell) of the form:
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Use minimum number of active agents in cell C to maximize infor-
mation-flow throughput in region R of network.

The last step of Krebs’ evolving social network map of the connec-
tions among the 9/11 hijackers was to include their support group;
the members of which, though not direct participants in the terror
attacks, were nonetheless indirect accomplices, serving as channels
for money transfers, and sources of training and other required skills
and resources.

Direct & Indirect Links

Figure 55 shows Krebs’ final map of the 9/11 hijackers, which adds all
direct and indirect links with supporting agents to those already
included in figures 53 and 54. The thickness of each link in figure 55
is proportional to the estimated strength of the connection between
the agents it is representing a bond between.

What is immediately apparent from even a casual visual inspection of
figure 55---and may be confirmed after performing a quantitative
social network analysis---is that Mohamed Atta (who appears roughly
at the center of the graph and whose node is colored green) plays a
central role. Recall that Atta’s role in the attacks, the importance of
which as ring-leader is now well established, was unknown at the time
that Krebs created this graph [3]. Of all the agents appearing in the
network, Atta ranks highest on the lists of basic network centrality
metrics, such as degree, closeness, and betweenness (see Complex net-
works: metrics; page 77). The figure thus strongly displays “scale-free”
characteristics, with Atta as the dominant hub.

Recalling our earlier discussion of scale-free networks (see page 51),
Krebs’ snapshot view of (a part of) Al Qaeda is also consistent with the
Barabasi-Albert model of scale-free network formation; namely, that
such networks form, and grow, naturally whenever nodes (or agents)
are added with preferential attachment. One may assume that
recruits are predisposed to attach themselves to a terrorist organiza-
tion’s most influential members; and that recruiters look first to those
they already know and trust to offer membership in the organization.
While figure 55 does not, by itself, “prove” that Al Qaeda is scale-free,
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it is consistent with what one expects to find for networks that have
evolved via preferential link attachment. 

Figure 55. Social network of 9/11 hijackers showing trusted prior con-
tacts (as in figure 54), short-lived meeting ties, and associated 
support network; taken from “Uncloaking Terrorist Net-
works,” by Krebs [3]

An important reason for developing SOTCAC is to be able explore
such basic issues as the dynamical relationship between how networks
first form and grow, locally, and their eventual, emergent global
structure.
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Observations

Recall that “degree” measures activity; “closeness” measures accessibil-
ity to (and ability to monitor) others in the network; and “between-
ness” measures the extent of control that an agent has over
information flow in the network (i.e. an agent that ranks high in
betweenness likely plays the role of information broker in the net-
work). Ranking highly (or, as in Atta’s case, attaining the highest rank)
in all three of these metrics strongly suggests a leadership role.

While these, and other, social network metrics have been developed
in the context of communication and learning in business organiza-
tions, because they depend only on a network’s abstract structure,
they apply equally well to any interconnected community of agents
about whose internal structure, dynamics, and general properties of
information flow the analyst is interested in studying. Krebs’ plots and
business-organization-derived analyses thus reveal important proper-
ties and key individuals in the information flow of Al Qaeda’s internal
dynamics (as best as they can be inferred from publicly available
data).

A more careful analysis of figure 55 also uncovers less obvious pat-
terns that hint at Al Qaeda’s underlying command structure. In “Six
Degrees of Mohammed Atta,” for example, Thomas Stewart points
out that...

...the greatest number of lines lead to Atta, who scores highest on all
three measures, with Al-Shehhi, who is second in both activity and
closeness, close behind. However, Nawaf Alhazmi, one of the Amer-
ican Flight 77 hijackers, is an interesting figure. In Krebs's number
crunching, Alhazmi comes in second in betweenness, suggesting
that he exercised a lot of control, but fourth in activity and only sev-
enth in closeness. But if you eliminate the thinnest links (which also
tend to be the most recent -- phone calls and other connections made
just before Sept. 11), Alhazmi becomes the most powerful node in
the net. He is first in both control and access, and second only to Atta
in activity. It would be worth exploring the hypothesis that Alhazmi
played a large role in planning the attacks, and Atta came to the fore
when it was time to carry them out. [225]

Other latent patterns are discernible only in hindsight after key play-
ers of a network are identified in a social network map. 
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Voss and Joslyn, for example, during a study to apply advanced knowl-
edge integration tools to large data sets of terrorist-related informa-
tion (conducted at the Los Alamos National Laboratory [194]), used
over 1000 open source reports correlating the identities of the hijack-
ers with data on individual people, terrorist groups, events and exper-
tise.

Figure 56. Map showing that 11 of the 19 hijackers came from a single stretch of Highway 15 
of the Asir province of Saudi Arabia; screenshot from [194]

In a visual approach similar to Krebs’, Voss and Joslyn first used a
VisioPro chart to display the relationships among people, terrorist
groups, terrorist cells, religious leaders, Mosques and terrorist events.
As links were added from their database, theretofore “invisible” links
emerged, such as the connection between Al Qaeda and Hizbollah.87 

The critical role that prior trusted contacts play in establishing and
maintaining a resilient hidden core of a covert network is evidenced
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by Voss’s and Joslyn’s discovery that fifteen of the nineteen hijackers
not only came from Saudi Arabia, but twelve of them came from towns
stretching out along a single highway in the southwestern Asir prov-
ince of Saudi Arabia (see figure 56).

Ties between terrorists, forged in towns where they lived, nurtured by
common grievances and life’s experiences, and later strengthened
while they trained together in Afghanistan, were all solidly---and
silently---in place by the time the hijackers came to the Unites States.
This invisible ambient field of links, glued by mutual trust, known only
to those already within the core of the network and all but unknown
to those outside of it, was rarely active; its strength is due to the fact
that if the need arises, any or all of these “dormant” links can instantly
be activated.

Lessons

There are several important observations worth emphasizing about
what we have learned from this example: 

1. While none of the individual “snapshots” of the 9/11 terrorist
network is complete, or completely accurate, they collectively
suggest that the real network possesses an obviously intelligent
design, one that is highly tailored to efficiently carry out the ter-
rorist operation.

2. This network does not result from a willful imposition of order,
from a top master-mind on down the chain of command, but is
instead a self-organized, emergent entity that is generated by a com-
bination of Al Qaeda’s mission requirements and the (decen-
tralized and essentially autonomous) initiative of its agents.

3. The strong cohesion among the 9/11 hijackers was due to the
trust that had been built up among them years before the attacks,
dating back to their mutual participation in Al Qaeda’s training

87. A link, dating back to 1993, emerged between Imad Fayez Mugniyah (head of secu-
rity of Hizbollah and possible Al-Qaeda member) and Osama bin Laden [224].
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camps, and, in many cases, even farther back to their home
towns.

The most important analytical tool that social network analysis
adds to counterterrorism, is its ability to map the “invisible
dynamics inside” [18] a terrorist network; both qualitatively (via
graph visualization), and quantitatively (using its well-defined
store of network metrics). In the case of networks that evolve
over long periods of time, it is particularly vital to have an ability
to map connections, as that is the only way in which the coun-
terterrorist organization can gain any sense of the network’s
emerging structure and potential strength.

For example, Krebs [193] points out that a map of the activities
and contacts of two of the 9/11 hijackers (Nawaf Alhazmi and
Khalid Almihdhar), that the Central Intelligence Agency had
identified as “Al Qaeda suspects” when they met face-to-face in
Malaysia in 2000, reveals that (a) all 19 hijackers lie within two
steps of the original suspects, and (b) each has multiple links
back into the larger Al Qaeda network. 

4. The network, as a whole, is relatively sparse. The 19 members of
Al-Qaeda’s 9/11 strike were relatively isolated from one
another.

5. There is clear leadership structure, despite the obvious lack of any formal
command and control hierarchy. Mohammed Atta leadership role
is “obvious” only from a bird-eye view of the entire 9/11 net-
work; it is Atta’s dynamic role in the network (as evidenced by
centrality and closeness measures, among others) that testifies
to his importance to the terrorist operation. Note also that the
“head” of Al Qaeda---Osama bin Laden---is absent from the
(perceived) communication channels and chain of command. 

Osama’s role, dynamically, is not to manage the day-to-day
activities of Al Qaeda’s many cells and operatives; rather it is to
provide whatever financial and logistical resources are neces-
sary for conducting Al Qaeda’s missions, and to engender and
maintain a pervasive, system-wide, unified focus and vision.
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The role of lower ranking members of the network is to nur-
ture robust, but secretive, interconnectivity.

6. Liability---the overlap between Atta’s leadership responsibilities
and his unique skills, as one of the trained pilots, made him
(and other pilots who were also cell leaders) a liability; and rep-
resented a key vulnerability in Al Qaeda’s mission structure.

7. Resiliency---the structure of the 9/11 network was robust in that
it was relatively impervious to the removal of the cell leader. If
Atta were eliminated, Marwan al-Shehhi would have likely
emerged as the new “leader” due to his high degree of connec-
tivity (Marwan had the second highest ranking degree, and was
ranked fourth in terms of both betweenness and closeness [195]).

Al Qaeda’s robustness extends to the highest levels of leader-
ship. Because bin Laden’s primary function is being a “catalyst”
that stimulates---and energizes---the system [80], the most likely
consequence of removing bin Laden from the network (say, by
assassination) is the creation of a “structural hole” [134], rep-
resenting the critical system role bin Laden previously played.
This hole will not only be immediately filled (so that, from Al
Qaeda’s perspective, no real “harm” will have been done), but
the dynamics of how the network adapts to bin Laden’s loss will
only likely further stimulate and energize the system [marion].

8. The core set of 9/11 hijackers was surrounded by a larger support
network, which both provided necessary resources and served as
backchannel communication lines that, effectively, maintained
otherwise sparse links among mission operatives connected.
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Appendix 3: Social network analysis and 
SOTCAC-related development resources

SOTCAC is being developed using Microsoft’s Visual C++ Version 6.0
and Developer Visual Studio 6.0:

http://msdn.microsoft.com/developer/

However, because SOTCAC makes heavy use of existing graph algo-
rithms and social network analytical tools and measures, the use and
assistance of several different adjunct toolkits is essential to reduce
development time and effort. 

This appendix contains brief descriptions of (and WWW URL links
to) some of the toolkits that have been tested for future use toward
this end. Of these, four were chosen, although---because of the con-
siderable overlap in the functionality of many of these programs, as a
group---it is likely that several others will play some role in SOTCAC’s
development): 

1. Combinatorica (which is collection of functions that are inte-
grated into the Mathematica program); 

2. Pajek (which is a freeware graph visualization and analysis pro-
gram, and is widely used in the social network analysis commu-
nity); and 

3. C++ Graph Analysis and MFC Graph Visualization toolkits from
Tom Sawyer Software (which, together, provide a complete set of
customizable class libraries).

While the first two toolkits are used more for quick-look analysis and
rapid prototyping of algorithms than software development, the
latter two contain tested algorithms for virtually all of the social net-
work metrics that SOTCAC requires, as well as provide the primitive
visualization functions needed for SOTCAC’s networks and GUI.
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AGNA

AGNA (Applied Graph & Network Analysis) is a platform-indepen-
dent freeware application, developed by Marius Benta, and designed
specifically for social network analysis. In addition to providing basic
visualization functions, AGNA automatically calculates various net-
work properties and metrics (including diameter, density, cohesion,
geodesics, four types of centrality coefficients, as well as many net-
work-level aggregates and/or statistical descriptions).

Version 2.1.1 may is freely available on this website:88

http://benta.addr.com/agna/download.htm

aiSee

aiSee is a commercial graph layout program that automatically calcu-
lates a customizable graph layout; data is provided using a proprietary
(but straightforward) textual input format GDL (graph description
language). The resulting layout is then displayed, and can be interac-
tively explored, printed and exported to various graphic formats.
aiSee contains 15 basic layout algorithms (including force-directed
layout; see page 34), and is optimized to handle very large graphs
(that contain up to 106 nodes). 

aiSee is free for noncommercial use and may be downloaded from the
aiSee homepage:

http://www.aisee.com/

Combinatorica/Mathematica

Combinatorica is a collection of over 450 algorithms for discrete math-
ematics and graph theory written in Mathematica.89 Although Combi-
natorica is very comprehensive, it is not particularly well suited for
analyzing large graphs. Its strongest asset is its tight integration within

88. AGNA requires Java Virtual Machine (Version 1.3 or above), which is avail-
able for free from Sun (http://java.sun.com/getjava/).

89. http://www.wri.com. 
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Mathematica. Codeveloped by Sriram Pemmaraju and Steven Skiena
[95], it is included with the standard Mathematica distribution in the
directory Packages/DiscreteMath/Combinatorica.m; it may also be down-
loaded from Combinatorica’s homepage:

www.cs.sunysb.edu/~skiena/combinatorica/index.html

Combinatorica Graph Editor 

Combinatorica Graph Editor (CGE; developed by Levon Lloyd) is a Java-
based graph editor that works with Combinatorica:

http://www.cs.sunysb.edu/~lloyd/grapheditor

GraphPlot

Mathematica v5.1 (released in November 2004) now includes an
extremely powerful GraphPlot package that contains (among many
other options), algorithms for spring embedding, the spring-electri-
cal model, high-dimensional embedding, radial drawing, and layered
drawing methods. It supports graphs saved using the Combinatorica
package, and is designed to work efficiently for very large graphs.

Graphviz

Graphviz is a graph layout program that takes descriptions of graphs
in a simple text language, and generates layouts (using one of six
embedded graph layout algorithms) that can be saved in various for-
mats (such as JPEG images and postscript). One caveat is that graphs
are must be generated externally to the program; although there are
many utilities that provide this function, such as Gappa, a JAVA-based
“front-end” to Graphviz: http://www.research.att.com/~john/
Grappa/.

Graphviz is open source licensed software:90

http://www.graphviz.org/

90. A Mac OS X edition of Graphviz (that has won two 2004 Apple Design
Awards), is available at this address: http://www.pixelglow.com/graphviz/.
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JUNG 

JUNG (Java Universal Network/Graph Framework) is an open-source
JAVA-based software library that provides a common and extendible
language for the modeling, analysis, and visualization of data that can
be represented as a graph or network. JUNG supports a variety of
graphs (including directed, undirected graphs, multi-modal, and
hypergraphs); and includes implementations of a number of basic
algorithms from graph theory, data mining, and social network anal-
ysis (including routines for calculating clustering, decomposition,
optimization, random graph generation, statistical analysis, and cal-
culation of network distances, flows, and centrality measures. JUNG
also allows users to interactively explore network data by providing an
embedded visualization package. 

JUNG version 1.5 is available at this address (which also contains links
to additional third-party libraries required to use JUNG):

http://jung.sourceforge.net/download.html

LEDA

LEDA is a general C++ class library for efficient data types and algo-
rithms for graph- and network problems, geometric computations,
and combinatorial optimization. Introduced in 1989 as an academic
research project, it is currently distributed commercially by Algorith-
mic Solutions Software GmbH:

http://www.algorithmic-solutions.com/

Two related toolkits, that use LEDA, are GDToolkit (Graph Drawing
Toolkit; http://www.dia.uniroma3.it/~gdt/), which is used for graph
drawing and layout; and AGD (Algorithms for Graph Drawing). AGD
(http://www.ads.tuwien.ac.at/AGD/) offers a broad range of exist-
ing algorithms for drawing 2D graphs as well as tools for implement-
ing new algorithms.

Maple/Networks Package

Maple---which, like Mathematica, is a commercial symbolic program-
ming language---includes a networks package consisting of about 100
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command that include implementations of basic graph routines: net-
work flows, connectivity, disjoint spanning trees, all-pairs shortest
path, single-source shortest path, minimum weight spanning tree,
Tutte polynomials, and characteristic polynomials. Maple also
includes routines for visualizing graphs, although they are not as
sophisticated as those included in Mathematica’s Combinatorica
package (see above). Maple version 9.5 is distributed by Maplesoft:

http://www.maplesoft.com/products/maple/

NetDraw

NetDraw is a free program for drawing networks. Developed by Steve
Borgatti, it uses several different algorithms for 2D graph layout. Net-
draw reads both UCINET system and Pajek text files (UCINET and
Pajek are both described below). NetDraw saves graphs as EMF, WMF,
BMP and JPG files; it can also save data to Pajek. 

Features include visualizing multiple simultaneous relations (on a
single graph), valued relations (in which, say, the strength of links is
visualized by varying link thickness), various node attributes (by using
colors, size, labels, etc.), and selective partitioning according to
cliques or other user-defined class members. Built-in analysis is lim-
ited but includes identification of isolates, components, k-cores, cut-
points and blocks.

The current version of NetDraw includes two graph layout algorithms:
(1) circular, and (2) spring embedding (which is based on geodesic dis-
tance and includes options for exaggerating clustering, biasing
toward equal-length edges, and turning on/off node-repulsion). 

http://www.analytictech.com/downloadnd.htm

NetMiner

NetMiner is a powerful commercial software tool for exploratory net-
work data analysis and visualization. Developed by Cyram Co., Ltd,
NetMiner offers a robust exploratory data analysis system that com-
bines a suite of social network analysis tools and graph drawing tech-
niques:
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http://www.netminer.com/NetMiner

Pajek

Pajek91 is a program analyzing and visualizing large networks contain-
ing on the order of ten or hundred of thousands of nodes. Imple-
mented in Delphi, it runs in the Windows environment and is being
developed by Vladimir Batagelj and Andrej Mrvar.

Pajek supports all conventional graphs (including directed, undi-
rected, and mixed), as well as bipartite (valued) and dynamic graphs.
Pajek also includes algorithms for simplifications and transformations
(deleting loops, multiple edges, transforming arcs to edges etc.), cal-
culating components (strong, weak, biconnected, symmetric),
decompositions (symmetric-acyclic, hierarchical clustering), paths
(shortest paths, and all paths between two vertices, critical paths),
flows (such as the maximum flow between two vertices), and many
social networks algorithms (such as centrality measures, hubs and
authorities, measures of prestige, brokerage roles, and structural
holes).

Pajek version 1.02 is available at its home page (and is free, for non-
commercial use):

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

PIGALE

PIGALE (Public Implementation of a Graph Algorithm Library and
Editor) is a graph editor and a C++ algorithm library for planar
graphs. It is developed by H. de Fraysseix and P. Ossona de Mendez.
It is available under the terms of the Free Software Foundation's GNU
general public license:92

http://pigale.sourceforge.net/index.html

91. “Pajek” means “spider” in the Slovenian language.

92. GNU Project homepage: www.gnu.org/
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SNA/RSCE

SNA (Social Network Analysis) is a fully documented collection of RSCE
(R Statistical Computing Environment) routines for performing social
network analysis. Utilities that are included range from hierarchical
Bayesian modeling, plotting and transforming networks, along with
various centrality and distance measures. 

SNA is provided under the terms of the GNU general public license:

http://legba.casos.ri.cmu.edu/R.stuff/

RSCE is a language and programming environment for statistical
computing and graphics; it is available for free under the GNU gen-
eral public license, in source code form:

http://www.r-project.org/

UCINET

UCINET is a comprehensive commercial package for analyzing social
networks with up to 32K nodes. Social network analysis methods
include centrality measures, subgroup identification, role analysis,
elementary graph theory, and permutation-based statistical analysis.
UCINET also has strong matrix analysis routines, such as matrix alge-
bra and multivariate statistics. NetDraw (see description above) is
integrated with UCINET; UCINET can also export data to Pajek.

UCINET version 6.29 is available at its home page:

http://www.analytictech.com/ucinet.htm

Tom Sawyer Software

Tom Sawyer Graph Analysis (C++ Edition) and Graph Visualization
(MFC Edition) toolkits provide a fully customizable and extensible
set of class libraries with APIs for developing sophisticated graph and
social network analysis applications. Other packages include graph
layout components for Java and Linux applications:

http://www.tomsawyer.com/home/
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Visone

Visone (Visual Analysis of Social Networks) is the product of a long-term
research project93 to develop models and algorithms to integrate the
analysis and visualization of social networks. Visone includes an inter-
active graphical user interface, and---although it is tailored specifically
to social networks (as witnessed by the fact that its suite of metrics
focuses on social network measures)---supports the import and export
of standard formats for general network data. Export is in publica-
tion-quality SVG (SCalable Vector Graphics), Postscript, and other
formats. 

Visone version 1.1 is available for Windows, Linux, and Mac OS X:

http://www.visone.de/download/index.html

INSNA is the professional association for researchers interested in
social network analysis. The association is a non-profit organization
incorporated in the state of Delaware. Founded by Barry Wellman in
1978, the current president is Bill Richards. A copy of its charter and
by-laws are available here. 

Finally, the following two WWW URL links provide a miscellany of
additional resources focused on complex network theory and social net-
work analysis, respectively:

Self-Organized Networks

This research site at the University of Notre Dame is maintained by
Albert-László Barabási and Hawoong Jeong. It contains an extensive
bibliography on books related to the study of complex network the-
ory, a gallery of networks, links to on-line peer-reviewed research

93. Visone is developed by the Algorithms & Data Structures Group in the Depart-
ment of Computer & Information Science, and the Domestic Politics & Public
Administration Group in the Department of Politics & Management, both at the
University of Konstanz and a network of collaborations, with members in sev-
eral different universities.
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papers, lecture slides, software for analysis and visualization, as well as
links to other research groups and conferences.

http://www.nd.edu/~networks/

International Network for Social Network Analysis

The International Network for Social Network Analysis (INSNA) is a non-
profit professional association for researchers in social network anal-
ysis. INSNA publishes Connections (which is an on-line periodical con-
taining news, research articles, technical columns, and book reviews),
sponsors the annual International Social Networks Conference, maintains
various electronic services (such as the website listed below, and the
discussion, SOCNET), and provides a portal to the Journal of Social
Networks, published by Elsevier:

http://www.insna.org/
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Appendix 4: World Wide Web URL links to 
resources related to terrorism, nonlinearity and 
complex adaptive systems

Shortly following the terrorist attacks on September 11, 2001, the
author posted the first installment of a web page (updated monthly)
containing resources related to terrorism, nonlinearity and complex adap-
tive systems that are available on the World Wide Web:

The following is a short extract of the resources listed on this page:

1. Assessing Threats of Targeted Group Violence: Contributions from
Social Psychology, by Marisa Reddy Pynchon and Randy Borum:

http://www.ustreas.gov/usss/ntac_pynchon.pdf

2. Complex Challenges: Global Terrorist Networks, on-line weekly
digest, edited by Gottfried Mayer-Kress:

http://www.comdig.org/

3. Complex Societies: The Evolutionary Origins of a Crude Superorgan-
ism, P. J. Richerson, University of California Davis:

http://www.sscnet.ucla.edu/anthro/faculty/
boyd/CrudeSuper/Complex for Human Nature III
clean.htm

4. Complexity Targeting: A Complexity Based Theory of Targeting and its
Application to Radical Islamic Terrorism, K.B. Glenn:

www.au.af.mil/au/awc/awcgate/saas/glenn.pdf

http://www.cna.org/isaac/terrorism_and_cas.htm
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5. Complexity Theory and Al-Qaeda: Examining Complex Leadership, R.
Marion and M. U.-Bien:

http://www.isce.edu/site/Marion_Uhl-Bien.pdf

6. Countering the New Terrorism, I. O. Lesser, B. Hoffman, J.
Arquilla, D. F. Ronfeldt, M. Zanini, and B. M. Jenkins, RAND
Corporation:

http://www.rand.org/publications/MR/MR989/

7. Cultural Barriers to Multinational C2 Decision Making, by Helen
Altman Klein, Anna Pongonis and Gary Klein:

http://www.dodccrp.org/events/2000/
CCRTS_Monterey/cd/html/pdf_papers/Track_4/
101.pdf

8. Ethnicity and Self-Organization, by Nils Zurawski:

http://www.uni-muenster.de/PeaCon/zurawski/
6.html

9. Formation of Economic and Social Networks:

http://www.econ.iastate.edu/tesfatsi/net-
group.htm

10. Governance Under Fire: Organizational Fragility in Complex Systems,
by Louise K. Comfort:

http://www.maxwell.syr.edu/campbell/
Governance_Symposium/comfort.pdf

11. How Emotions and Personality Effect the Utility of Alternative Deci-
sions: A Terrorist Target Selection Case Study, by M. Johns, B. G. Sil-
verman:

www.seas.upenn.edu:8080/~barryg/emotion.pdf

12. Identifying Potential Ethnic Conflict: Application of a Process Model,
T. S. Szayna, RAND Corporation:

http://www.rand.org/publications/MR/MR1188/
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13. International Network for Social Network Analysis:

http://www.sfu.ca/~insna/

14. International Organization Networks: A Complementary Perspective,
A. Judge, Union of International Association:

http://www.uia.org/organiz/ionet77.htm

15. Islam’s War Against the West, by H. Bloom:

http://www.howardbloom.net/islam.htm

16. Lessons of the Virus, by E. Nolin:

www.clickz.com/experts/archives/res/per-
sonal/print.php/895351

17. Mapping Networks of Terrorist Cells, by Valdis E. Krebs:

www.firstmonday.org/issues/issue7_4/krebs/

18. Modeling and Simulating Terrorist Decisionmaking: A Performance
Moderator Function Approach to Generating Virtual Opponents, by B.
Silverman:

www.seas.upenn.edu:8080/~barryg/terrist.pdf

19. Modeling Civil Violence: An Agent-Based Computational Approach, J.
M. Epstein, J.D. Steinbruner, and M.T. Parker, Brookings Insti-
tute:

http://www.brook.edu/es/dynamics/papers/cvio-
lence/cviolence.pdf

20. Modeling Terrorist Networks - Complex Systems and First Principles of
Counter-Intelligence, P.V. Fellman, D. Sawyer, and R. Wright:

http://www.snhu.edu/img/assets/3655/
Modeling_Terrorist_Networks_Fellman_Sawyer_an
d_Wright.doc

21. Modelling social systems as complex: Towards a social simulation meta-
model, C. Goldspink, Journal of Artificial Societies and Social
Simulation, vol. 3, no. 2, 2000:

http://jasss.soc.surrey.ac.uk/3/2/1.html
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22. Modeling Terrorism and Complex Adaptive Systems, Workshop,
Sante Fe Institute:

http://discuss.santafe.edu/terrorism/

23. Networks, Netwar & Information-Age Terrorism, John Arquilla,
David Ronfeldt and Michelle Zanini, RAND:

www.firstmonday.dk/issues/issue6_10/ron-
feldt/

24. Networks: Structure, Dynamics & Function, Conference, Santa Fe: 

http://cnls.lanl.gov/networks/

25. Making the Nation Safer: The Role of Science and Technology in Coun-
tering Terrorism, Committee on Science and Technology for
Countering Terrorism, Division on Engineering and Physical
Sciences, National Research Council, National Academy Press:

http://www.nap.edu/html/stct/

(Chapter 10: Complex and Interdependent Systems) 
http://www.nap.edu/html/stct/287-312.pdf

26. Robust Communication Dynamics in Complex Networks, Workshop:

http://www.research.ibm.com/nips03workshop/

27. Sentinel Threat Management System, open source data network
tracking system:

http://www.trackingthethreat.com/



255

References

 [1] S. Strasser, editor, The 9/11 Investigations: Staff Reports of the 9/
11 Commission, Public Affairs, 2004

 [2] National Commission on Terrorist Attacks, The 9/11 Commis-
sion Report: Final Report of the National Commission on Terrorist
Attacks Upon the United States, W.W. Norton & Company, 2004.

 [3] Valdis Krebs, “Uncloaking Terrorist Networks,’’ First Monday
(Peer Reviewed Internet Journal), Issue 7, Number 4, 2001,
http://www.firstmonday.dk/issues/issue7_4/krebs/.

 [4] Thomas A. Stewart, “Six Degrees of Mohammed Atta,” Busi-
ness 2.0, December 2001, http://www.business2.com/arti-
cles/mag/0,1640,35253,FF.html.

 [5] S. A. Auyang, Foundations of Complex-system Theories: In Econom-
ics, Evolutionary Biology, and Statistical Physics, Cambridge Uni-
versity Press, 1999.

 [6] Y. Bar-Yam, Dynamics of Complex Systems, Westview Press, 2003.

 [7] K. Mainzer, Thinking in Complexity: The Computational Dynamics
of Matter, Mind, and Mankind, 4th Edition, Springer-Verlag,
2003.

 [8] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Arti-
ficial Intelligence, Addison-Wesley, 1999.

 [9] G. Weiss, editor, Multiagent Systems: A Modern Approach to Dis-
tributed Artificial Intelligence, MIT Press, 2000.

 [10] M. Wooldridge, Introduction to MultiAgent Systems, John Wiley
& Sons, 2002.



256

 [11] A. Ilachinski, Artificial War: Multiagent-Based Modeling of Com-
bat, World Scientific Publishing, 2004.

 [12] Lt.Col. M.F. Beech, “Observing Al Qaeda Through the Lens
of Complexity Theory: Recommendations for the National
Strategy to Defeat Terrorism,” Journal for the Center for Strategic
Leade r sh ip ,  Volume S04 -01 ,  2004 :  ht tp ://car l i s le -
www.army.mil/usacsl/publications/S04-01.pdf.

 [13] W. F. Wechsler, L. S. Wolosky, and M. R. Greenberg, editors,
Terrorist Financing: Report of Independent Task Force, Council on
Foreign Relat ions,  2002:  http://www.cfr .org/pdf/
Terrorist_Financing_TF.pdf.

 [14] Magnus Ranstorp, deputy director of the Centre for the Study of
Terrorism and Political Violence at the University of St. Andrews
in Scotland, quoted in “Danger Persists After Hobbling Of Al
Qaeda,” by Dan Eggen and Michael Dobbs, Washington Post,
January 14, 2002.

 [15] J. Arquilla and D. Ronfeldt, Networks and Netwars: The Future of
Terror, Crime, and Militancy, RAND Corporation, 2001.

 [16] A. Ilachinski, EINSTein: An Artificial-Life Laboratory for Exploring
Self-Organized Emergence in Land Combat, Center for Naval Anal-
yses Research Memorandum CRM 2239.A1, 2000.

 [17] Peter P. Perla, A. Ilachinski, C.M.Hawk, M.C.Markowitz, and
C.A. Weuve, Using Gaming and Agent Technology to Explore Joint
Command and Control Issues, Center for Naval Analyses
Research Memorandum, CRM D0007164, Unclassified, Octo-
ber 2002.

 [18] Philip Vos Fellman and Roxana Wright, Modeling Terrorist Net-
works: Complex Systems at the Mid-Range, Complexity, Ethics and
Creativity Conference, London School of Economics, Septem-
ber 2003: http://www.psych.lse.ac.uk/complexity/Confer-
ence/FellmanWright.pdf.

 [19] R. Goolsby, Combating Terrorist Networks, Briefing Slides, 8th
International Command and Control Research and Technology Sym-



257

posium (ICCRTS), June 2003: www.dodccrp.org/events/
2003/8th_ICCRTS/Pres/track_5/1_1430goolsby.pdf.

 [20] K. Kaplan, “The Sims Take-on Al-Qaeda, LA Times, Nov 2,
2001, on-line: http://www.movesinstitute.org/Press/
LATimes-Sims.

 [21] R. Marion and M. Uhl-Bien, “Complexity Theory and Al-
Qaeda: Examining Complex Leadership,” Paper Presented at
Managing the Complex IV: A Conference on Complex Systems and the
Management of Organizations, Fort Meyers, FL, December, 2002:
http://www.isce.edu/site/Marion_Uhl-Bien.pdf.

 [22] R. Marion and M. Uhl-Bien, “Complexity Theory and Al-
Qaeda: Examining Complex Leadership,” Emergence, Volume
5, 2003.

 [23] C. Mesjasz, “How Complex Systems Studies Could Help in
Identification of Threats of Terrorism?” , Paper presented at
International Conference on Complex Systems (ICCS), Nashua,
NH, June 9-14, 2002: http://kpz.ae.krakow.pl/mesjasz/
necsi2002.html.

 [24] J. Raab and H. Milward, “Dark Networks as Problems,” Journal
of Public Administration Research and Theory, Volume 13, 2003:
http://jpart.oupjournals.org/cgi/reprint/13/4/413.pdf.

 [25] M. Sageman, Understanding Terror Networks, University of
Pennsylvania Press, 2004.

 [26] H. Arrow, J.E. McGrath, and J. L. Berdahl, Small Groups as
Complex Systems: Formation, Coordination, Development, and Adap-
tation, SAGE Publications, 2000.

 [27] James N. Rosenau, Distant Proximities Dynamics beyond Global-
ization, Princeton Univ Press, 2003.

 [28] A. Ilachinski, Multiagent-Based Synthetic Warfare: Toward Devel-
oping a General Axiological Ontology of Complex Adaptive Systems,
Center for Naval Analyses Research Memorandum CRM
7376.A1, 2003.



258

 [29] A. Ilachinski, EINSTein: Release Version 1.1, Center for Naval
Analyses, Multimedia CD-rom, D0007498.A1, February 2003. 

 [30] Claude Berge, The Theory of Graphs, Dover Publications, 2001.

 [31] E. P. MacKerrow, “Understanding Why: Dissecting Radical
Islamist Terrorism with Agent-Based Simulation,” Los Alamos
Science, Number 28, 2003.

 [32] W.D. Casebeer and T. Thomas, “Violent Non-State Actors:
Countering Dynamic Systems,” Strategic Insights, Volume 3,
Issue 3, 2004: (http://www.ccc.nps.navy.mil/si/2004/mar/
casebeerMar04.asp).

 [33] W.D. Casebeer and T. Thomas, “Violent Systems: Defeating
Terrorists, Insurgents, and Other Non-State Adversaries,”
Institute for National Security Studies, Occasional Paper 52, 2004:
http://www.usafa.af.mil/inss/OCP/OCP52.pdf.

 [34] Paté-Cornell, M.E. and S.D. Guikema, “Probabilistic Model-
ing or Terrorist Threats: A Systems Analysis Approach to Set-
ting Priorities Among Countermeasures," Military Operations
Research, Volume 7, No. 4, 2002.

 [35] Kathleen M. Carley, Ju-Sung Lee and David Krackhardt,
Destabilizing Networks, Connections, Volume 24, Number 3,
2001.

 [36] Stanislaw Raczynski, “Simulation of The Dynamic Interac-
tions Between Terror and Anti-Terror Organizational Struc-
tures,” Journal of Artificial Societies and Social Simulation,
Volume 7, Number 2, 2004.

 [37] S. Borgatti and R. Cross, “A social network view of organiza-
tional learning: relational and structural dimensions of know-
who,” Management Science, Volume 49, 2003.

 [38] Rob Cross, Andrew Parker, and Robert L. Cross, The Hidden
Power of Social Networks: Understanding How Work Really Gets
Done in Organizations, Harvard Business School Press, 2004.



259

 [39] E. Rogers, Diffusion of Innovations, Free Press, 1995.

 [40] T. W. Malone, The Future of Work: How the New Order of Business
Will Shape Your Organization, Your Management Style and Your
Life, Harvard Business School Press, 2004.

 [41] S. Wasserman and K. Faust, Social Network Analysis, Cambridge
University Press, 1994.

 [42] J. Scott, J, Social Network Analysis: A Handbook, Sage Publica-
tions, 1992.

 [43] W. Buckley, Society: A Complex Adaptive System: Essays in Social
Theory, Taylor & Francis, 1998.

 [44] N. Luhmann, Social Systems, Stanford University Press, 1995.

 [45] I. de Sola Pool and M. Kochen, “Contacts and influence,”
Social Networks, Volume 1, No. 5, 1978.

 [46] M. E. J. Newman, “The structure and function of complex net-
works,” SIAM Review, 2003.

 [47] M. Buchanan, Nexus: Small Worlds and the Groundbreaking Sci-
ence of Networks, W.W. Norton, 2002.

 [48] Albert-Laszlo Barabasi, Linked: How Everything Is Connected to
Everything Else and What It Means, Plume, 2003.

 [49] P. L. Krapivsky and S. Redner, “Organization of Growing
Random Networks,” Phys. Rev. E, Volume 63, 2001.

 [50] S. Malcolm and J. Goodship, Genotype To Phenotype: Human
Molecular Genetics, BIOS Scientific Publishers, 2001.

 [51] C. G. Langton, editor, Artificial Life, MIT Press, 1997. 

 [52] Human Genome Project: www.ornl.gov/sci/techresources/
Human_Genome/

 [53] M. Eigen, “Macromolecular evolution: dynamical ordering in
sequence space,” pages 25-69 in [54]. 



260

 [54] M. Huynen and P. Hogeweg, “Pattern generation in molecu-
lar evolution; exploitation of the variation in RNA land-
scapes,” Journal of Molecular Evolution, 1993.

 [55] S. Kauffman, The Origins of Order: Self-Organization and Selection
in Evolution, Oxford University Press, 1993. 

 [56] Stefan Bornholdt and Heinz Georg Schuster, editors, Hand-
book of Graphs and Networks: From the Genome to the Internet,
Wiley-VCH, 2003.

 [57] M. Dodge and R. Kitchin, Atlas of Cyberspace, Pearson Educa-
tion, 2002.

 [58] H. Bai-lin, editor, Chaos, World Scientific, 1984.

 [59] P. Cvitanovic, editor, Universality in Chaos, Adam Hilger, 1984.

 [60] H.G. Schuster, Deterministic Chaos: An Introduction, Second
Edition, VCH Publishers, 1988.

 [61] G.A. Cowan, D.Pines and D.Meltzer, Complexity: Metaphors,
Models and Reality, Addison-Wesley, 1994.

 [62] D.L. Stein, editor, Lectures in the Sciences of Complexity, Addison-
Wesley, 1989.

 [63] M. Waldrop, Complexity: The Emerging Science at the Edge of Order
and Chaos, New York: Simon and Schuster, 1992.

 [64] Serguei N. Dorogovtsev and Jose Fernando Ferreira Mendes,
"Evolution of Networks,” Adv. Physics, Volume 51, 2002:http:/
/merlin.fae.ua.es/fvega/review_md.pdf.

 [65] Ronald Brelger, Kathleen Carley, and Philippa Pattison, edi-
tors, Dynamic Social Network Modeling and Analysis: Workshop
Summary and Papers, National Academy Press, 2004.

 [66] R. Goolsby, “Combating Terrorist Networks: Current
Research in Social Network Analysis for the New Warfighting
Environment,” 8th International Command and Control Research



261

and Technology Symposium (ICCRTS), June 2003: http://
www.dodccrp.org/events/2003/8th_ICCRTS/pdf/044.pdf.

 [67] T. Blass, The Man Who Shocked the World: The Life and Legacy of
Stanley Milgram, Basic Books, 2004.

 [68] S. Milgram, “The small world problem,” Psychology Today,
Volume 2, 1967.

 [69] F. Karinthy, “Chains,” in Everything is Different, Budapest, 1929.

 [70] P. Killworth and H. Bernard, “The reverse small world exper-
iment,” Social Networks, Volume 1, 1978.

 [71] Duncan J. Watts, Small Worlds: The Dynamics of Networks between
Order and Randomness, Princeton Univ Press, 2003.

 [72] Duncan J. Watts, Six Degrees: The Science of a Connected Age,
W.W. Norton & Company, 2003.

 [73] J. Guare, Six Degrees of Separation: A Play, Vintage Press, 1990.

 [74] Duncan J. Watts, 1999. "Networks, Dynamics, and the Small-
World Phenomenon," American Journal of Sociology, Volume
13, Number 2, pp. 493-527.

 [75] Stefan Wuchtya, and Peter F. Stadler, “Centers of complex
networks,” Journal of Theoretical Biology, Volume 23, 2003.

 [76] A.L. Barabási, Z. Deszo, E. Ravasz, S. H. Yook, and Z. Oltvai,
“Scale-free and hierarchical structures in complex networks,”
h t t p : / / w w w . n d . e d u / ~ n e t w o r k s / P D F / P r o c e e d -
ing%20Sitges2004.pdf.

 [77] S. Strogatz, “Exploring complex networks,” Nature, Volume
410, 2001.

 [78] J. Kleinberg, “The small-world phenomenon: an algorithmic
perspective,” Cornell Computer Science Technical Report 1776,
October 1999.



262

 [79] P. Erdos and A. Renyi, “On the evolution of random graphs,”
Publ. Math. Inst. Hung. Acad. Scie., Volume 5, 1960.

 [80] Albert-László Barabási and E. Bonabeau, “Scale-Free Net-
works,” Scientific American, Volume 288, 2003.

 [81] Inflow: http://www.orgnet.com.

 [82] Internet Mapping Project: http://research.lumeta.com/ches/
map/gallery/index.html.

 [83] Duncan J. Watts and S. Strogatz, “Collective dynamics of
'small-world' networks,” Nature, Volume 393, 1998.

 [84] Bela Bollobas, Modern Graph Theory, Springer-Verlag, 1998.

 [85] R. Diestel, Graph Theory, Springer-Verlag, 2000.

 [86] F. Harary, Graph Theory, Perseus, Cambridge, 1995.

 [87] B. Bollobas , Random Graphs, Cambridge University Press; 2nd
edition, 2001.

 [88] Albert-Laszlo Barabasi and R. Albert, “Statistical Mechanics of
Complex Networks,” Rev. Mod. Phys., Volume 74, 2002: http:/
/merlin.fae.ua.es/fvega/review_ab.pdf.

 [89] Serguei N. Dorogovtsev and Jose Fernando Ferreira Mendes,
Evolution of Networks: From Biological Nets to the Internet and
WWW, Oxford University Press, 2003; complete text available
on-line: www.fyslab.hut.fi/~sdo/evolution_of_networks.pdf.

 [90] Jonathan L Gross and Jay Yellen, editors, Handbook of Graph
Theory, CRC Press, 2003.

 [91] K. Kohh, “Molecular Interaction Map of the Mammalian Cell
Cycle Control and DNA Repair Systems, Molecular Biology of
the Cell, Volume 10, August 1999: http://www.genopole-
lille.fr/fr/biblio/articles/Kohn.pdf.

 [92] K. Thulasiraman and M. Swami, Graphs: Theory and Algorithms,
John Wiley and Sons, 1992.



263

 [93] D.M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs:
Theory and Applications, Wiley, 1998. 

 [94] A. Ilachinski, Cellular Automata: A Discrete Universe, World Sci-
entific Publishing, 2001.

 [95] Sriram Pemmaraju and Steven Skiena, Computational Discrete
Mathematics: Combinatorics and Graph Theory with Mathematica,
Cambridge University Press, 2003.

 [96] WEBSOM: Self-Organizing Maps for Internet Exploration, Teuvo
Kohonen: http://websom.hut.fi/websom/

 [97] Ioannis G. Tollis, Giuseppe Di Battista, Peter Eades, and Rob-
erto Tamassia, Graph Drawing: Algorithms for the Visualization of
Graphs, Prentice Hall, 1998.

 [98] Michael Kaufmann, Dorothea Wagner, Drawing Graphs: Meth-
ods and Models, Springer-Verlag, 2001.

 [99] Petra Mutzel, Michael Junger, Graph Drawing Software,
Springer-Verlag, 2003.

 [100] J. O'Rourke, Computational Geometry in C, Cambridge Univer-
sity Press, 2001.

 [101] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.

 [102] S. Card, et.al., Information Visualization, Morgan Kauffman,
1999.

 [103] Self-organized Networks, University of Notre Dame, homepage:
http://www.nd.edu/~networks/database/.

 [104] Network Visualization, Max Planck Institute, homepage: http:/
/www.mpi-fg-koeln.mpg.de/~lk/netvis/tech.html.

 [105] Linton C. Freeman, “Visualizing Social Networks,” Journal of
Social Structure, Volume 1, 2000, http://moreno.ss.uci.edu/
freeman.pdf.



264

 [106] C. Mitchell, “Situational analysis and network analysis,” Con-
nections, 17, 1995.

 [107] R. V. Sole and S. Valverde, “Information Theory of Complex
Networks,” pages 169-190 in Complex Networks, edited by E.
Ben-Naim, H. Frauenfelder, and Z. Toroczkai, Lecture Notes in
Phyics, Springer-Verlag, 2004: http://www.santafe.edu/
research/publications/workingpapers/03-11-061.pdf/.

 [108] Albert-Laszlo Barabasi. Z Dezs, E Ravasz, S-H. Yook. and Z.
Oltvai, “Scale-free and hierarchical structures in complex net-
works,” Preprint (to appear in Sitges Proceedings on Complex Net-
works),  2004: http://www.nd.edu/~networks/PDF/
Proceeding%20Sitges2004.pdf.

 [109] M. E. J. Newman, D. J. Watts, and S. H. Strogatz, “Random
graph models of social networks,” Proceedings of the National
Academy of Sciences, Volume 99, 2002.

 [110] P. Ball, Critical Mass: How One Things Leads to Another, Farrar,
Straus and Giroux, 2004.

 [111] Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos,
“On Power-Law Relationships of the Internet Topology,” SIG-
COMM, 1999: http://www.cs.cmu.edu/%7Echristos/PUBLI-
CATIONS/sigcomm99.ps.gz.

 [112] R. Albert, H. Jeong, and A.L.Barabasi, “The diameter of the
World Wide Web,” Nature, Volume 401, 1999.

 [113] P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda, “Effi-
ciency of scale-free networks: error and attack tolerance,”
Physica A, Volume 320, 2003.

 [114] S. Mossa, M. Barthelemy, H. E. Stanley, and L. A. N. Amaral,
"Incomplete Information and the Growth of Scale-Free Net-
works: The `Cost of Information'," Phys. Rev. Lett., Volume 88,
2002: http://polymer.bu.edu/hes/articles/mbsa02.pdf.

 [115] M. E. J. Newman and Juyong Park, “Why social networks are
different from other types of networks,” Phys. Rev. E 68, 2003.



265

 [116] Petter Holme and Beom Jun Kim, “Growing Scale-Free Net-
works with Tunable Clustering,” Physical Review E, Volume 65,
2002: http://arxiv.org/PS_cache/cond-mat/pdf/0110/
0110452.pdf.

 [117] K. Klemm and V.M. Eguiluz, “Highly clustered scale-free net-
works,” Phys. Rev. E, Volume 65, 036123, 2002.

 [118] K. Klemm, V.M. Eguiluz, R. Total and M. san Miguel, “Global
Culture: A Noise Induced Transition in Finite Systems,” AIP
Conf. Proc., Volume 661, 2003.

 [119] J. Kleinberg, “Navigation in a Small World,” Nature, Volume
406, 2000: http://www.cs.cornell.edu/home/kleinber/
nat00.pdf..

 [120] L.A. Adamic, R. Lukose, A. Puniyani, and B.A. Huberman,
“Search in power-law networks,” Physical Review E, Volume 64,
2001: http://www.cs.unibo.it/babaoglu/courses/cas/
papers/search-in-power-law.pdf.

 [121] L.A. Adamic, R. Lukose, and B.A. Huberman, “Local Search
in Unstructured Networks,” Chapter 13 in Handbook of Graphs
and Networks, edited by S. Bornholdt and H.G. Schuster,
Wiley, 2003.

 [122] D. Watts, P. Dodds and M.E.J. Newman, “Identity and search
in social networks,” Science, Volume 296, May 2002.

 [123] H. Bernard, R. Killworth, P.D. Evans, M.J. McCarthy, and G.
Shelley, “Studying social relations cross-culturally,” Ethnology,
Volume 2, 1988.

 [124] A. Koestler, Janus: A Summing Up, Vintage Books, 1979.

 [125] M.E. Newman and D.J. Watts, Phys. Lett. A, Volume 263, 1999.

 [126] K. Sneppen, A. Trusina and M. Rosvall, “Hide and Seek in
complex networks,” Preprint, 2004: http://xxx.lanl.gov/pdf/
cond-mat/0407055.



266

 [127] K. Sneppen and M. Rosvall, “Modeling Dynamics of Informa-
tion Networks,” Physics Review Letters, Volume 91, 2003: http:/
/www.arxiv.org/abs/cond-mat/0308399.

 [128] A. Ilachinski and P. Halpern, “"Structurally Dynamic Cellular
Automata", Complex Systems, Volume 2, 1987.

 [129] S. Majercik, Structurally Dynamic Cellular Automata, Masters
Thesis, Computer Science, University of Southern Maine,
1994: http://www.bowdoin.edu/~smajerci/pubs/masters.ps.

 [130] D. O'Sullivan, “Exploring spatial process dynamics using
irregular graph-based cellular automaton models,” Geo-
graphical Analysis, Volume 33, 2001.

 [131] S. Saidani and M. Piel, “Dynagraph: a Smalltalk Environment
for Self-Reconfigurable Robots Simulation,” paper presented
at the European Smalltalk User Group (ESUG) Conference, 2004
Research Track: http://cubitus.info.unicaen.fr:8080/samir/
uploads/DynaGraph,_a_Smalltalk_Environment_for_Self-
Reconfigurable_Robots_Simulation.pdf.

 [132] S. Saidani, “Dynamic graphs as cellular automata,” Discrete
Mathematics and Theoretical Computer Science, 2003.

 [133] D.J. Brass, “A Social Network Perspective on Human
Resources Management,” Research in Personnel and Human
Resources Management, Volume 13, 1995.

 [134] R. S. Burt, Structural Holes: The Social Structure of Competition,
Harvard University Press, 1992.

 [135] Linton C. Freeman, “Centrality in Social Networks,” Social Net-
works, Volume 1, 1979.

 [136] Petter Holme, Beom Jun Kim, Chang No Yoon and Seung
Kee Han, “Attack vulnerability of complex networks,” Phys.
Rev. E, Volume 65, 2002.

 [137] Petter Holme and Beom Jun Kim, “Vertex overload break-
down in evolving networks,” Physical Review E, Volume 65,



267

2002: http://arxiv.org/ftp/cond-mat/papers/0204/
0204120.pdf.

 [138] P. Bonacich, "Power and Centrality: a Family of Measures,”
American Journal of Sociology, Volume 92, 1987.

 [139] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge
University Press, 1990.

 [140] N. Biggs, Algebraic Graph Theory, Cambridge University Press,
1994. 

 [141] S. Brin and L. Page, “The anatomy of a large-scale hypertex-
tual search engine,” Computer Networks, Volume 30, 1998.

 [142] K. Stephensen and M. Zelen, “Rethinking Centrality: Meth-
ods and Applications,” Social Networks, Volume 11, 1989.

 [143] M.E.J. Newman, “A Measure of Betweenness Centrality Based
on Random Walks,” e-print: http://arxiv.org/abs/cond-mat/
0309045.

 [144] M.A. Beauchamp, “An Improved Index of Centrality,” Behav-
ioral Science, Volume 10, 1965.

 [145] G. Sabidussi, “The Centrality Index of a Graph,” Psychometrika,
Volume 31, 1966.

 [146] M. Jaaskelainen, “Centrality Measures and Information Flows
in Venture Capital Syndication Networks,” 2001: http://
www.sal.tkk.fi/Opinnot/Mat-2.108/pdf-files/ejaa01.pdf.

 [147] L. C. Freeman, S. P. Borgatti, and D.R. White, “Centrality in
valued graphs: A measure of betweenness based on network
flow,” Social Networks, Volume 13, 1991.

 [148] Linton C. Freeman, “A Set of Measures of Centrality Based on
Betweenness,” Sociometry, Volume 40, 1977.

 [149] V. Latora and M. Marchiori, “How the Science of Complex
Networks Can Help Developing Strategies Against Terror-
ism,” Chaos, Solitons and Fractals, Volume 20, 2004.



268

 [150] V. Latora and M. Marchiori, “A Measure of Centrality Based
on the Network Efficiency,” e-print: http://arxiv.org/abs/
cond-mat/0402050.

 [151] T. Carpenter, G. Karakostas, and D. Shallcross, “Practical
Issues and Algorithms for Analyzing Terrorist Networks,” Tel-
cordia Technologies, Inc., Invited paper at WMC 2002: http://
www.cas.mcmaster.ca/%7Egk/papers/wmc2002.pdf.

 [152] S. Fortunato, V. Latora, and M. Marchiori, “Method to find
community structures based on information centrality,” Phys-
ical Review E, Volume 70, 2004: http://axpfct.ct.infn.it/
~latora/flm04.pdf.

 [153] D. R. White and S. Borgatti, “Betweenness centrality measures
for directed graphs, Social Networks, Volume 16, 1994.

 [154] S. White and Padhraic Smyth, “Algorithms for Estimating Rel-
ative Importance in Networks,” Knowledge Discovery in Data and
Data Mining, August, 2003.

 [155] J. Bruggeman, G. Carnabuci, and I. Vermeulen, “A note on
structural holes theory and niche overlap,” Social Networks,
2003: http://users.fmg.uva.nl/jbruggeman/socnet03.htm.

 [156] J. Moody, D. R. White, “Social Cohesion and Embeddedness:
A Hierarchical Conception of Social Groups,” Santa Fe Insti-
tute Working Papers, 00-08-049, http://www.santafe.edu/sfi/
publications/Working-Papers/00-08-049.pdf.

 [157] J. Moody, Racial Friendship Segregation, Sociogram: http://
www.sociology.ohio-state.edu/jwm/race1.gif.

 [158] M. Sageman,Understanding Terror Networks, Foreign Policy
Research Institute, November 2004: http://www.fpri.org/
enotes/20041101.middleeast.sageman.understandingterror-
networks.html.

 [159] M. Sageman, “Understanding Al Qaeda Networks,” Briefing
Slides, National Institute of Standards and Technology



269

(NIST), http://www.bfrl.nist.gov/PSSIWG/presentations/
Understanding_al_Qaeda_Networks.pdf.

 [160] E.O. Laumann, Prestige and Association in an Urban Community,
Bobbs-Merril, 1966.

 [161] S.C. Johnson, "Hierarchical Clustering Schemes," Psy-
chometrika, Volume 2, 1967.

 [162] R.K. Ahuja, T. Magnanti, and J. Orlin, Network Flow: Theory,
Algorithms, and Applications, Prentice-Hall, 1993.

 [163] M. E. J. Newman, M. Girvan, “Finding and evaluating commu-
nity structure in networks, Phys. Rev. E, Volume 69, 2004:
http://arxiv.org/pdf/cond-mat/0308217.

 [164] J.R. Tyler, D.M. Wilkinson, and B.A. Huberman, “Email as
spectroscopy: automated discovery of community structure
within organizations,” in M. Huysman, E. Wenger, and V.
Wulf, editors, Proceedings of the First International Conference on
Communities and Technologies, Dordrecht, 2003.

 [165] F. Radicchi, C. Castellano, F. Cecconi , V. Loreto, and D.
Parisi, “Defining and identifying communities in networks,”
Proceedings of the National Academies of Sciences, 2004: http://
www.pnas.org/cgi/reprint/101/9/2658.

 [166] G.W. Flake, S.R. Lawrence, C. Giles and F. Coetzee, “Self-orga-
nization and identification of Web communities,” IEEE Com-
puter, Volume 35, 2002.

 [167] M. E. J. Newman, “Detecting community structure in net-
works,” Eur. Phys. Jour. B, Volume 38, 2004: http://www.san-
tafe.edu/~mark/papers/epjb.pdf.

 [168] M. E. J. Newman, “Fast algorithm for detecting community
structure in networks,” Phys. Rev. E, Volume 69, 2004: http://
arxiv.org/pdf/cond-mat/0309045.



270

 [169] D. Lusseau and M.E.J. Newman, “Identifying the role that
individual animals play in their social network,” Ecology Letters,
2004: http://arxiv.org/pdf/q-bio.PE/0403029.

 [170] J.L. Moreno, Sociometry, Experimental Method and the Science of
Society. An Approach to a New Political Orientation, Beacon
House, Inc., 1951.

 [171] A. Clauset, M.E. Newman, and C. Moore, “Finding commu-
nity structure in very large networks,” Physical Review E, 2004:
http://www.eece.unm.edu/ifis/papers/community-
moore.pdf.

 [172] H. Zhou, “Distance, dissimilarity indxex, and network com-
munity structure,” Physical Review E, Volume 67, 2003.

 [173] M.O. Ball, “Complexity of network reliability computations,’’
Networks, Volume 10, 1980.

 [174] M.O. Ball, “Computational complexity of network reliability
analysis: an overview,” IEEE Transactions on Reliability, Volume
35, 1986.

 [175] Lucet, C. and J.-F. Manouvrier, "Exact Methods to Compute
Network Reliability," First International Conference on Mathemat-
ical Methods in Reliability, Bucarest, Roumania, September
1997:http://citeseer.ist.psu.edu/cache/papers/cs/21324/
http:zSzzSzwww.hds.utc.frzSz~manouvzSzmmr.pdf/exact-
methods-to-compute.pdf. 

 [176] T. Marlowe and L. Schoppmann, “Polynomial-Time Comput-
ability of the Edge-Reliability of Graphs Using Gilbert’s For-
mula,” Mathematical Problems in Engineering, Volume 4, 1998:
http://www.hindawi.co.uk/open-access/mpe/volume-4/
S1024123X98000817.pdf.

 [177] J. A. Buzacott, “A recursive algorithm for finding reliability
measures related to the connection of nodes in a graph,” Net-
works, Volume 10, 1980.



271

 [178] D.D. Harms, Network Reliability: Experiments with a Symbolic Alge-
bra Environment, CRC Press, 1995. 

 [179] M.L. Shooman, Reliability of Computer Systems and Networks:
Fault Tolerance, Analysis, and Design, Wiley, 2001. 

 [180] Hans L. Bodlaender and Thomas Wolle, A Note on the Complex-
ity of Network Reliability Problems, Institute of Information and
Computing Sciences, Utrecht University, Technical Report
UU-CS-2004-001: http://archive.cs.uu.nl/pub/RUU/CS/
techreps/CS-2004/2004-001.pdf.

 [181] A.E. Motter and Y.-C. Lai, “Cascade-based attacks on complex
networks,” Physical Review E, Volume 66, 2002.

 [182] A.E. Motter, T. Nishikawa, and Y.-C. Lai, “Range-based attack
on links in scale-free networks: are long-range links responsi-
ble for the small-world phenomenon?,” Phys. Rev. E, Volume
66, 2002: http://arxiv.org/PS_cache/cond-mat/pdf/0206/
0206030.pdf.

 [183] Y.-C. Lai, A.E. Motter, and T. Nishikawa, “Attacks and Cas-
cades in Complex Networks,” Lecture Notes in Physics, Springer-
Verlag, Volume 650, 2004: http://chaos1.la.asu.edu/~yclai/
papers/LNP_04.pdf.

 [184] Petter Holme, “Edge overload breakdown in evolving net-
works,” Physical Review E, Volume 66, 2002: http://arxiv.org/
PS_cache/cond-mat/pdf/0207/0207466.pdf.

 [185] D.J. Watts, “A simple model of global cascades on random net-
works,” Proceedings of the National Academy of Sciences, Volume
99, 2002.

 [186] Reka Albert, Istvan Albert, and Gary L. Nakarado, “Structural
Vulnerability of the North American Power Grid,” http://
arxiv.org/pdf/cond-mat/0401084.

 [187] J.D. Farley, “Breaking Al Qaeda Cells: A Mathematical Analy-
sis of Counterterrorism Operations (A Guide for Risk Assess-
ment and Decision Making), Studies in Conflict and Terrorism,



272

Volume 26, 2003: http://dimacs.rutgers.edu/Workshops/
Defense/article4.pdf.

 [188] G. Woo, “Insuring Against Al Qaeda,” National Bureau of Eco-
nomic Reseach Conference, 2003: http://www.nber.org/~con-
fer/2003/insurance03/woo.pdf.

 [189] G. Woo, “Adaptation in an Environment of Terror,” Briefing
Slides, Duke Environmental Leadership Forum, 2002: http://
www.env.duke.edu/forum02/woo.pdf.

 [190] I. Peterson, “Splitting Terrorist Cells,” Science News Online,
Volume 165, Number 2, January, 2004: http://www.science-
news.org/articles/20040110/mathtrek.asp.

 [191] Wei-Chang Yeh, “A simple algorithm to search for all mini-
malcutsets with unreliable nodes,” Complexity International,
Volume 8, 2001: http://journal-ci.csse.monash.edu.au/ci/
vol08/yeh01/yeh01.pdf.

 [192] G. Woo, “The Al Qaeda War Game,” Swiss Military Review,
December 2002.

 [193] Valdis Krebs, “Mapping Networks of Terrorist Cells,” Connec-
tions, Volume 24, Number 3, 2002: http://www.orgnet.com/
MappingTerroristNetworks.pdf.

 [194] S. Voss and C. Joslyn, “Advanced Knowledge Integration In
Assessing Terrorist Threats,” Los Alamos Laboratory, ftp://
ftp.c3.lanl.gov/pub/users/joslyn/knowint.pdf.

 [195] Valdis Krebs, “Social Network Analysis of the 9-11 Terrorist
Network,” http://www.orgnet.com/hijackers.html.

 [196] R. Smith, “Modeling and Simulation Aids Insight on Terror-
ism,” Signal, 2001.

 [197] M.W. Nance, The Terrorist Recognition Handbook: A Manual for
Predicting and Identifying Terrorist Activities, Lyons Press, 2003.



273

 [198] Rohan Gunaratna, Inside Al Qaeda: Global Network of Terror,
Berkley Pub Group, 2003.

 [199] D.R. White and F. Harary, “The Cohesiveness of Blocks in
Social Networks: Node Connectivity and Conditional Den-
sity,” in Sociological Methodology 2001, edited by M. Sobel and
M. Becker, Blackwell Publishers, 2002.

 [200] S. French, Decision Theory: An Introduction to the Mathematics of
Rationality, Ellis Horwood Limited, 1986.

 [201] Peter R. Monge and Noshir S. Contractor, “Emergence of
Communication Networks,” in Handbook of Organizational
Communication, Second Edition, edited by F. M. Jablin and
L.L. Putnam, Sage Press, 1999.

 [202] N. S. Contractor, R. Whitbred, F.Fonti, A. Hyatt, P. Jones, and
B. O'Keefe, “Self-organizing communication networks in
organizations: validation of a computational model using
exogenous and endogenous theoretical mechanisms,” paper
presented at the meeting of the International Communication
As s o c i a t i on ,  J e ru sa lem,  I s rae l ,  1998 :  h t tp ://
www.spcomm.uiuc.edu/users/nosh/manuscripts/Comp/
comp.htm.

 [203] Peter R. Monge and Noshir S. Contractor, Theories of Commu-
nication Networks, Oxford University Press, 2003.

 [204] D.E. Byrne, The Attraction Paradigm, Academic Press, 1971.

 [205] J.C. Turner, Rediscovering the Social Group: A Self-Categorization
Theory, Oxford University Press, 1987.

 [206] Albert-Laszlo Barabasi and R. Albert, "Emergence of scaling
in random networks", Science, Volume 286, 1999. 

 [207] H.Ibarra and S. B. Andrews, “Power, social influence, and
sense making: effects of network centrality and proximity on
employee perceptions,” Administrative Science Quarterly,
Volume 38, 1993. 



274

 [208] P.R. Monge, L.W. Rothman, E.M. Eisenberg, K.I. Miller, and
K.K. Kirste, “The dynamics of organizational proximity,” Man-
agement Science, Volume 31, 1985.

 [209] R.E. Rice and C. Aydin, “Attitudes toward new organizational
technology: network proximity as a mechanism for social
information processing,” Administrative Science Quarterly,
Volume 9, 1991

 [210] E.J. Bienenstock and P. Bonacich, “Network exchange as a
cooperative game,” Rationality and Society, Volume 9, 1997.

 [211] K.S. Cook and T. Yamagishi, “Power in exchange networks: a
power-dependence formulation,” Social Networks, Volume 14,
1992.

 [212] R. Axelrod, The Evolution of Cooperation, Basic Books, 1984.

 [213] R. Axelrod, “The Evolution of Strategies in the Iterated Pris-
oner's Dilemma," in Genetic Algorithms and Simulated Anneal-
ing, edited by L. Davis, Morgan Kaufman, 1987: http://www-
personal.umich.edu/~axe/research/Evolving.pdf.

 [214] R. Axelrod, The Complexity of Cooperation, Princeton University
Press, 1997.

 [215] G.C. Homans, The Human Group, Harcourt Brace, 1950.

 [216] H.A. Simon, Models of Man, Wiley, 1957.

 [217] N. Lin and M. Granovetter, editors, Social Capital : A Theory of
Social Structure and Action, Cambridge University Press, 2002.

 [218] K.W. Back, “Influence through social communication,” Journal
of Abnormal and Social Psychology, Volume 46, 1951.

 [219] G.C. Homans, The Human Group, Harcourt, 1950.

 [220] S. E. Seashore, “Group cohesiveness in the industrial work
group,” Institute for Social Research, 1954.



275

 [221] N. J. Evans, and K. L. Dion, “Group cohesion and perfor-
mance: a meta-analysis,” Small Group Research, Volume 22,
1991.

 [222] N. E. Friedkin, “Social Cohesion,” Annual Review of Sociology,
Volume 30, 2004.

 [223] Durkin, Expert Systems: Design and Development, Prentice Hall,
1994.

 [224] Valdis Krebs, “Surveillance of Terrorist Networks,” http://
www.orgnet.com/tnet.html.

 [225] Thomas A. Stewart, “Six Degrees of Mohammed Atta,” Busi-
ness 2.0, December, 2001, http://www.business2.com/b2/
web/articles/1,17863,514212,00.html.



276



277

Bibliography

 [1] R. Albert and A.-L. Barbási, “Statistical Mechanics of Complex
Networks,” http://www.nd.edu/~networks/Papers/
review.pdf.

 [2] Al Qaeda Training Manual, United States Department of Jus-
tice, on-line: http://www.au.af.mil/au/awc/awcgate/terror-
ism/alqaida_manual/.

 [3] L. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley, "Classes
of Behavior of Small-World Networks," Proc. Natl. Acad. Sci.,
Volume 97, 2000: http://polymer.bu.edu/hes/articles/
asbs00.pdf.

 [4] A. Arenas, A. Cabrales, A. Diaz-Guilera, R. Guimera, and F.
Vega-Redondo, “Search and Congestion in Complex Net-
works,” Proceedings of the Conference Statistical Mechanics of
Complex Networks, Sitges, Spain, June 2002: http://arxiv.org/
pdf/cond-mat/0301124.

 [5] R. Axelrod, The Complexity of Cooperation, Princeton Univ Press,
1997.

 [6] A. Balcioglu, An Algorithm for Enumerating the Near-Minimum
Weight S-T Cuts of a Graph, Thesis, Naval Post Graduate School,
December 2000: http://library.nps.navy.mil/uhtbin/hyper-
ion-image/00Dec_Balcioglu.pdf.

 [7] A.-L. Barabasi, Albert, and H. Jeong, “Mean-eld theory for
scalefree random networks,” Physica A, Volume 272, 1999.

 [8] A.-L. Barabasi, R. Albert, and Jeong H., "The Internet's Achil-
les' heel: error and attack tolerance of complex networks",
Nature, Volume 406, 2000.



278

 [9] A.-L. Barabási, E. Ravasz and T. Vicsek, “Deterministic scale-
free networks,” Physica A, Volume 299, 2001.

 [10] E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai, editors,
Complex Networks, Lecture Notes in Phyics, Springer-Verlag, 2004.

 [11] H. Bloom, The Lucifer Principle: A Scientific Expedition into the
Forces of History, Atlantic Monthly Press, 1997.

 [12] M. Boguna, R. Pastor-Satorras, A. Diaz-Guilera, A. Arenas,
“Emergence of clustering, correlations, and communities in a
social network model, “ Preprint, 2003: http://arxiv.org/pdf/
cond-mat/0309263.

 [13] P. Bonacich, “Factoring and weighting approaches to status
scores and clique identification,” Journal of Mathematical Soci-
ology, Volume 2, 1972.

 [14] P. Bonacich, "Simultaneous Group and Individual Centrali-
ties," Social Networks, Volume 13, 1991.

 [15] B. G. Buchanan and E.H. Shorti, Rule-Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project,
Addison-Wesley, 1984.

 [16] W. E. Combs, The Fuzzy Systems Handbook, Academic Press,
1999.

 [17] R. Cross, S.P. Borgatti, and A. Parker, “Making Invisible Work
Visible: Using Social Network Analysis to Support Strategic
Collaboration,” California Management Review, Volume 44,
2002.

 [18] M. Diani and Doug McAdam, editors, Social Movements and
Networks: Relational Approaches to Collective Action, Oxford Uni-
versity Press, 2003.

 [19] B. Dutta, editor, Networks and Groups: Models of Strategic Forma-
tion, Springer Verlag, 2003.



279

 [20] P. Eades, “A heuristic for graph drawing,” Congressus Numeran-
tium, Volume 42, 1984.

 [21] D. Eggan and M. Dobbs, “Danger persists after hobbling of Al
Qaeda U.S. officials fear attacks by Bin Laden supporters,”
Washington Post, January 13, 2002.

 [22] J. M. Epstein and Robert L. Axtell, Growing Artificial Societies:
Social Science from the Bottom Up, MIT Press, 1996.

 [23] J. M. Epstein, John D. Steinbruner, Miles T. Parker, “Model-
ing Civil  Violence: An Agent-Based Computational
Approach,” Brookings Institute, Center on Social and Eco-
nomic Dynamics, Working Paper Number 20, January 2001,
http://www.brook.edu/dybdocroot/es/dynamics/papers/
cviolence/cviolence.pdf.

 [24] B. H. Erickson, “Secret societies and social structure,” Social
Forces , Volume 60, 1981.

 [25] Saad al Fagih, Interview, Frontline, Public Broadcasting Ser-
vice, 1999: http://www.pbs.org/wgbh/pages/frontline/
shows/binladen/interviews/al-fagih.html.

 [26] Final Report on the August 14, 2003 Blackout in the United States
and Canada: Causes and Recommendations, U.S.-Canada Power
System Outage Task Force: https://reports.energy.gov/
BlackoutFinal-Web.pdf.

 [27] L. R. Ford and D.R. Fulkerson, Flows in Networks, Princeton
University Press, 1962.

 [28] L. C. Freeman, "Visualizing Social Groups" American Statistical
Association, Proceedings of the Section on Statistical Graphics, 2000,
http://moreno.ss.uci.edu/groups.pdf.

 [29] N. E. Friedkin, “Theoretical Foundations for Centrality Mea-
sures,” AJS, Volume 96, 1991.



280

 [30] R. J. Gaylord and Lou D'Andria, Simulating Society: A Mathemat-
ica Toolkit for Modeling Socioeconomic Behavior, Telos Press,
1998.

 [31] N. Gilbert and Klaus G Troitzsch, Simulation for the Social Scien-
tist, Open University Press, 1999.

 [32] N. Gilbert and Rosaria Conte, editors, Artificial Societies: The
Computer Simulation of Social Life, UCL Press, 1995.

 [33] M. Gladwell, The Tipping Point: How Little Things Can Make a
Big Difference, Back Bay Books, 2002.

 [34] R. Guimera, A. Diaz-Guilera, F. Vega-Redondo, A. Cabrales,
and A. Arenas, “Optimal network topologies for local search
with congestion,” Phys. Rev. Lett., Volume 89, 2002: http://
arxiv.org/pdf/cond-mat/0206410.

 [35] R. D. Howard and Reid Sawyer, editors, Terrorism and Counter-
terrorism: Understanding the New Security Environment, Readings
and Interpretations, McGraw-Hill, 2003.

 [36] B. Hoffman, Inside Terrorism, Columbia University Press, 1998.

 [37] R. Hudson, Who Becomes a Terrorist and Why: The 1999 Govern-
ment Report on Profiling Terroritst, Lyons Press, 2002.

 [38] A. Ilachinski and P. Halpern, “Structurally dynamic cellular
automata,” Complex Systems, Volume 1, 1987.

 [39] A. Ilachinski, EINSTein: An Artificial-Life Laboratory for Exploring
Self-Organized Emergence in Land Combat, Center for Naval Anal-
yses Research Memorandum CRM 2239.A1, 2000. 

 [40] A. Ilachinski, Land Warfare and Complexity, Part I: Mathematical
Background and Technical Sourcebook, Center for Naval Analyses
Information Manual CIM-461, Unclassified, 1996. Available
on-line, in Adobe’s Acrobat format, at URL address http://
www.cna.org/isaac/lw1.pdf.

 [41] A. Ilachinski, Land Warfare and Complexity, Part II: An Assess-
ment of the Applicability of Nonlinear Dynamics and Complex Sys-



281

tems Theory to the Study of Land Warfare, Center for Naval
Analyses Research Memorandum CRM-68, Unclassified,
1996. Can be downloaded from the WWW at URL address
http://www.cna.org/isaac/lwpart2.pdf.

 [42] A. Ilachinski, A Mobile Cellular Automata Approach to Land Com-
bat, Center for Naval Analyses Information Manual CIM-482,
Unclassified, 1996.

 [43] A. Ilachinski, Irreducible Semi-Autonomous Adaptive Combat
(ISAAC): An Artificial-Life Approach to Land Warfare, Center for
Naval Analyses Research Memorandum CRM 97-61, 1997.
Can be downloaded from the WWW at URL address http://
www.cna.org/isaac/crm9761.htm.

 [44] A. Ilachinski, “Irreducible Semi-Autonomous Adaptive
Combat (ISAAC): An Artificial-Life Approach to Land War-
fare,” Military Operations Research, Volume 5, Number 3, 2000.

 [45] A. Ilachinski, EINSTein: Version 1.0.0.4β, Center for Naval
Analyses, Multimedia CD-rom, D0003394.A1, February 2001. 

 [46] A. Ilachinski, Multi-Agent-Based Synthetic Warfare: Towards Devel-
oping A General Axiological Ontology of Complex Adaptive Systems,
Center for Naval Analyses Research Memorandum CRM
D0007376.A1, 2002.

 [47] A. Ilachinski, EINSTein: Release Version 1.1, Center for Naval
Analyses, Multimedia CD-rom, D0007498.A1, February 2003.
C. Isbell, M. Kearns, D. Kormann, S. Singh, P. Stone, “Cobot
in LambdaMOO: A Social Statistics Agent,” AAAI, 2000,
http://www.cc.gatech.edu/fac/Charles.Isbell/projects/
cobot/.

 [48] H. Inose, “Communication networks,” Scientic American,
March, 1972.

 [49] M. Johns and Barry Silverman, “How Emotions and Personal-
ity Affect the Utility of Alternative Decisions: A Terrorist
Target Selection Case Study,” http://www.seas.upenn.edu/
~barryg/emotion.pdf.



282

 [50] K. Klemm and V.M. Eguiluz, “Growing scale-free networks
with small-world behavior,” Phys. Rev. E, Volume 65, 057102,
2002. 

 [51] P. Klerks, The Network Paradigm Applied to Criminal Organisa-
tions: Theoretical nitpicking or a relevant doctrine for investigators?
Recent developments in the Netherlands, Connections, Volume 24,
2001: http://www.sfu.ca/~insna/Connections-Web/
Volume24-3/klerks.pdf.

 [52] T. Kohonen, T.S. Huang, and M.R. Schroeder, Self-Organizing
Maps, Springer-Verlag, 3rd edition, 2000.

 [53] V. Krebs, “Surveillance of Terrorist Networks,” http://
www.orgnet.com/tnet.html.

 [54] L. Krempel and Thomas Plümper, “Exploring the Dynamics
of International Trade by Combining the Comparative
Advantages of Multivariate Statistics and Network Visualiza-
tions,” Journal of Social Structure, Volume 4, 2002: http://
www.cmu.edu/joss/content/articles/volume4/Krempel-
Plumper.html.

 [55] A. Lomi and Erik R. Larsen, editors, Dynamics of Organizations:
Computational Modeling and Organizational Theories, AAAI
Press, 2001.

 [56] M. J. Mataric, “Designing and understanding adaptive group
behavior,” Adaptive Behavior, Volume 4, No. 1, December
1995,

 [57] H. McCarthy, P.Miller, and P. Skidmore, editors, Network
Logic: Who governs in an interconnected world?, Demos, 2004:
www.demos.co.uk/networklogic_pdf_media_public.aspx.

 [58] C. Mitchell, “Situational analysis and network analysis,” Con-
nections, 17, 1995.

 [59] PAJEK, Visualization and Analysis Package for Large Net-
works, http://vlado.fmf.uni-lj.si/pub/networks/pajek/.



283

 [60] P. P. Perla, A. Ilachinski, C.M.Hawk, M.C.Markowitz, and C.A.
Weuve, Using Gaming and Agent Technology to Explore Joint Com-
mand and Control Issues, Center for Naval Analyses Research
Memorandum, CRM D0007164, Unclassified, October 2002.

 [61] M. Prietula, Kathleen Carley, and Les Gasser, editors, Simulat-
ing Organizations: Computational Models of Institutions and
Groups, AAAI Press, 1998.

 [62] M. R. Pynchon and Randy Borum, Assessing Threats of Tar-
geted Group Violence: Contributions from Social Psychology,
Behavioral Sciences and the Law, Volume 17, 1999.

 [63] W. Reich, editor, Origins of Terrorism: Psychologies, Ideologies,
Theologies, States of Mind, Woodrow Wilson Center Press, 1998.

 [64] R. Renfro and R. Deckro, “A Social Network Analysis of the
Iranian Government,’’ paper presented at 69th MORS Sympo-
sium, Working Group 8, 2001 (http://www.fas.org/irp/
eprint/socnet.pdf).

 [65] D. Ronfeldt and John Arquilla, "Networks, Netwars, and the
Fight for the Future," First Monday (Peer Reviewed Internet
Journal), Volume 6, Number 10, 2001, http://firstmon-
day.org/issues/issue6_10/ronfeldt/.

 [66] R. Rothenberg, “From Whole Cloth: Making up the Terrorist
Network,” Connections, Volume 24, 2002.

 [67] E. Rothstein, “A Lethal Web With No Spider,” New York Times,
October 20, 2001.

 [68] I. Sanders, “To Fight Terror, We Can't Think Straight,” Wash-
ington Post, May 5, 2002.

 [69] T. C. Schelling, Micromotives and Macrobehavior, W.W. Norton
& Company, 1978.

 [70] T. Siegfried, “Network science could provide patriot gains,”
Dallas Morning News, Sep 9, 2002.



284

 [71] H. A. Simon, The Sciences of the Artificial, MIT Press, 1996.

 [72] Social Network References: http://www.socialnetworks.org/.

 [73] M. Stella, editor, Complexity and Critical Infrastructure Vul-
nerabilities, Proceedings of a Workshop Sponsored by The
Cyber Conflict Studies Association and The Center for Tech-
nology and National Security Policy, National Defense Uni-
versity, 2004: www.ndu.edu/ctnsp/complexity_book.htm.

 [74] T. A. Stewart, “Six Degrees of Mohammed Atta,” Business 2.0,
December, 2001, http://www.business2.com/b2/web/arti-
cles/1,17863,514212,00.html.

 [75] S. Strogatz, Sync: The Emerging Science of Spontaneous Order,
Hyperion, 2003.

 [76] K. Supowit and E. Reingold, “The complexity of drawing trees
nicely,” Acta Informatica, Volume 18, 1983.

 [77] J. Surowiecki, The Wisdom of Crowds: Why the Many Are Smarter
Than the Few and How Collective Wisdom Shapes Business, Econo-
mies, Societies and Nations, Doubleday Books, 2004.

 [78] B. Tadic and V. Priezzhev, Voltage distribution in growing
conducting networks,” Eur. Phys. Jour. B, Volume 30, 2002.

 [79] United States Department of Defense, Transcript of bin Laden
Video Tape, December 13, 2001, http:// www.defenselink.mil/
news/Dec2001/d20011213ubl.pdf.

 [80] Washington Post, 2001. "The Plot: A Web of Connections," 24
September 2001, http://www.washingtonpost.com/wp-srv/
nation/graphics/attack/investigation_24.html.

 [81] G. Weimann, “How Modern Terrorism Uses the Internet,”
Special Report, US Institute of Peace, http://www.usip.org/
pubs/specialreports/sr116.pdf.

 [82] M. B. West (Major), USMC, From Metaphors to Models: Broaden-
ing the Lens of the Hunter Warrior Experiment with a Complex Adap-



285

tive System Tool, Thesis, AY 98-99, Marine Corps Combat
Development Command, Quantico, VA.

 [83] S. White and P. Smyth, “Algorithms for Discovering Relative
Importance In Graphs,” Proceedings of Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Washington D.C., 2003: http://www.ics.uci.edu/~scott/
rel_auth.pdf.

 [84] G. Woo, “The Art of Terror,” Risk Transfer, September 2002.

 [85] G. Woo, “Quantifying Insurance Terrorism Risk,” National
Bureau of Economic Research meeting, Massachusetts, 2002.

 [86] M. Wooldridge, Introduction to MultiAgent Systems, John Wiley
& Sons, 2002.

 [87] B. Yu, M. Venkatraman, and M.P. Singh, “An adaptive social
network for information access: Theoretical and experimen-
tal results,” Applied Artificial Intelligence, 2000.



286



287

List of figures
Figure 1. A schematic overview of some of SOTCAC’s 

components discussed later in this paper 
(T=Terrorist, CT=Counterterrorist)  .  .  .  .  .  .  .  .  .  4

Figure 2. Social network of ties among 9/11 hijackers   .  .  .  . 6

Figure 3. Schematic of how mathematical graphs can 
be used to capture arbitrary relationships among 
objects, and serve as conceptual anchors of 
multiagent-based models  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 11

Figure 4. Schematic illustration of SOTCAC’s coupled 
information and physical spaces; in contrast, the 
dynamics of the EINSTein combat model are 
confined solely to the physical domain.  .  .  .  .  .  .  . 14

Figure 5. Examples of large complex networks   .  .  .  .  .  .  .  . 30

Figure 6. A small portion of the molecular interaction 
map for the regulatory network responsible 
for mammalian cell cycles.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33

Figure 7. Graph consisting of eight nodes and ten links   .  .  . 34

Figure 8. All undirected, unlabeled graphs G of order 4   .  .  . 36

Figure 9. Sample renderings of the same (order 25 and 
size 49) random graph using the five 
visualization algorithms discussed in the text  .  .  .  . 43

Figure 10. An example of graph visualization using 
spring-embedding .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 44

Figure 11. Schematic of the spectrum of all possible 
graphs, G(N,M), of size N and order M  .  .  .  .  .  .  . 47

Figure 12. Zoology of graphs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 49



288

Figure 13. A schematic illustration of several important 
epochs during the evolution of a random 
graph.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 54

Figure 14. An example Watts-Strogatz algorithm .  .  .  .  .  .  .  . 56

Figure 15. Typical decays of characteristic path length
and clustering coefficient using the 
Watts-Strogatz small-world random 
graph model .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57

Figure 16. Schematic illustration of a single chain in 
Watts, et al.’s hierarchical social network 
model   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 69

Figure 17. Comparison between the number of message 
chains of length L, as observed in Milgrim’s 
original “small-worlds” experiment   .  .  .  .  .  .  .  .  . 71

Figure 18. Network schematic for calculating search 
information, target entropy and road 
entropy.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73

Figure 19. Schematic of partitioning a local 
neighborhood into three disjoint sets  .  .  .  .  .  .  .  . 78

Figure 20. Sample step of applying an SDCA transition 
rule to a 5-by-5 lattice of nodes .  .  .  .  .  .  .  .  .  .  .  . 79

Figure 21. Sample SDCA evolution.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 80

Figure 22. An example of how to calculate the local 
clustering coefficient. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 87

Figure 23. Sample star, circle and line graphs used 
for comparing centrality metrics .  .  .  .  .  .  .  .  .  .  . 89

Figure 24. Sample calculations of global and local link 
densities  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 91

Figure 25. Sample weighted graph .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99

Figure 26. Illustration of two similar local topologies .  .  .  .  .  . 105

Figure 27. An illustration of a network with
“community structure”  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 108



289

Figure 28. Spring-embedding visualization   .  .  .  .  .  .  .  .  .  .  . 109

Figure 29. Schematic of the global Salafi network.  .  .  .  .  .  .  . 110

Figure 30. Illustration of the effects of node deletion 
on an initially connected network  .  .  .  .  .  .  .  .  .  . 116

Figure 31. Hypothetical terrorist cell.  .  .  .  .  .  .  .  .  .  .  .  .  .  . 123

Figure 32. Schematic of the decision-making 
process in EINSTein.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 129

Figure 33. Schematic of the decision-making 
process in SOTCAC .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 132

Figure 34. Schematic of SOTCAC’s physical and 
information space representations of 
TN and CTN coevolutions  .  .  .  .  .  .  .  .  .  .  .  .  .  . 134

Figure 35. Schematic timeline of terrorist network and 
counterterrorist network coevolution  .  .  .  .  .  .  .  . 139

Figure 36. Schematic illustration of the basic 
components of a terrorist network .  .  .  .  .  .  .  .  .  . 143

Figure 37. Schematic illustration of σ’s local 
topology map at time t  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 151

Figure 38. Schematic illustration of the four basic 
categories of contacts in σ’s ego-map   .  .  .  .  .  .  .  . 153

Figure 39. Schematic illustration of the different 
distance functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 157

Figure 40. EINSTein’s action selection.  .  .  .  .  .  .  .  .  .  .  .  .  . 173

Figure 41. Schematic illustration of an agent s’s 
local neighborhood in social network  .  .  .  .  .  .  .  . 185

Figure 42. Schematic of link-creation and link-deletion
in SOTCAC   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 187

Figure 43. Schematic illustration of how the CTN “infers” 
latent TN-structure using raw data filtered 
by a CT-agent, using method 1 .  .  .  .  .  .  .  .  .  .  .  . 192



290

Figure 44. Schematic illustration of how the CTN “infers” 
latent TN-structure using raw data filtered 
by a CT-agent, using method 2 .  .  .  .  .  .  .  .  .  .  .  . 193

Figure 45. Schematic of a typical scenario in which three 
T-agents are captured by CTa1  .  .  .  .  .  .  .  .  .  .  .  . 196

Figure 46. A schematic view of what the counterterrorist 
network believes the TN’s structure is at a 
given moment in time.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 199

Figure 47. Graphical view of the CTN’s composition-belief 
matrix  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 200

Figure 48. Graphical view of the CTN’s structure-belief 
matrix  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202

Figure 49. Behavior of Durkin-summation function   .  .  .  .  .  . 206

Figure 50. Schematic depiction of SOTCAC’s superspace
of TN-CTN coevolutions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 219

Figure 51. Sample SNA “deconstruction” of an imaginary 
business that consists of ten workers .  .  .  .  .  .  .  .  . 224

Figure 52. Screenshot of an early information-matrix 
of hijacker data   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 230

Figure 53. Social network of trusted prior contacts of 9/11 
hijackers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 231

Figure 54. Social network of 9/11 hijackers showing 
both trusted prior contacts (as in figure 52) 
and short-lived meeting ties.  .  .  .  .  .  .  .  .  .  .  .  .  . 233

Figure 55. Social network of 9/11 hijackers showing 
trusted prior contacts (as in figure 53), 
short-lived meeting ties, and associated 
support network .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 235

Figure 56. Map showing that 11 of the 19 hijackers 
came from a single stretch of Highway 15 
of the Asir province of Saudi Arabia  .  .  .  .  .  .  .  .  . 237



291

List of tables

Table 1. Terrorist networks as complex adaptive systems.  .  . 7

Table 2. Some typical social network metrics that 
measure properties of links between nodes  .  .  .  .  . 84

Table 3. Some typical network metrics that measure 
properties of individual nodes  .  .  .  .  .  .  .  .  .  .  .  . 85

Table 4. Some typical social network metrics used 
o describe entire graphs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 86



292





C
R

M
 D

00
10

77
6.

A
3/

1R
ev


	Preamble
	Contents
	Summary
	Introduction
	Purpose
	Background
	Approach
	Issues, problems and questions
	Organization of paper

	Complex networks: basic concepts 
	Introduction
	Formalism
	Research problems
	Basic terminology
	Mathematical representations
	Graph visualization

	Complex networks: zoology
	Graph space
	Random graphs
	Small-world random graphs
	Scale-free random graphs
	Search in complex networks
	Dynamic graphs

	Complex networks: metrics
	Overview
	Characteristic Path Length
	Clustering Coefficient
	Degree centrality
	Link Density
	Eigenvector centrality
	Information Centrality
	Closeness centrality
	Betweenness centrality
	Flow betweenness
	 e-betweenness
	Efficiency centrality
	Structural Holes
	Community structure
	Vulnerability

	SOTCAC: conceptual design
	Modeling ontology
	Design overview
	Terrorist network
	T-agents
	T-agent types
	T-agent characteristics
	Social network maps
	T-agent personality
	T-agent actions
	Cells
	Social network links
	Adaptive topology
	SOTCAC’s link rules
	Constraints

	Counterterrorist network
	Functions
	INTEL Assets
	CTN Actions
	CTN Beliefs
	CTN inference personality


	Conclusion
	Appendix 1: Social network analysis
	Appendix 2: Mapping Al-Qaeda
	Appendix 3: Social network analysis and SOTCAC-related development resources 
	Appendix 4: World Wide Web URL links
	References
	Bibliography
	List of figures
	List of tables



